CHATGPT AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

In 1997 the IBM computer Deep Blue beat world chess champion Gary Kasparov head to head.  Is it feasible that CHATGPT, this decades artificial intelligence wunderkind, can equal or better a physician anesthesiologist? I entered three anesthesia consultations into CHATGPT, one preoperative, one intraoperative, and one postoperative. Is CHATGPT as good as an MD? Let’s look at what the computer answered:

PREOPERATIVE QUESTION

An 80-year-old woman with congestive heart failure gets short of breath walking up one flight of stairs. She needs to have her gallbladder removed. What sort of preoperative tests or therapies should this patient have before surgery?

 

CHATGPT: For an 80-year-old woman with congestive heart failure (CHF) who needs to undergo gallbladder removal surgery, it is essential to conduct a thorough preoperative evaluation to assess her overall health status and identify any potential risks. The specific evaluation required may vary depending on the patient’s medical history, the severity of the CHF, and the recommendations of the healthcare team involved. However, here are some general aspects that may be considered:

  1. Cardiac Evaluation: Given the patient’s CHF and symptoms of shortness of breath, it’s important to assess her cardiac function comprehensively. This may involve an electrocardiogram (ECG) to evaluate heart rhythm, an echocardiogram to assess heart structure and function, and possibly additional tests such as stress testing or cardiac catheterization, depending on the severity of her symptoms and the presence of any known cardiac conditions.
  2. Pulmonary Evaluation: Since the patient experiences shortness of breath, it may be necessary to evaluate her lung function. Pulmonary function tests, such as spirometry, may be conducted to assess lung capacity and function.
  3. Lab Tests: Routine blood tests may be performed to assess the patient’s overall health and check for any abnormalities that could impact surgery. This may include a complete blood count (CBC), comprehensive metabolic panel (CMP), coagulation profile, and other specific tests as deemed necessary.
  4. Imaging Studies: Depending on the patient’s medical history and symptoms, imaging studies like an abdominal ultrasound or a computed tomography (CT) scan may be ordered to confirm the diagnosis of gallbladder disease and assess its severity.
  5. Medication Review: A review of the patient’s current medications, including those used to manage her CHF, is crucial to ensure they are optimized for the surgery. Medications may need to be adjusted or temporarily stopped to minimize potential risks during the procedure.
  6. Anesthesia Evaluation: An evaluation by an anesthesiologist is important to assess the patient’s readiness for anesthesia and determine the most appropriate anesthesia plan for her, taking into account her cardiac condition and any other medical considerations.

It’s important to note that this is a general outline, and the specific preoperative evaluation for the patient should be determined by her healthcare team, including her primary care physician, surgeon, cardiologist, and anesthesiologist. They will consider her individual medical history and unique circumstances to ensure a safe and successful surgery.

 

INTRAOPERATIVE DECISION

A 60-year-old man with a history of hypertension is having a knee arthroscopy surgery under general anesthesia. In the middle of the anesthetic, his heart rate drops to 20 beats per minute, his blood pressure drops to unmeasurable, and he no longer has peripheral pulses. What do you think is going wrong, and what should be done do to save this man?

CHATGPT: I’m not a doctor, but the symptoms you described during the anesthetic suggest a severe and potentially life-threatening condition. This could indicate a cardiac event or a complication related to the anesthesia. One possible explanation for the sudden drop in heart rate, blood pressure, and loss of peripheral pulses is a condition called “bradycardia with hypotension” or “bradycardia-induced hypotension.”

In this situation, it’s crucial for the medical professionals involved to take immediate action. Here are some general steps that might be considered:

  1. Alert the medical team: The anesthesiologist or healthcare providers in the operating room need to be notified immediately about the patient’s deteriorating condition. The surgeon and additional medical personnel may also be called upon for assistance.
  2. Assess the airway, breathing, and circulation (ABCs): Ensure that the patient’s airway is clear and breathing is supported. Provide supplemental oxygen if necessary. Assess circulation and check for the presence of a pulse. If the patient is unresponsive or there is no pulse, initiate cardiopulmonary resuscitation (CPR) immediately.
  3. Notify the code team: If the patient remains unresponsive and pulseless, it may be necessary to activate a “code blue” or similar emergency response to involve a specialized team experienced in resuscitation procedures.
  4. Perform advanced cardiac life support (ACLS): Healthcare providers trained in ACLS protocols will initiate resuscitation measures, including chest compressions, defibrillation (if indicated for certain types of cardiac rhythms), and administration of medications such as epinephrine to help restore circulation.
  5. Identify and address potential causes: Once the patient’s vital signs have stabilized or as the resuscitation efforts continue, the medical team will work to identify the underlying cause of the cardiac event. This may involve evaluating the patient’s medical history, reviewing medications, and conducting further diagnostic tests such as an electrocardiogram (ECG) or blood tests.

