THE NEW 2023 ASA GUIDELINES FOR QUANTITATIVE NEUROMUSCULAR MONITORING. NOW WHAT?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

The 2023 American Society of Anesthesiologists Practice Guidelines for Monitoring and Antagonism of Neuromuscular Blockade were published last month.The paper is backed by strong science, and references an exhaustive list of no less than 277 previous publications on the topic, including this review. The paper concludes that quantitative neuromuscular (NM) monitoring is the most accurate and clinically useful technology for detecting residual neuromuscular block.

The problem? Very few anesthesia professionals have access to a quantitative NM monitoring device at present.

Currently a large number of anesthesia practitioners don’t monitor neuromuscular blockade level at all. A 2010 survey documented that 9.4% of American anesthesiologists didn’t use a peripheral nerve stimulator, and most survey respondents felt that neither conventional nerve stimulators nor quantitative neuromuscular monitors should be part of minimum monitoring standards. An editorial accompanying the 2023 ASA Guidelines states, “it is impossible to accurately predict the depth of neuromuscular block or the adequacy of reversal by using clinical tests such as tidal volume, negative inspiratory force, ability to sustain head lift, or grip strength. Similarly, qualitative assessment of responses to peripheral nerve stimulators cannot be relied upon in deciding the appropriate time for tracheal extubation.”

The most important recommendations from these ASA Practice Guidelines, each backed by Strong Strength of Recommendation (bold text by me) are:

  1. When neuromuscular blocking drugs are administered, we recommend against clinical assessment alone to avoid residual neuromuscular blockade, due to the insensitivity of the assessment.

  2. We recommend quantitative monitoring over qualitative assessment to avoid residual neuromuscular blockade. When using quantitative monitoring, we recommend confirming a train-of-four ratio greater than or equal to 0.9 before extubation.

  3. We recommend using the adductor pollicis muscle for neuromuscular monitoring.

  4. We recommend against using eye muscles for neuromuscular monitoring.

  5. We recommend sugammadex over neostigmine at deep, moderate, and shallow depths of neuromuscular blockade induced by rocuronium or vecuronium, to avoid residual neuro- muscular blockade.

Recommendation #2 will be the most challenging to follow, because, as an October 2021 study published in Anesthesiology states, “The paucity of easy-to-use, reliable objective neuromuscular monitors is an obstacle to universal adoption of routine neuromuscular monitoring.” In 2016 there were more than 224,000 operating rooms in the United States, so tens of thousands of devices could be needed.

What type of quantitative NM monitoring device should we aim to acquire? There are three types of quantitative monitors of neuromuscular blockade discussed in a 2021 Anesthesiology editorial. I quote from this reference:

1. Acceleromyography. Depolarization of the ulnar nerve results in contraction of the adductor pollicis, which flexes the thumb, producing an acceleration detected by the sensor. . . . the thumb must be entirely free to move, which precludes monitoring the hand that has been tucked at the patient’s side during surgery. The second problem is that the baseline, unparalyzed train-of-four ratio (the ratio of the fourth to the first twitch of a train-of-four), which should theoretically be equal to 1, is often greater than 1.

Acceleromyography monitoring

2. A mechanomyograph is an instrument that directly measures the isometric force of contraction of the thumb, using a force transducer. . . . A mechanomyograph is a somewhat cumbersome instrument that has been used primarily for research, and very seldom for routine clinical practice. Currently, mechanomyography is not commercially available.

3. Electromyography directly measures the compound action potential of the adductor pollicis muscle. . . No movement is required for this measurement to be made. The hand can be tucked at the patient’s side without any significant effect on the electromyogram. . . . A baseline, unparalyzed train-of-four ratio is not required. 

electromyography (EMG)

Electromyography (EMG) is the most promising of the three devices. The Nemes et al study, performed in Hungary, established that EMG compares favorably to acceleromyography, stating, “The EMG-based device is a better indicator of adequate recovery from neuromuscular block and readiness for safe tracheal extubation than the acceleromyography monitor.” The Nemes study utilized an EMG called a TetraGraph.

Where can you buy a TetraGraph? A Google search for this device leads us to a website for a company called Senzime.

TetraGraph and TetraSens EMG unit

The TetraGraph received FDA 510 clearance in 2019. Dr. Sorin J. Brull, the author of the Anesthesiology editorial on the 2023 NM Practice Guidelines, is a principal, shareholder, and the Chief Medical Officer in Senzime, as well as a Professor Emeritus of Anesthesiology and Perioperative Medicine at the Mayo Clinic.

I contacted a representative of Senzime, who demonstrated the device to me. I learned the following:

  • Senzime’s TetraGraph is manufactured in Sweden. The device has been improved and modified over the past 3 years.
  • The TetraGraph NM monitoring device clamps to an IV pole, and is slightly larger than an iPhone.  A disposable TetraSens sticker of sensing electrodes attaches to the patient’s wrist over the ulnar nerve, and extends distally to adhere to the skin over either the pinky or the thumb. The hand can be tucked out of sight and the EMG technology will still reveal accurate data.
  • The Tetragraph attaches to the TetraSens via a cable.
  • The Tetragraph screen displays a button labelled “AUTO,” which will activate serial trains-of-four at a preselected interval, for example, every 20 seconds.
  • The screen on the device is usually set to display four bars in a bar graph, representing  the measured EMG amplitude of the train of four. At control the quantitative NM score will be 100%, as all four twitches are equivalent. Once a muscle relaxant is administered to the patient, the bar graph will change, showing decreased heights of the bars dependent on the dose and time of the muscle relaxant.

TetraGraph bar graph screen depicting Train-of-Four

 

  • The anesthesiologist should wait until the quantitative NM score is 90% or greater, prior to extubation.
  • The hardware retails for $2000 – $2500 per unit. The disposable stickers that adhere to the patient’s hand are $20 each. The unit can be annexed to certain patient monitoring systems, and data can be input into an Electronic Medical Record system. Senzime’s website https://senzime.com/about-us/ceo-statement/  outlines the company’s intention to combine TetraGraph with Masimo’s patient monitoring system, stating “Our ambition is to submit the module developed to connect TetraGraph® with Masimo’s patient monitoring system Root® for approval at the end of 2023, and to launch at the beginning of 2024.”
  • To date Senzime has sold 300+ units in the United States. Several large hospital systems, including the University of Arizona, Duke, University of North Carolina, and the Medical College of Wisconsin have purchased the devices for their operating rooms. Multiple other large hospital systems are on the verge of completing purchases of 100-200 units as of January 2023. Senzime has an inventory to accommodate such purchases, and a clinical team positioned to help medical centers or surgery centers try out and/or adopt the technology.