It’s important to note that the above steps are general guidelines and the specific actions taken may vary depending on the patient’s condition, the resources available, and the expertise of the medical team on-site. In such a critical situation, the immediate focus will be on stabilizing the patient and providing appropriate resuscitation efforts to restore circulation and address any life-threatening issues.

 

POST ANESTHESIA EMERGENCY

In the recovery room after a tonsillectomy, a 5-year-old child coughs up blood, becomes short of breath, and becomes unconscious. What is probably going on, and what should be done to save this child?

CHATGPT: I’m not a doctor, but the symptoms you described following a tonsillectomy can be indicative of a serious complication known as postoperative hemorrhage. In this situation, it’s crucial to seek immediate medical attention. Here are some general steps that might be considered:

  1. Activate the emergency response: Alert the medical staff immediately about the child’s deteriorating condition. Nurses and physicians in the recovery room should be notified, and additional assistance may be needed, such as calling a code or emergency response team.
  2. Ensure a patent airway and support breathing: Assess the child’s airway and breathing. If the child is experiencing difficulty breathing or is unresponsive, the healthcare providers should take steps to establish and maintain a clear airway. They may administer oxygen and provide respiratory support if necessary.
  3. Control bleeding: Postoperative hemorrhage can cause significant blood loss, leading to the symptoms you described. The doctors should perform a thorough examination to identify the source of bleeding and take appropriate measures to control it. This may involve suctioning the blood from the child’s mouth, using medications to constrict blood vessels (such as topical epinephrine), or applying direct pressure to the bleeding site.
  4. Administer fluids and blood products: If the child is experiencing significant blood loss, intravenous fluids and blood products may be necessary to stabilize their condition and restore blood volume.
  5. Provide immediate resuscitation measures: If the child becomes unconscious or experiences cardiac arrest, cardiopulmonary resuscitation (CPR) should be initiated immediately. Healthcare providers trained in pediatric resuscitation will perform chest compressions, provide assisted ventilation, and administer medications as required.
  6. Prepare for surgical intervention: Depending on the severity of the bleeding and the child’s condition, emergency surgical intervention may be necessary to control the bleeding. The surgical team will be assembled, and the child will be transferred to the operating room for further assessment and management.

It’s important to note that the above steps are general guidelines, and the specific actions taken may vary depending on the child’s condition, the resources available, and the expertise of the medical team on-site. In such a critical situation, the immediate focus will be on stabilizing the child, controlling the bleeding, and providing any necessary resuscitation efforts.

 

ANALYSIS: 

Note that CHATGPT preceded two of its three answers with the words, “I’m not a doctor, but,” which likely removes the possibility that CHATGPT creator OpenAI will be sued for medical malpractice. From the answers above, I’ll attest that if you’re an inexperienced anesthesiologist or certified registered nurse anesthetist (CRNA) working alone, there is value having a resource like CHATGPT immediately available. Are there any notable errors in the CHATGPT answers? No, not really. As a written reply to the questions posed, the artificial intelligence of CHATGPT gives a reasonable outline regarding how to proceed.

Anesthesia is an acute care specialty, and often there will be no time to consult CHATGPT regarding what to do next because the patient is trying to die right in front of you, for example in the second and third scenarios above. Expect artificial intelligence in medicine to be most applicable in specialties like radiology, pathology, and dermatology, where digital images are analyzed. In radiology, this would be the evaluation of digital X-rays, MRIs, or CT scansIn pathology, this would be the evaluations of digital images of microscopic biopsies, and in dermatology, this would be the evaluation of digital images of skin lesion photographs. The model for the machine learning of digital images will be similar to the process in which a human child learns. When a child sees an animal, his parents tell him that animal is a dog. After repeated exposures the child learns what a dog looks like. Early on the child may be fooled into thinking that a wolf is a dog, but with increasing experience the child can discern with almost perfect accuracy what is or is not a dog.