 

Will Senzime have a monopoly or near-monopoly on this new technology? Time will tell. A Google search for “quantitative neuromuscular monitoring device” yields only a few companies competing with Senzime, including: TwitchView by Blink, Xavant, and GE Healthcare.

STANDARD OF CARE?

Are the 2023 ASA Practice Guidelines for Monitoring and Antagonism of Neuromuscular Blockade now a standard of care for practicing anesthesiology?

No. Guidelines are not Standards.

In these 2023 Practice Guidelines, the ASA states, “Practice guidelines are systematically developed recommendations that assist the practitioner and patient in making decisions about health care. . . . practice guidelines developed by the American Society of Anesthesiologists are not intended as standards or absolute requirements, and their use cannot guarantee any specific outcome.”

Expect quantitative NM monitors to become available where you work. Expect most hospitals to purchase these devices. What will you do until quantitative NM monitors become available where you work?

1. Since clinical assessment alone to avoid residual neuromuscular blockade is inaccurate, I believe a qualitative NM monitor is better than no NM monitor.

Qualitative Twitch Monitor

2. Monitoring twitch at the adductor pollicis at the wrist is more accurate than monitoring the periocular muscles, so apply your qualitative twitch monitor to the wrist.

3. Have sugammadex available when using non-depolarizing muscle relaxants such as rocuronium or vecuronium. If a patient shows signs of residual NM blockade at the end of an anesthetic, 2 mg/kg of IV sugammadex will usually resolve the NM blockade within a minute or two. Sugammadex, for the reversal of rocuronium-induced NM blockade, is one of the biggest advances in the field of anesthesiology in the past 10 years.

4. Following a general anesthetic, don’t leave your patient’s side in the PACU until you are certain that their airway is open and they are breathing adequately without any sign of residual respiratory difficulty.

Until your hospital and your surgery centers supply you with quantitative neuromuscular EMG monitors, be aware of the recommendations of the 2023 ASA Practice Guidelines for Monitoring and Antagonism of Neuromuscular Blockade, and comply with them as best as you can. When quantitative NM units arrive, I encourage you to use them. The device I tested was quick to apply, easy to use, and provided valuable information to assure patient wellbeing.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include: How Long Will It Take To Wake Up From General Anesthesia? Why Did Take Me So Long To Wake From General Anesthesia? Will I Have a Breathing Tube During Anesthesia? What Are the Common Anesthesia Medications? How Safe is Anesthesia in the 21st Century? Will I Be Nauseated After General Anesthesia? What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include: 10 Trends for the Future of Anesthesia Should You Cancel Anesthesia for a Potassium Level of 3.6? 12 Important Things to Know as You Near the End of Your Anesthesia Training Should You Cancel Surgery For a Blood Pressure = 170/99? Advice For Passing the Anesthesia Oral Board Exams What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM

QUANTITATIVE NEUROMUSCULAR MONITORING –  NECESSITY OR TECHNOLOGY OVERDONE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT
A QUANTITATIVE NEUROMUSCULAR MONITOR

How do anesthesiologists monitor the degree to which a patient’s muscles are pharmaceutically paralyzed during an anesthetic? A recent publication in our specialty’s most prestigious journal urges the use of a QUANTITATIVE neuromuscular monitoring machine to do this when general anesthetics include a paralytic drug. The article was not a prospective randomized study, but rather a retrospective (from 2016 to 2020) practice initiative from a solitary medical center. The goal of the authors (Weigel et al) was to measure the reversal of neuromuscular paralysis in all anesthetized patients at the end of their anesthetic, and to document that reversal in the patient’s chart.

Their measured goal was to document a train-of-four ratio of greater than or equal to 0.9 prior to extubation in each anesthetized patient. What is a train-of-four? A locomotive with four cars? Alas no. A train-of-four ratio is a monitor of the level of neuromuscular blockade. Four consecutive electronic stimuli are delivered along the path of a patient’s nerve. The twitch response of the muscle is measured in order to evaluate stimuli that are blocked, versus those that are delivered. Four consecutive muscle contractions of equal strength (a score = 1.0) occur if there is no neuromuscular blockade. If neuromuscular blockade is present, there will be a loss of twitch height of the final twitch compared to the first twitch, and the resulting ratio of the final twitch height/first twitch height (e.g. 4/5 = 0.8) will indicate the degree of blockade. The clinical concern is that a ratio of lower than 0.9 correlates with a weak patient who may not safely ventilate himself/herself.

The conclusion of the Weigel study boldly states, “Anesthesia providers are solely responsible for properly rescuing patients from the states of paralyses they initiate. This should occur for ALL PATIENTS as verified by QUANTITATIVE measurement and documentation of train-of-four ratios greater than or equal to 0.9.” (Capital letters added by me.) 

Should the American Society of Anesthesiologists (ASA) add QUANTITATIVE neuromuscular monitoring as a standard of care? 

Hmm. This would be a marked change because, to my observation, almost no anesthesia providers routinely use QUANTITATIVE neuromuscular monitoring at this time.

The authors’ goal of documenting a train-of-four ratio greater than or equal to 0.9 requires the purchase of QUANTITATIVE neuromuscular monitoring equipment in every anesthetizing location. The cost of each monitor was approximately $1,995, with the disposable costs of $20 to $25 per patient. An example QUANTITATIVE neuromuscular monitor is shown here:  

TwitchView QUANTITATIVE neuromuscular monitor

The article states, “The dangers of paralyzing a patient with neuromuscular blocking drugs are well recognized. Despite advances in anesthetic management, approximately half of all patients arriving to the postanesthesia care unit (PACU) suffer from residual blockade defined as a train-of-four ratio less than 0.9.” They cite a previous article from Anesthesia and Analgesia in 2018 which stated: “whenever a neuromuscular blocker is administered, neuromuscular function must be monitored by observing the evoked muscular response to peripheral nerve stimulation. Ideally, this should be done at the hand muscles (not the facial muscles) with a quantitative (objective) monitor. Objective monitoring (documentation of train-of-four ratio ≥0.90) is the only method of assuring that satisfactory recovery of neuromuscular function has taken place. (Bold emphasis added by me.) The panel also recommends that subjective evaluation of the responses to train-of-four stimulation (when using a peripheral nerve stimulator) or clinical tests of recovery from neuromuscular block (such as the 5-second head lift) should be abandoned in favor of objective monitoring.”

The American Society of Anesthesiologists (ASA) sets the standard of care for intraoperative monitoring. The ASA Standard of Anesthesia Monitoring currently does not mandate any form of neuromuscular monitoring. The ASA Standard of Anesthesia Monitoring is the gold standard for all operating room monitoring, is followed by all training programs, and is referred to in courts of law as the standard of care should an adverse anesthesia outcome occur. 

A 2010 survey of anesthesia providers documented that 19.3% of Europeans and 9.4% of Americans never use neuromuscular monitors. The majority of respondents from the US (64.1%) and Europe (52.2%) estimated the incidence of clinically significant postoperative residual neuromuscular weakness to be <1% (P<0.0001). Most respondents in this study reported that “neither conventional nerve stimulators nor quantitative train-of-four monitors should be part of minimum monitoring standards.”

I suggest three values in anesthetic care: Do the right thing, be safe, and Keep It Simple Stupid (the KISS principle). Rather than strapping a thumb monitor onto every one of my patients, I’m a disciple of qualitative neuromuscular monitoring—a less technologically complex form of monitoring. When I was serving my residency training in anesthesiology at Stanford in the 1980s, each resident was equipped with a MiniStim nerve stimulator, which is a qualitative neuromuscular monitor. 

MiniStim qualitative neuromuscular monitor

qualitative neuromuscular monitoring device is simple to use. When the two terminals are applied to the facial nerve lateral to the eye of a sleeping patient and the green button is pushed, the orbital muscles will twitch if unparalyzed, and they will not twitch if paralyzed. With experience one can easily discern whether the patient is paralyzed or not, and one can estimate the degree of paralysis. The MiniStim also has a tetanus feature. When the two terminals are applied to the facial nerve lateral to the eye of a sleeping patient and the red button is pushed, a sustained electrical energy is emitted between the two terminals. The orbital muscles will show a sustained contraction if unparalyzed, and will not contract at all if fully paralyzed. If partially paralyzed, the muscles will contract and then the contraction will fade away in seconds. With experience, one can estimate to what degree the patient is paralyzed. The qualitative neuromuscular monitor does not give you the exact data, i.e. a decimal number between 0.0 (totally paralyzed and 1.0 (no paralysis) that a QUANTITATIVE neuromuscular monitor does. 

I still carry a MiniStim, and have used one for the entire 38 years I’ve practiced anesthesia, and for the 30,000 patients I’ve anesthetized. I would not start a case without a neuromuscular qualitative monitor. I would not want to be a patient receiving a neuromuscular paralytic drug if the anesthesiologist did not utilize a neuromuscular monitoring device similar to the MiniStim. The MiniStim is no longer manufactured, but other similar qualitative neuromuscular monitors are easily purchased, e.g. as depicted below, for $251, with no additional disposable costs.

SunStim qualitative neuromuscular monitor

Why is the topic of reversing neuromuscular blockade seeing this kind of scrutiny in 2022? Residual neuromuscular paralysis is less a problem now than at any time since the paralyzing medications were discovered. Why? Because in 2015 the United States Food and Drug Administration (FDA) approved the new intravenous drug sugammadex, a reliable, specific, and safe agent for the reversal of neuromuscular paralysis. Sugammadex can eliminate neuromuscular paralysis rapidly. A rocuronium molecule, bound within sugammadex’s lipophilic core, is rendered unavailable to bind to the acetylcholine receptor at the neuromuscular junction, and paralysis is reversed in seconds. 

Prior to 2015, the only reversal agent for pharmaceutical paralysis with a non-depolarizing neuromuscular blocker such as rocuronium was the drug neostigmine. Neostigmine can cause the side effect of severe bradycardia (slowing of the heart rate), and had to be administered intravenously in combination with glycopyrrolate (Robinul) or atropine. If a surgery was concluding and the patient had residual neuromuscular paralysis, the anesthesia provider needed to administer the combination of neostigmine/Robinul well before the wakeup-time, because the peak effect of neostigmine occurs at 10 minutes after administration.  If the patient was markedly paralyzed, e.g. the qualitative neuromuscular monitor showed no significant twitch or tetanus activity, neostigmine could not adequately reverse the neuromuscular paralysis in a short time. Sometimes it took 20-30 minutes before a deep neuromuscular paralysis could be reversed with neostigmine. If an anesthesia provider erroneously chose to awaken a patient prior to the time their neuromuscular paralysis was reversed or worn off, the patient would be too weak to breathe normally. A medical complication of hypoventilation or of awake paralysis could occur. 

Because of sugammadex, the risk of untreated residual neuromuscular paralysis has never been lower. Unreversed neuromuscular paralysis at wake-up should be a never-event now that sugammadex exists. There is virtually no circumstance in which an attending anesthesia provider should have unreversed neuromuscular paralysis at the present time. Why, in 2022, should we advocate for a QUANTITATIVE neuromuscular monitor which is bulky, expensive, and can only be strapped onto the thumb? The thumb location is a disadvantage, because many anesthetics, for example laparoscopies, require the arms to be tucked at a patient’s sides during surgery, and a thumb monitor is not practical. The qualitative neuromuscular monitors work on any peripheral nerve: e.g. the ulnar nerve at the wrist, the facial nerve lateral to the eye, or the posterior tibial nerve in the ankle, and provide a more versatile monitor than the QUANTITATIVE neuromuscular thumb monitor.

Qualitative neuromuscular monitoring is useful, easy, versatile, and inexpensive. QUANTITATIVE neuromuscular monitoring has the appeal of a score—a number between 0 and 1.0—that can be added to the already burdensome printout of the Electronic Medical Record (EMR), and may seem satisfying to those addicted to the dubious wonders of the EMR, or to those who want to see QUANTITATIVE neuromuscular monitors reported in the medical literature. But the addition of QUANTITATIVE neuromuscular monitoring to the required ASA list of monitors at this time is premature.

Where is the science? Where is the prospective, randomized trial of QUANTITATIVE neuromuscular monitoring versus qualitative neuromuscular monitoring in the age of sugammadex? Does anyone really believe that qualitative neuromuscular monitoring will be inaccurate and lead to significant anesthetic complications in an era when sugammadex is available? 

Qualitative neuromuscular monitoring was always a solid idea. I made this point twelve years ago when I wrote, “During residency or during the years afterward, a MiniStim and a stethoscope are arguably the only tools of your own you need to carry into an operating room to conduct a 21st-century general anesthetic.”

Until prospective scientific evidence demonstrates that QUANTITATIVE neuromuscular monitoring improves outcomes, mandating the extra technology of QUANTITATIVE neuromuscular monitoring as a required standard is not the correct path for the ASA to take in 2022 or at any time in the future. 