CHATGPT relays information developed by algorithms. Is the practice of medicine destined to be directed by computer algorithms? Yes. We’re already guided by algorithms/cognitive aides such as the decision trees of Advanced Cardiac Life Support (ACLS) or the Stanford Emergency Manual. These flow charts are useful to direct acute care, and to assure no aspect of emergency treatment is overlooked. Expanded use of algorithms is inevitable as more data is accumulated on the management of large populations of medical patients. Current electronic medical records (EMR) systems exist in every hospital, and the EMRs are generating the sort of Big Data that algorithms will be built on.

I’ve had an interest in AI and robots in medicine for years. All Things That Matter Press published my novel Doctor Vita in 2019, several years before CHAPGPT became reality. Doctor Vita described the introduction of artificial intelligence in medicine machines in a Silicon Valley university hospital. A significant and anticipated advance in Doctor Vita is the ability to interact with patients and doctors by voice input and auditory output. In short, the artificial intelligence in medicine of the future will converse with us, just as Alexa and Siri already do.

The World Health Organization projects there will be a shortage of ten million healthcare workers worldwide by the year 2030. Contemplate the following:

  1. All medical knowledge is available on the Internet. Doctors don’t know everything or remember everything, so we routinely look up facts, evidence, and data on the Internet. A computer can recall all of these facts.
  2. Most every medical diagnosis and treatment can eventually be written as a decision tree algorithm;
  3. Voice interaction software is excellent and improving every year;
  4. The physical exam is of less diagnostic importance than scans and lab tests which can be digitalized; and
  5. A computer is far cheaper than the seven-year post-college education required to train a physician.

Will artificial intelligence assist MDs or replace MDs?Replacement of medical personnel with computers will not be welcomed by patients, doctors, or nurses, but there’s a need for cheaper healthcare, and the concept of automating physician tasks is no longer the domain of science fiction. It’s inevitable that AI will change current medical practice. A bold prediction: AI will change medicine more than any development since the invention of anesthesia in 1849.

 

Will the evolution of artificial intelligence in medicine lead to improved healthcare outcomes? In 2018 and 2019 autopilots drove two Boeing 737 Max airplanes to crashes despite the best efforts of human pilots to correct their course. Eleven people were killed in crashes involving vehicles using automated driving systems in the United States during a four-month period in 2022. Will we see improved outcomes or worsening outcomes when AI intersects with medicine, and machines are directing medical care? We don’t know yet. In the spirit of Jules Verne, this century’s trip around the world, to the center of the earth, to the moon, or beneath the ocean’s surface, will be the coming of artificial intelligence in medicine.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include: How Long Will It Take To Wake Up From General Anesthesia? Why Did Take Me So Long To Wake From General Anesthesia? Will I Have a Breathing Tube During Anesthesia? What Are the Common Anesthesia Medications? How Safe is Anesthesia in the 21st Century? Will I Be Nauseated After General Anesthesia? What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include: 10 Trends for the Future of Anesthesia Should You Cancel Anesthesia for a Potassium Level of 3.6? 12 Important Things to Know as You Near the End of Your Anesthesia Training Should You Cancel Surgery For a Blood Pressure = 170/99? Advice For Passing the Anesthesia Oral Board Exams What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM

ARTIFICIAL INTELLIGENCE IN THE OPERATING ROOM . . . (THE PREMISE OF DOCTOR VITA) . . . DISCUSSED IN THE JOURNAL ANESTHESIOLOGY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT
HAL from the movie 2001:A Space Odyssey

In 2004 I began writing Doctor Vita, a novel describing the encroachment of Artificial Intelligence (AI) into medical care. Fifteen years later, in 2019, Doctor Vita was published. The story described Artificial Intelligence in medicine as a perceived panacea that descended into a chaotic dystopian reality.

In recent years, engineers have developed closed-loop AI machines that can administer appropriate doses of anesthetics without human input, as described in The Washington Post article, “We Are Convinced the Machine Can Do Better Than Human Anesthesiologists.”