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM

THE TEN MOST SIGNIFICANT ADVANCES IN ANESTHESIOLOGY IN THE PAST DECADE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

What were the ten most significant advances in anesthesiology in the past decade, 2010 – 2020? Here are my picks:

  • Sugammadex. Sugammadex was FDA-approved in December 2015, and the practice of chemically paralyzing surgical patients and reversing their paralysis has been forever changed. For my non-medical readers, sugammadex is an intravenous drug which reverses the paralysis of rocuronium, the most commonly used anesthetic paralytic drug, in approximately one minute. Sugammadex replaced the decades-old practice of injecting a combination of neostigmine and glycopyrrolate to reverse paralysis. Neostigmine and glycopyrrolate were slow to act (a wait of up to nine minutes), and could not reverse paralysis if zero twitches were present on a nerve stimulator monitor. In addition, 16 mg/kg of sugammadex IV can reverse an intubating dose of rocuronium, which makes rocuronium more quickly reversible than succinylcholine for rapid sequence intubation. Sugammadex is not cheap (a cost of $100 per 200 mg vial), but since the availability of sugammadex, no anesthesia practitioner should ever have an awake and still-paralyzed patient at the conclusion of an anesthetic. A terrific advance. Five stars.
  • Use of Zoom. In the era of COVID, Zoom videoconferencing made person-to-person communication involving anesthesiologists possible. During the early days of the COVID outbreak, the American Society of Anesthesiologists was able to keep its members informed and educated via Zoom conferencing. At the present time, almost all anesthesia continuing medical education (CME) is conducted effectively via Zoom. I attend the Stanford anesthesia Grand Rounds each Monday morning via Zoom, and the educational value is as high as it was when I attended in person. Expect Zoom CME to continue as a major vector in the years to come. Although Zoom may adversely affect in-person attendance at medical meetings forever, I believe widespread videoconferencing education is a tremendous advance. Five stars.
  • The Stanford Anesthesia Emergency Manual. See this link.  The algorithms set out in the red laminated ring-bound Stanford Anesthesia Emergency Manual filled a fundamental need in acute care medicine. When perioperative emergencies arise, a delay in treatment can result in death or irreversible brain damage. The presence of this Stanford book of checklists assures that every operating room is equipped with the cognitive aids needed for standard of care treatment. The manual is available at https://emergencymanual.stanford.edu. The authors chose not to glean profits from the publication of the Stanford Emergency Manual, but instead made it available for physicians and nurses everywhere for free. Five stars.
  • Safer care. Anesthesia care has become safer and safer. Deaths and adverse outcomes continue to decrease because of improved monitoring, vigilance, education, and training. The Cleveland Clinic writes, “In the 1960s and 1970s, it wasn’t uncommon to have a death related to anesthesia in every one of every 10,000 or 20,000 patients. Now it’s more like one in every 200,000 patients—it’s very rare.” The continuing advances in anesthesia safety are a bellwether for other specialties, who must envy the progress made in anesthesiology quality assurance. The Anesthesia Patient Safety Foundation is a hub of all advances. Five stars.
  • Pubmed/Internet/the Cloud. This past decade saw an explosion of handheld mobile devices and phones, as well as an expansion in the use of the cloud and the internet. Anesthesiology benefited from these technological advances. Information regarding anesthesia care is immediately available to any anesthesia provider anywhere in the world, if they have internet access. The ability to do a Google search on any topic is outstanding and immediate. Pubmed is a National Library of Medicine website which catalogs an abstract on every medical publication. Pubmed is an essential tool for every physician who is investigating previously published medical knowledge. Five stars.
  • Closed loop TIVA (total intravenous anesthesia).  Anesthesiologists and pharmacologists have been working on the pharmacokinetics of automated administration of intravenous anesthetics for years. Utilizing EEG monitoring data (BIS monitor levels) to titrate the depth of anesthesia shows promise. For a typical anesthetic, TIVA requires more work than vapor anesthesia with sevoflurane, because the anesthesiologist must load a syringe with propofol and/or remifentanil, attach an infusion line, load the syringe into the infusion pump, and program the pump to the correct infusion rate. In contrast, a sevoflurane vaporizer is already loaded with liquid anesthetic, is easy to use, and merely requires the pushing of one button and turning of one dial. Closed loop TIVA is not in clinical use at this time, but you can expect that the future, anesthesia recipes will include automated sedation/anesthetic depth titration via computer administration. The TIVA research of the past ten years has paved the way for this advance. Three stars.

The ultrasound-guided regional anesthesia boom. In the past ten years the number of ultrasound guided regional anesthesia blocks has mushroomed. Regional nerve blocks decrease the need for postoperative narcotics. Evidence shows that ultrasound guidance reduces the incidence of vascular injury, local anesthetic systemic toxicity, pneumothorax and phrenic nerve block for interscalene blocks, but there has not been consistent evidence that ultrasound guidance is associated with a reduced incidence of nerve injury. The ultrasound-guided regional anesthesia boom has led to tens of thousands of additional nerve blocks, and an unfortunate fact is that a small but non-zero number of these patients develop permanent nerve damage in their arms or legs after their blocks. Regional anesthesia specialists who publish in the medical literature have made little effort to quantify or report these complications. Prospective data on nerve injuries is needed. Honest verbal informed consent to each patient before a nerve block is needed. See this link. Three stars.

Point of care ultrasound (POCUS). In recent years, anesthesiologists began to aim their ultrasound probes at the abdomen, thorax, and airway, to gain real-time information and immediate knowledge of the anatomy and pathology beneath the skin and to better manage and treat critically ill patients. POCUS is proving useful in trauma , chest examination, and pediatric anesthesia. Because POCUS is a recent development, the majority of anesthesiologists do not have the training, skills, or knowledge needed to use this new technique. Recent graduates of residency and fellowship programs will lead the way as the anesthesia workforce transitions toward mastery of POCUS. Three stars.

  • ASA Monitor/Dr. Steven Shafer. I list this development last, but my enthusiasm for the ASA Monitor and its Editor-in-Chief Steven Shafer is extremely high. The American Society of Anesthesiologists revamped their ASA Monitor publication into a monthly newsletter reporting up-to-date information regarding our specialty. The ASA hired Steven Shafer MD PhD as the editor. Dr. Shafer is a Professor of Anesthesiology at Stanford, and is an outstanding scientist, author, and humorist. I’ve known Steve for nearly forty years, since he was a medical student. He has authored more than 200 peer-reviewed publications in the field of anesthesiology, and was the Editor-in-Chief for Anesthesia and Analgesia from 2006-2016. Dr. Shafer possesses a razor-sharp intellect and a flippant sense of humor seldom seen in scientific writing. His lead editorial in each month’s issue of the ASA Monitor is required reading for every anesthesia professional. Dr. Shafer also personally authors a daily update on COVID research and statistics—a Google group which you can personally subscribe to as an email offering. See this link. Five stars.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

HOW NEW IS “MODERN ANESTHESIA?”

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Point/Counterpoint: How new is modern anesthesia? Are modern anesthesia techniques radically different from the methods of twenty years ago? True or false?

1990s-moodboard

 

POINT: False. Twenty-first century general anesthetics are nearly identical to the anesthetic techniques of the late 1990s. Consider this list of the most commonly administered anesthetic drugs in the United States in the present day (2018):

Medication                        Year introduced

Propofol                              1989

Sevoflurane                        1995

Nitrous oxide                     1846

Fentanyl                               1959

Versed                                   1985

Rocuronium                        1994

Succinylcholine                  1952

Zofran                                  1991

Bupivicaine                          1957

 

I review hundreds of anesthesia records each year from California and multiple other regions of America. I can attest that these nine medications are still the mainstays of most anesthetics. A typical standard general anesthetic includes Versed as an anti-anxiety premed, propofol as the hypnotic, sevoflurane +/- nitrous oxide as the maintenance vapor(s), fentanyl as the narcotic, Zofran for nausea prophylaxis, rocuronium or succinylcholine for muscle paralysis, and bupivicaine injected (usually by the surgeon) for long-lasting pain relief.

How can it be that general anesthesia has ceased to evolve? In this brave new world of the Internet, iPhones, iPads, and personal computers, how could anesthesiology have stalled out with 20th-century pharmacology? My colleague Donald Stanski, MD PhD, former Chairman of Anesthesiology at Stanford and now an executive in pharmacology business, explained it to me this way: The existing anesthesia drugs are cheap and work well. The cost of research and development for each new anesthesia drug is prohibitively expensive, and for pharmaceutical companies there is no certainty that any new anesthesia drug would control a sufficient market share to make a profit.

I believe we would benefit from a new narcotic drug that would promise less side effects than the fentanyl/morphine analogues, i.e. less respiratory depression, nausea, and sedation. I believe we would benefit from a new ultra-short onset paralyzing drug without the side effects of succinylcholine, i.e. without the risks of muscle pain, hyperkalemic arrests, triggering of malignant hyperthermia, increased intracranial and intraocular pressure, or bradycardia. Someone may discover these products someday, but for the present time the older drugs enjoy the market share.

What about regional anesthesia? When a patient needs a spinal anesthetic, the recipe of bupivicaine +/- morphine is unchanged from the 1990s. When a patient needs an epidural for surgery, the recipe of bupivicaine or lidocaine +/- narcotic is unchanged from the 1990s.

What about monitors of vital signs? The standard monitoring devices of pulse oximetry, end-tidal CO2 monitoring, and other essential anesthesia vital sign monitors were developed and in use by the 1990s. I can think of no specific reason why a general anesthetic administered in 2018 would be safer than a general anesthetic administered in the 1990s.

 

COUNTERPOINT: True. Anesthesia in 2018 is markedly different from anesthesia in the 1990s. Most of the drugs in use haven’t changed, but current-day anesthesia providers practice in a cockpit surrounded by computers. Each operating room anesthesia location is the epicenter of computerized medical record-keeping machines, computerized Pyxis-style drug storage systems, computerized labeling machines, and bar-code reading billing machines. If you don’t understand how to command these high-tech devices, you’ll be unable to initiate an anesthetic at a university hospital. The adage that “the patient comes first” is sometimes lost in an array of LED displays, passwords, and keyboards.

There have been other significant changes in anesthesia practice since the year 2000:

  • The most significant advance is the video laryngoscope, a vital tool for intubating difficult airways, which has facilitated endotracheal intubation in thousands of patients where 20th-century rigid laryngoscope blades were not effective.
  • Ropivicaine was released in the year 2000, and has the distinct advantage of long-lasting local anesthetic nerve blockade with less motor block than bupivicaine.
  • Sugammadex is a remarkable advance, allowing for the reliable reversal of neuromuscular paralysis in only seconds. Sugammadex is the single most important new medication in the toolbox of the 21st-century anesthesiologist.
  • Ultrasound-guided regional anesthesia was developed in 1994, but became popular in the past ten years. Administering local anesthetic injections adjacent to major nerves grants non-narcotic pain relief to thousands of patients following orthopedic surgeries.
  • Acute pain services utilize nerve blocks and other adjuncts to relieve post-operative discomfort. Pain service teams were available only in primitive forms in the 1990s. In fact, at Stanford we changed our name from the “Department of Anesthesiology” to the “Department of Anesthesiology, Perioperative and Pain Medicine” since the turn of the millennium.

 

In closing:

At a wedding a bride is advised to wear something old, something new, something borrowed, and something blue.

In the world of anesthesia we use some things old, some things new, nothing borrowed, and . . . we make sure our patients never turn blue.   🙂

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

 

 

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

The anesthesiaconsultant.com, copyright 2010, Palo Alto, California

For questions, contact:  rjnov@yahoo.com

 

 

 

 

 

 

 

 

 

LESSONS LEARNED REGARDING SUGAMMADEX

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

8-2040-01

Regarding sugammadex and residual neuromuscular blockade: I’m aware of two cases of residual neuromuscular blockade which occurred during the past year. Both cases involved obese patients who required emergency reintubation. Both cases were near misses for brain death. Both of these near misses would never have occurred if sugammadex had been used.

The first case was a 50-year-old, 120 kilogram male for an endoscopic retrograde cholangiopancreatography (ERCP). The procedure was to be done in the prone position, and required endotracheal intubation. The intubation was easily performed, and was facilitated with 60 mg of rocuronium for paralysis. The patient was turned prone, and the procedure commenced. After only 15 minutes of operating time, the gastroenterologist announced that the procedure was over. Electrical nerve stimulation of the train of four (TOF) at the facial nerve with a Life Tech Mini Stim showed one twitch. The anesthesiologist injected 5 mg of neostigmine and 1 mg of glycopyrrolate IV, and the patient was turned supine. After ten minutes, the TOF nerve stimulation of the facial nerve showed four equal twitches, and the sevoflurane anesthesia was discontinued. The patient was allowed to return to spontaneous breathing, and he opened his eyes. The trachea was extubated. Within the first two minutes, the patient had inadequate strength for spontaneous respiration. On 100% oxygen via mask, his oxygen saturation dropped from 100% to 80%. 120 mg of succinylcholine was injected IV, and an emergency reintubation was performed. The repeat intubation was more difficult than the original intubation, and required two looks before the trachea was visualized. The nadir oxygen saturation was 60%. The patient was kept asleep for thirty additional minutes, until nerve stimulation at the ulnar nerve showed both TOF and sustained tetany without fade. At that point the trachea was extubated. The patient had no brain damage, and he was discharged home ninety minutes later.