This month’s issue of Anesthesiology, our specialty’s leading journal, contains two studies on further incremental Artificial Intelligence in Medicine advances in the operating room. Both studies reveal machines that control a patient’s blood pressure automatically during surgery, by the administration of fluids and/or vasopressors (Joosten, et al. and Maheswari et al. 

Closed-loop anesthesia computer controllers for AI titration of anesthesia level

Two editorials accompany these publications. In the first editorial, titled “Computer-assisted Anesthesia Care: Avoiding the Highway to HAL,”  author Dr. David Story writes, “Among the cautionary tales of computer-assisted human activity, 2001:A Space Odyssey is a standout. On a journey to Jupiter, HAL the computer kills most of the crew, forcing the survivor to deactivate HAL. Like space travel, while computer-assisted health care has great potential it also contains the full Rumsfeld range of knowns and unknowns.” Dr. Story concludes his editorial with, “As our pilot counterparts are doing in aviation,anesthesiologists should anticipate training in crises while using computer-assisted technologies, as well as maintaining the skills to ‘fly’ manually.  . . . None of us wants to manage a deteriorating patient by trying to deactivate a malfunctioning computer-assisted anesthesia system, only to have it respond, ‘I’m sorry . . . I can’t do that.’

The second editorial in the same issue of Anesthesiology is titled “Back to the OR of the Future: How Do We Make It a Good One?”  Author Dr. Martin London writes, “The classic 1985 science fiction film Back to the Future transports the erstwhile protagonist (Marty McFly, played by a young Michael J. Fox) 30 years backwards into the past in the eccentric ‘Doc’ Brown’s custom DeLorean time machine, to deal with a series of comedic yet moral quandaries regarding his future existence. A notable quote by Doc Brown is, ‘The future is whatever you make it, so make it a good one.’  Dr. London goes on to say, “The use of artificial intelligence–derived controllers clearly signals a new era in intraoperative hemodynamic management. . . . It does seem inevitable that software control of hemodynamics and anesthetic depth will become routine. Thus, we might ask, ‘What happens to the operator/clinician involved?’ Will it be more appropriate for a busy anesthesiologist covering multiple operating rooms to be supervising the admittedly extreme scenario of ‘information technology experts’ ensuring the machines are functioning properly or actual healthcare providers monitoring the patient and not the machine? And what happens when the “computers go down”? Who will rush in to fill the gap? Will the process be ‘good’ or will it be ‘dystopic?’

Artificial intelligence in medicine is not the stuff of science fiction. AI in medicine is here. Will Artificial Intelligence in medicine assist doctors in compassionate care of their patients, or will AI present one more set of computers obstructing the relationships between healing professionals and those who need healing?

Medical journals like Anesthesiology reveal the future of medicine, as published data unfolds. A novel like Doctor Vita reveals a fictional future of medicine, based on the very trends that are going on today. 

Do you want a computer to care for you when your life is on the line? Do you want an algorithm, or a human, to be your doctor?  

Will you have a choice?

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

ROBOTIC ANESTHESIA REALLY IS COMING

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

The February 2020 edition of Anesthesiology, our specialty’s preeminent journal, published an article on robotic anesthesia.1

The accompanying editorial by Dr. Thomas Hemmerling was titled “Robots Will Perform Anesthesia in the Near Future.2 The author wrote: 

I have no doubt that closed-loop (i.e. robotic) anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”

The primary study by Joosten1 looked at the performance of multiple closed-loop systems for administration of anesthesia in 90 patients undergoing major noncardiac surgery in a single center in Belgium. The conclusion of the study was that the automated system outperformed manual control, as there was minimal but significantly better cognitive function in the patients one week after surgery when the closed loop control was used. 

A BIS monitor

The depth of anesthesia was measured using a BIS (bispectral index) monitor. A BIS electrode was applied to each patient’s forehead and temporal regions to capture the frontal electroencephalogram (EEG) from the brain. 

three Base Primea infusion pumps

In the closed-loop (automated, or robotic) group, two infusion pumps were used to deliver target-controlled intravenous infusions of the hypnotic drug propofol and the narcotic remifentanil, in order to maintain BIS values between 40 and 60. BIS values between 40 and 60 have been shown to correlate with adequate anesthesia depth.

In his editorial, Dr. Hemmerling wrote:

“Robotic anesthesia, defined as anesthesia delivered by an automated control system, will soon be available. It is my opinion that closed loop devices will become available in the United States . . .  