The second case was a 45-year-old, 120 kilogram male with obstructive sleep apnea for a uvulopalatopharyngoplasty (UPPP) and tonsillectomy. The endotracheal intubation was easily done, and was facilitated with 70 mg of rocuronium for paralysis. The surgery lasted 60 minutes. The anesthesiologist injected 5 mg of neostigmine and 1 mg of glycopyrrolate IV fifteen minutes prior to the end of surgery. At the conclusion of surgery, electrical nerve stimulation of the facial nerve with a Life Tech Mini Stim showed four equal twitches in the TOF, and the sevoflurane anesthesia was discontinued. The patient was allowed to return to spontaneous breathing, and opened his eyes. The trachea was extubated. Within the first minute, the patient was awake and breathing, but had jerky breathing pattern and was unable to ventilate himself effectively. On 100% oxygen via mask, his oxygen saturation dropped from 100% to 70%. 200 mg of propofol and 120 mg of succinylcholine were injected IV, and an emergency reintubation was performed. The repeat intubation was more difficult than the original intubation because of blood in the mouth and the oral surgery, and required two looks before the trachea was visualized. The nadir oxygen saturation was 49%. The patient was kept asleep for thirty additional minutes until nerve stimulation at the ulnar nerve showed both TOF and sustained tetany without fade. At that point the trachea was extubated. The patient had no brain damage. He was a planned admission to the hospital, and the remainder of his hospital course was uncomplicated.

Several teaching points are warranted:

  1. If succinylcholine been used for the intubations, the large intubating doses of rocuronium would have been avoided, and the inadequate reversal of the rocuronium intubating doses would likely not have occurred.
  2. If smaller doses of rocuronium been used for intubation, the inadequate reversal of the rocuronium intubating doses would likely not have occurred.
  3. These two cases were done prior to sugammadex availability. In the era of sugammadex, beginning now in 2016, these two near misses should never occur. Sugammadex is a modified γ-cyclodextrin which shows a high affinity for rocuronium and vecuronium. Sugammadex forms a tight inclusion complex with either rocuronium or vecuronium, resulting in rapid reversal of neuromuscular blockade. Sugammadex is able to reverse a moderate profound neuromuscular blockade with a dose of 2.0 mg/kg, and a profound neuromuscular blockade with a dose of 4.0 mg/kg.(1) In my experience, these doses of sugammadex completely reverse rocuronium paralysis within 30-40 seconds. Inadequate neuromuscular blockade reversal should never occur in the era of sugammadex. The past practice of administering neostigmine plus glycopyrrolate to reverse neuromuscular blockade, and then waiting up to ten minutes, is an inferior pharmacologic measure when compared to sugammadex. Reversal with neostigmine plus glycopyrrolate is slow, unreliable, and at times incomplete. While it’s true that a 200 mg ampoule of sugammadex costs approximately $100, that sum of money is trivial when compared to the cost of the lawsuit that would have occurred if either of the two case studies above had resulted in brain death due to delayed or unsuccessful reintubation. In my medical-legal consulting practice I see multiple cases of failed or delayed endotracheal intubations that result in brain death and multimillion-dollar closed malpractice claims.
  4. Residual neuromuscular blockade cannot always be reliably excluded by using qualitative monitoring such as a Life Tech MiniStim device to monitor TOF. The TOF is monitored by comparing the amplitude of the fourth (T4) to the first (T1) evoked mechanical response at the facial nerve or the ulnar nerve. The T4/T1 ratio, or the TOF ratio, coincides with symptoms of peripheral muscle weakness.At a TOF ratio less than 0.60, signs of muscle weakness and ptosis are easily observed. When TOF ratios recover to 0.70, the majority of patients are able to sustain head lift and eye opening. A very low TOF ratio between 0.1 and 0.5 is easily detected by a qualitative nerve stimulator. However, TOF ratios between 0.5 and 1.0 can be difficult to discern visually. Many clinicians are unable to detect fade when TOF ratios exceed 0.30 to 0.4.(1) Qualitative neuromuscular monitoring of the facial nerve twitch can be deceiving. Applying the peripheral nerve stimulator to the ulnar nerve at the adductor pollicis is the gold standard, and this site must be used for the pre-reversal assessment even when the ulnar nerve and thumb are not accessible intraoperatively. Recovery from neuromuscular paralysis should be present when a TOF count without fade has been confirmed at the adductor pollicis.(2) In a partially paralyzed patient, a visually undetectable fade of the TOF at the facial nerve may coincide with a visually detectable fade in TOF when the ulnar nerve is tested. When a patient’s arms are tucked during surgery, or when the ulnar nerve area is distant from the anesthesiologist’s location, it may be impossible to test ulnar nerve stimulation intraoperatively. Prior to extubation, when the ulnar nerve is accessible, ulnar nerve stimulation will convey a more accurate assay of the level of neuromuscular reversal.
  5. Immediate reversal of neuromuscular blockade induced by rocuronium is possible with a larger dose of sugammadex of 16 mg/kg. To facilitate intubation, a dose of succinylcholine (1 mg/kg) will cause a neuromuscular blockade of 4 – 5 minutes in duration. If an airway is found to be difficult or if the intubation is found to be impossible, the anesthesiologist has no way to return the patient to spontaneous breathing until these 4 – 5 minutes elapse. To facilitate intubation, a dose of rocuronium (0.5 – 1 mg/kg), if immediately reversed by sugammadex 16 mg/kg, will cause a shorter duration of paralysis than if succinylcholine were used. It remains to be seen whether this fact will lead to increased use of rocuronium rather than succinylcholine in difficult endotracheal intubations in which a potential early return to spontaneous ventilation is deemed prudent.

 

Healthcare systems are likely to promote selective or infrequent utilization of the new neuromuscular paralysis antidote sugammadex because of its cost. For your practice, and for mine, use the drug when you need it. You’re not personally paying the $100 price for the dose of sugammadex. If you have a serious patient complication because of inadequate neuromuscular reversal by the old drug neostigmine, the adverse patient outcome and the resulting lawsuit may cost you a whole lot more than that $100.

For the record, I have no financial interest or investment in sugammadex. I just know a good product when I see one.

References:

  1. Murphy GS et al, Reversal (Antagonism) of Neuromuscular Blockade, Chapter 35, Miller’s Anesthesia, 8th Edition, 2015.
  2. Thilen SR, Qualitative Neuromuscular Monitoring: How to Optimize the Use of a Peripheral Nerve Stimulator to Reduce the Risk of Residual Neuromuscular Blockade, Curr Anesthesiol Rep. 2016;6:164-169.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

13 MAJOR CHANGES IN ANESTHESIOLOGY IN THE LAST TEN YEARS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Let’s look at 13 major changes in the last ten years of anesthesiology, and give a letter grade to mark the significance of each advance:

final_ten_year_graphic_gif

 

SUGAMMADEX – The long awaited reversal agent for neuromuscular paralysis reached the market in 2016, and by my review, the drug is wonderful. I’ve found sugammadex to reverse rocuronium paralysis in less than a minute in every patient who has at least one twitch from a nerve stimulator. The dose is expensive at about $100 per patient, but at this time that’s cheaper than the acquisition costs for neostigmine + glycopyrrolate. The acquisition cost of neostigmine + glycopyrrolate at our facilities exceeds $100, and this combination of drugs can take up to 9 minutes to reverse rocuronium paralysis. Sugammadex reversal can make the duration of a rocuronium motor block almost as short acting as a succinylcholine motor block, and sugammadex can also eliminate complications in the Post Anesthesia Care Unit due to residual postoperative muscle paralysis. Grade = A.

 

SHORTAGES OF GENERIC INTRAVENOUS DRUGS – Over the last five years we’ve seen unexpected shortages of fentanyl, morphine, propofol, ephedrine, neostigmine, glycopyrrolate, meperidine, and atropine, to name a few. These are generic drugs that formerly cost pennies per ampoule. In the current marketplace, generic manufacturers have limited the supplies and elevated the prices of these medications to exorbitant levels. I wish I’d had the foresight and the money ten years ago to invest in a factory that produced generic anesthetic drugs. Grade = F.

 

THE PERIOPERATIVE SURGICAL HOME – The American Society of Anesthesiologists has been pushing this excellent concept for years now—the idea being that a team of physician anesthesiologists will manage all perioperative medical care from preoperative clinic assessment through discharge, including intraoperative care, postoperative care and pain management in the PACU, the ICU, and the hospital wards. The goal is improved patient care with decreased costs. It’s not clear the idea has widespread traction as of yet, and the concept will always be at odds with the individual aspirations of internal medicine doctors, hospitalists, intensivists, surgeons, and certified nurse anesthetists, all who want to make their own management decisions, and all who desire to be paid for owning those decisions. Grade = B-.

 

MULTIMODAL PAIN MANAGEMENT FOLLOWING TOTAL JOINT REPLACEMENTS – The development of pain management protocols which include neuroaxial blocks, regional anesthetic blocks, local anesthetic infiltration by surgeons, oral and intravenous pain medications, have advanced the science of pain relief for total knee and total hip replacements. The cooperation between surgeons, anesthesiologists, and internal medicine specialists to develop the protocols has been outstanding, the standardized checklist care has been well accepted, and patients are benefiting. Grade = A.

 

ULTRASOUND GUIDED REGIONAL ANESTHESIA – Regional anesthetic blocks are not new, but visualizing the nerves via ultrasound is. The practice is becoming widespread, and the analysis of economic and quality data is ongoing. Ultrasound guided regional anesthesia is a major advance for painful orthopedic surgeries, but I worry about overuse of the technique on smaller cases for the economic benefit of the physician wielding the ultrasound probe. A second concern is the additive risk of administrating two anesthetics (regional plus general) to one patient. I’ve reviewed medical records of patients with adverse outcomes related to regional blocks, and I’m concerned ultrasound guided regional anesthesia may be creating a new paradigm of postoperative complications, e.g. prolonged nerve damage or intravascular injection of local anesthetics. In the future I look forward to seeing years of closed claims data regarding this increasing use of regional anesthesia. Grade = B.

 

VIDEOLARYNGOSCOPY – The invention of the GlideScope and its competitors the C-MAC, King Vision, McGrath and Airtraq videolaryngoscopes was a major advance in our ability to intubate patients with difficult airways. My need for fiberoptic intubation has plummeted since videolaryngoscopy became available. I’d recommend that everyone who attempts traditional laryngoscopy for endotracheal intubation have access to a video scope as a backup, should traditional intubation prove difficult. Grade = A.

 

ANESTHESIOLOGIST ASSISTANTS (AAs) – The American Society of Anesthesiologists is championing the idea of training AAs to work with physician anesthesiologists in an anesthesia care team model. A primary reason is to combat the influence and rise in numbers of Certified Registered Nurse Anesthetists (CRNAs) by inserting AAs as a substitute. Not a bad idea, but like the Perioperative Surgical Home, the concept of AAs is gaining traction slowly, and the penetration of AAs into the marketplace is minimal. To date there are only ten accredited AA education programs in the United States. Grade = B-.

 

CHECKLISTS – We now have pre-incision Time Outs, pre-induction Anesthesia Time Outs, and pre-regional anesthesia Block Time Outs. It’s hard to argue with these checklists. Even if 99.9% of the Time Outs change nothing, if 0.1% of the Time Outs identify a miscommunication or a laterality mistake, they are worth it. Grade = A.

 

ANESTHESIA ELECTRONIC MEDICAL RECORDS (EMRs)– The idea is sound. Everything in the modern world is digitalized, so why not medical records? The problem is the current product. There are multiple EMR systems, and the systems cannot communicate with each other. Can you imagine a telephone system where Sprint phones cannot communicate with AT&T phones? The current market leader for hospitals is Epic, a ponderous, expensive system that does little to make the pertinent information easier to find in medical charts. For acute care medicine such as anesthetic emergencies, the medical charting and documentation in Epic gets in the way of hands-on anesthesia care. In the past, when I administered 50 mg of rocuronium, I simply wrote “50” in the appropriate space on a piece of paper. In Epic I have to make at least 4 mouse clicks to do the same thing. This Epic entry cannot be made on a touch screen because the first rocuronium window on the touch screen is a three-millimeter-tall box, too small for a finger touch. I’d like to see Apple or Google develop better EMR software than we have at present. Perhaps the eventual winning product will be voice activated or will involve easy touch screen data entry and data access. And all EMR systems should interact with each other, so patient privacy medical information can be portable. Grade = C-.

 

THE ECONOMICS OF ANESTHESIA – When I began in private practice in 1986, most successful anesthesiologists joined a single-specialty anesthesia group. This group would cover a hospital or several hospitals along with nearby surgery centers and offices. The group would bill for physician services, and insurance companies would reimburse them. Each physician joining the group would endure a one or two-year tryout period, after which he or she became a partner. Incomes were proportional to the number of cases an individual attended to. The models are changing. Smaller anesthesia groups are merging into larger groups, better equipped to negotiate with healthcare insurers and ObamaCare. More and more healthcare systems are employing their own anesthesiologists. In a healthcare system, profits are pooled and shared amongst the varying specialists. This model is not objectionable. Anesthesiologists share the profits with less lucrative specialties such as internal medicine and pediatrics, but the anesthesiologists are assured a steady flow of patients from the primary care physicians and surgeons within the system. The end result is less income than in a single-specialty anesthesia group, but more security. Grade = B.