One of the changes our profession has gone through is an ever-increasing demand to multitask, be it by running more than one operating room, or by simultaneously performing administrative or teaching tasks. In addition, the number of parameters to monitor has also increased. It is therefore not surprising that one of the common denominators of studies comparing closed loop control versus manual control is the finding that humans change a given target infusion rate far less frequently than closed loop devices do.

I have no doubt that the practice of running more than one operating room, common in the United States but less so elsewhere, will soon be an international standard. Closed loop devices will allow us to maintain a high standard of quality independent from the amount of physical presence.

Robotic anesthesia delivered in Washington by Dr. Smith would essentially be the same as robotic anesthesia performed in Chicago by Dr. Miller. . . . 

I think technology will advance similar to what we have seen and see in the car manufacturing industry. First, there was manual transmission, then automatic transmission, double clutch systems, navigation systems, all sorts of safety assist systems…soon, there will be self-driving cars.

How will we do anesthesia in the future? It is 2030 and I am scheduled to supervise anesthesia for a 40-yr-old patient undergoing laparoscopic cholecystectomy.

In the operating room, I tell my robot—let’s call it A-bot—about the surgery, the patient, and the type of anesthesia I would like performed. “Can I get a propofol, remifentanil-based anesthesia? Can we target 45 as a Bispectral Index? A-bot, can you maintain mean arterial pressure around 65? Can you maintain cardiac index during surgery of more than 2.5 l · min–1 · m–2? A-bot, I would like to use rocuronium, bolus application is good enough, but please keep neuromuscular blockade lower than 25% at all times. Please choose a respiratory rate of 12 and adjust tidal volumes to maintain end-tidal carbon dioxide of 32 mmHg in 50% air! Let’s provide preemptive analgesia using morphine and ketorolac—usual dosages, A-bot, you know.”

A-bot answers: “Sure will, Tom—you keep me informed about surgical progress?”

“Yep.”

When I look at all the literature, including the fine work by Joosten et al.,1  I have no doubt that closed loop anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”2

In 2019 I wrote an editorial that robotic anesthesia was coming.3 And as I wrote the novel Doctor Vita 4 over a 15-year span from 2004-2019, I became more and more convinced of the role technology will play, for better or for worse, in replacing the human element in patient care. The premise of the novel is valid.

Will artificial intelligence in medicine provide the world with healthcare workers who work simply by plugging them in? Will some form of Doctor Vita populate future operating rooms?

An editor in the world’s leading anesthesia journal has predicted it. 

References:

  1. Joosten, A, Rinehart, J, et al. Anesthetic management using multiple closed-loop systems and delayed neurocognitive recovery: A randomized controlled trial. Anesthesiology. 2020; 132:253–66.
  2. Hemmerling TM. Robots will perform anesthesia in the near future. Anesthesiology 2020: 132:219-220.
  3. Novak R. “Artificial Intelligence in Anesthesia and Perioperative Medicine is Coming.” EC Anaesthesia 5.5 (2019): 112- 114. 
  4. Novak R. Doctor Vita. All Things That Matter Press, 2019.




*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

DOCTOR BY DAY, SCI-FI WRITER BY NIGHT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This week the Palo Alto (California) Weekly ran a feature story on Rick Novak and Doctor Vita

Doctor by day, sci-fi novelist by night

Longtime Atherton resident spotlights AI and medicine in books

Dr. Rick Novak poses for a portrait at Stanford Hospital in Palo Alto on May 23. Photo by Magali Gauthier/The Almanac

Between his time in the operating room, teaching, and raising his three sons, Atherton resident Dr. Rick Novak has found time to write two novels.

Novak, 65, an anesthesiologist at the Waverley Surgery Center in Palo Alto, recently published his latest, “Doctor Vita,” a story about an artificial intelligence (AI) physician module that goes awry.

It’s a science fiction novel that explores how technological breakthroughs like artificial intelligence and robots will affect medical care — and already have.

The Almanac, an Embarcadero Media publication which serves Menlo Park, Atherton, Woodside, and Portola Valley California, featured a story “Fiction or the Future?” on Rick Novak and Doctor Vita the same week.

This image has an empty alt attribute; its file name is img_7298.jpg