 

THE SPECTER OF A BAN ON BALANCE BILLING – In a perfect world all physician groups would be contracted with all health insurance companies, at a monetary rate acceptable to both sides. Unfortunately there are insurance company-physician group rifts in which an acceptable rate is not negotiated. In these instances, the physician provider for a given patient may be out of network with the patient’s insurer, not because of provider greed (as portrayed by some politicians and insurers) but because the insurance company did not offer a reasonable contracted rate. Some politicians believe physician out-of-network balance billing should be outlawed. This would give unilateral power to insurance companies. Why would an insurance company offer a reasonable rate to a physician provider group, if the insurance company can pay the physicians a low rate and the new law says the physicians have no alternative but to accept it as payment in full? The no-balance-billing politicians will portray patients as victims, but if they succeed in changing the laws, physicians will become victims. Physicians as well as consumers must unite to defeat this concept. Grade = F.

 

CORPORATE ANESTHESIA – National companies are buying multiple existing anesthesia groups and changing the template of our profession in America. The current physician owners of a practice can sell their group to a publically traded national company for a large upfront payoff. The future salaries of anesthesiologists of that group are then decreased, and the rest of the profit formerly garnered by the physicians goes instead to the bottom line of the national company’s shareholders. If this model becomes widespread, the profession of anesthesiology will morph into a job populated by moderately reimbursed employees. Grade = D.

 

INDEPENDENT PRACTICE FOR CRNAs – Anesthesiology is the practice of medicine. In a two-year training program, an ICU nurse can learn to administer propofol and sevoflurane, and how to intubate most patients, and become a CRNA. It takes a physician anesthesiologist to manage complex preoperative medical problems, intraoperative complications, and postoperative medical complications. I understand rural states such as Montana and the Dakotas cannot recruit enough physician anesthesiologists to hospitals in their smallest towns, but for states like California to legalize independent anesthesia practice for CRNAs is unconscionable. Grade = D.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

TRENDS FOR THE FUTURE OF ANESTHESIOLOGY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

What can we expect in the next 10 years of anesthesiology? What will be the trends for the future of anesthesiology? I’m writing this in January 2016. God willing, we’ll all be alive and well to reread this in 2026, and find out how many of these predictions about the future of anesthesiology came true.

mccoyvs20thcen

I’m writing this from the perspective of a busy clinician who has worked as an anesthesiologist in California in both private practice and at a major university hospital for over 30 years. I see 10 trends for the future of anesthesiology as:

  1. Lower income (as adjusted for inflation). There will be multiple causes for this: a) An aging population, with the significantly lower pay for attending to Medicare patients, b) Obamacare and other governmental payment cuts, c) Bundled insurance payments to hospitals, requiring anesthesiologists to negotiate for every nickel of that payment due to them, and d) Corporate anesthesia (see #9 below).
  2. More care team anesthesia and more Certified Nurse Anesthetists (CRNAs). Hospital systems will have increased incentives to perform anesthetics with cheaper labor. Rather than physician anesthesiologists personally performing anesthesia, expect to see CRNAs supervised by physician anesthesiologists in an anesthesia care team, or in some states, CRNAs working alone.
  3. There will be a paucity of new drugs to change the practice of operating room anesthesia. A few years ago I had a conversation with Don Stanski, MD, PhD, former Chairman of Anesthesiology at Stanford and now a leading pharmaceutical company executive, regarding new anesthetic drugs in the pipeline. Dr. Stanski’s reply was something along the line of, “There are almost no new anesthetic drugs in development. The ones we currently have work very well, and the research and development cost in bring an additional idea to market is high. Don’t expect much change in the coming years.” Consider sugammadex, a new drug for the reversal of neuromuscular blockade, recently approved by the Food and Drug Administration. The drug is more effective in reversing a rocuronium or vecuronium block than is neostigmine, but the cost is high. The acquisition cost of the smallest available vial of sugammadex is over $90, far exceeding the cost of neostigmine. In certain instances, faster reversal by sugammadex will be critically important, but for routine cases the cost is prohibitive. This trend of fewer new anesthesia drugs isn’t only a futuristic phenomenon. In my current private practice, I see my colleagues using the same medications that they used 25 years ago: propofol, sevoflurane, rocuronium, fentanyl, and ondansetron.
  4. An aging population, an increased volume of surgery, and an increased demand for anesthesia personnel. As the baby boomers age, there will be an increased number of surgeries on older, sicker patients. Anesthesia personnel will be in great demand.
  5. Anesthesiology will become more and more a shift-work job. A generation ago an anesthesiologist started a case and finished that case. An on-call anesthesiologist came to work at 7 a.m., took 24-hour call, and finished their last case as the sun came up the next morning. Certain instances of this model may persist, but as more anesthesiologist become corporate employees, expect more anesthesia practitioners working 8-hour or 12-hour shifts, just like employees in other jobs.
  6. Increased interest in the specialty of anesthesiology amongst medical students. Although several items on my list may seem discouraging, take heart, because the career of anesthesiology will remain extremely popular. Why? Because the other fields of medicine have problems, too. Bigger problems. Many future doctors will shun the primary care fields of family practice, internal medicine, and pediatrics. The primary care fields offer long days in clinics, dealing with a new patient every 10 – 15 minutes, and they suffer from low pay. Because of the higher reimbursement in procedural specialties, careers in surgery, anesthesia, cardiology, and invasive radiology will always be popular.
  7. Expect improved safety statistics regarding anesthesia mortality and morbidity. Anesthesia has never been safer. See “How Safe is Anesthesia in the 21st Century?” Expect further improvements in monitors, protocols, education, and the analysis of Big Data that will make anesthesia safer than ever.
  8. There will still be a non-zero incidence of anesthesia-related fatalities. There will still be disasters, particularly airway disasters. Some anesthesia clinical situations will always remain extremely difficult and challenging, and human error will not be eradicated.
  9. Large national corporations will continue buying up private anesthesia practices, perhaps eliminating the current model in which groups cover one hospital or one city alone. In the last three months, Sheridan, the physician services division of AmSurg, Corp has purchased the 60-physician, 140-anesthetist Northside Anesthesiology Consultants in Atlanta, and the 240-physician Valley Anesthesiologists & Pain Consultants in Phoenix. In these purchases, senior board members and partners receive seven-digit checks to sell their practice, then all physicians in the practice’s future labor for a discounted wage, perhaps as low as 50% of the prior income. If this trend becomes widespread, this subset of the anesthesia workforce will become low paid practitioners, while the purchasing corporations will make significant profits for their stockholders.
  10. Continued fascination with anesthesia practice, a discipline which makes all surgical treatments and cures feasible. Without anesthesia, there can be no major surgical procedures. Medical care without major surgical procedures is unthinkable. Whether as anesthesia providers, as patients requiring surgery, or just as observers of the process, we will all continue to value and marvel at the field of anesthesia.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited