A DAY IN THE LIFE OF AN ANESTHESIOLOGIST

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

One of my readers asked me to describe a day in the life of an anesthesiologist, as he was considering a career in anesthesiology. To aid you in visualizing yourself in the hospital, I’m substituting the pronoun “you” instead of “I” in the narrative below.

Your day is as follows, Doctor:

0530 hours – Your alarm goes off, awakening you and starting your morning. (Anesthesia is not the career for you if you like to sleep late—surgery always begins at 0730 hours). You complete your morning bathroom and breakfast routines, and leave your residence at 0630 hours for the hospital.

0645 hours—You arrive at the hospital, use your ID to open the gate to the parking lot, and walk one hundred yards from the parking lot to the hospital entrance. You take the elevator to the third floor and proceed to the locker room. The scrubs are enclosed in a device not dissimilar to a soda machine, and you need your ID to operate it. The machine opens and you extract a scrub top and scrub bottom in your size. You leave your street clothes in your locker. Because anesthesiologists do not scrub in a sterile fashion, it’s OK to wear your watch and ring., and to bring your cell phone with you.

Empty Operating Room

0655 hours—You don a bouffant hat and a facemask, and enter your operating room. Your hospital contains multiple operating rooms, and today you are in room #10. Your briefcase contains your personal medical equipment and office items you need for the day. Inside the operating room, the scrub tech is already dressed in a sterile gown and gloves, and is preparing the instruments the surgeon will use to operate on the first patient. The first surgery today is a procedure devised to treat obstructive sleep apnea, a procedure called a maxillary-mandibular osteotomy. An ear, nose, and throat (ENT) specialist will saw through the patient’s upper and lower facial bones, extend their bite forward to open the back of the throat further, and then fixate the bones in their new positions. The surgery will take approximately three hours. 

Your station in the operating room consists of an anesthesia machine; a bevy of vital signs monitors; a computerized pharmacy cart; a cart full of syringes and equipment; and the computer which handles the hospital’s electronic medical record (EMR).

Anesthesia Workstation

You log into the EMR system, and then you log into your first patient’s chart. You’ve looked over the patient’s information the night before, and you now review everything in detail, including the history, physical findings, vital signs, height, weight, body-mass index (BMI) from this morning, and any laboratory results.  

            Next you log into the patient’s file on the computerized pharmacy cart, and extract the controlled substances/drugs (Versed and fentanyl) that you will use for this case. The lower drawers to the computerized pharmacy cart unlock, and you’re able to access the propofol you’ll use to induce anesthesia. You fill a 20-milliliter syringe with 20 ml of propofol, and set it on the countertop. You remove a plastic breathing endotracheal tube (ETT) from its wrapper and set it next to the propofol syringe. You remove a lighted laryngoscope from a drawer and set it next to the ETT. You prepare several empty syringes which you’ll use to inject medications into your patient’s intravenous (IV) line.

Labelled anesthetic syringes

            Next you turn to the anesthesia machine and run through a checklist to assure it is connected to oxygen, full of the liquid form of the general anesthetic sevoflurane, and that all the hoses and valves are airtight and operational. You check the suction catheter system to document there is negative pressure should you need to suck saliva or vomitus out of the patient’s airway. You reach into your briefcase and pull out the stethoscope and peripheral nerve stimulator you’ll use during the case. 

Pre-Anesthesia Room

0700 hours—It’s time to meet your first patient. You walk into the pre-operative area, where your patient is wearing a hospital gown and is lying on a gurney. At this point every patient is apprehensive and anxious. You do your best to reassure him as you introduce yourself and sit down at the foot of the bed. Rather than launching immediately into medical questions, you begin by asking him what he would normally be doing on this day if he wasn’t at the hospital. This way you and the patient can connect on a human level before beginning the anesthetic proceedings. The patient will probably already have an IV in their arm, placed by a registered nurse. (To the contrary, in our practice we physician anesthesiologists start the IVs ourselves. We do this because we’re skilled at placing IVs painlessly and successfully, it doesn’t take that much time, and it gives the patient confidence that we’ll continue to take care of them at the highest level.)

            You ask the patient questions that are pertinent regarding their medical history. For example, if a patient has a history of asthma you’ll ask him if he has ever had an asthma attack severe enough to require treatment in an emergency room. If the patient was older than 50 years, you’ll ask him if he gets shortness of breath when he climbs two flights of stairs.

            Once your questions are answered, you’ll do a pertinent physical exam of the patient’s airway, heart, and lungs. Then you’ll explain the sequence of the anesthetic, as well as the anesthetic alternatives and risks. Your monologue goes as follows: “I’ll begin by giving you a medication in your IV which will make you feel less anxious. Then we’ll roll down the hallway into the operating room. There I’ll give you a medication which makes you lose consciousness. You’ll be asleep for the entire surgery. I’ll be with you that entire time, and you won’t feel any pain, or experience any awareness. During the time you’re asleep, there’s an airway tube in place. I’ll remove the tube when you wake up. You may have a sore throat from the tube. You may have nausea after general anesthesia. You’ll wake up reasonably comfortable, but as the general anesthesia wears off you’ll likely experience the onset of pain. There’ll be a nurse standing right next to you in the Recovery Room, and he or she will administer pain relieving medication to you if and when you need it. Do you have any questions?”

            After the patient gives verbal consent, you administer 2 ml of Versed (midazolam), a Valium-like benzodiazepine, into the IV. Within a minute or two, the patient feels the relaxing effect of the Versed, and you roll his gurney down the hallway toward the operating room.

Moving a patient from the gurney to the operating room table.

0715 hours—You roll the gurney in to the operating room. The patient moves himself from the gurney to the operating room table. You and the operating room nurse work to connect the patient to the standard vital signs monitors: the pulse oximeter on his fingertip, the three (or five) electrocardiogram stickers across his chest, and a blood pressure cuff on his arm. You turn to the EMR computer, and with a series of clicks you document the start of anesthesia time; begin data collection from the vital signs monitors; and identify which device (anesthesia machine/monitors in which operating room) you are connected to and receiving input from. You inject two prophylactic anti-nausea drugs, Zofran (ondansetron) and Decadron (dexamethasone) into the IV, and inject 2 ml (100 micrograms) of the narcotic fentanyl. You place an oxygen mask over the patient’s face so that the room air (21% oxygen and 78% nitrogen) that he has been breathing is replaced by 100% oxygen prior to going to sleep.

0725 hours—It’s time to begin anesthesia induction. You inject 40 mg of lidocaine, a local anesthetic, into the IV to blunt the burning sensation that propofol can cause. Then you inject 20 ml (200 mg) of propofol into the IV. Propofol is an opaque white liquid which disappears from the IV line as it enters the vein in the patient’s arm. Within 20 – 30 seconds the patient is unconscious. You ventilate the patient with oxygen for two breaths via the facemask to document that the airway is open and patent, and then you inject 4 ml (40 mg) of the paralyzing drug rocuronium into the IV. You continue to ventilate the patient via the facemask as the patient becomes paralyzed and unable to breathe for himself. You monitor the progression toward paralysis with a small battery-powered nerve stimulator device which you hold against the facial nerve area lateral to his eyebrow on the side of his face. 

Nasotracheal Endotracheal Tube

This surgery requires a specialized ETT which enters through the nose, courses through the back of the throat, and then passes between the vocal cords into the trachea (windpipe). You remove the facemask so the surgeon can insert cotton swaths soaked in local anesthetic into each nostril. Once all motor twitch activity is absent on the facial nerve monitor, you insert the nasal breathing tube, coated with a lubricating jelly, into the right nostril. You advance the tube through the nose until the tip appears in the oral cavity. At this point, you insert the lighted laryngoscope into the patient’s mouth, visualize the vocal cords, and push the ETT from outside the nose through the vocal cords into the trachea. You use a syringe to inflate air into the balloon cuff on the distal end of the ETT, and connect the proximal end of the ETT to the hoses on your anesthesia machine. You inflate the lungs via the breathing system, and listen with your stethoscope to document there are appropriate breath sounds in both the left and right lungs. You turn on your anesthetic vaporizer to administer a concentration of 1.5% sevoflurane gas to the patient. You tape the patients eyes closed so that they do not dry out under general anesthesia. Next you unlock the bed so that it can be rotated 180 degrees, so you are near the patient’s feet and the surgeon has the head of the bed to himself.

            While the surgeon, the nurse, and the scrub tech prepare the patient for the surgical incisions, you administer the antibiotic Kefzol (cephazolin) into the IV. Then you spend 10 minutes of time on the EMR, documenting every drug you injected and all the procedures you performed.

Maxillary surgery

0800 hours—Surgery begins. You titrate the depth of anesthetic drugs to match the degree of surgical stimulus. You do this by monitoring the blood pressure and heart rate, and use a variety of IV drugs to keep the vital signs from straying too high or too low from their pre-operative values. By 0830 hours you are finally able to sit down. The EMR inputs the vital signs automatically from the patient monitors into the medical record. You are vigilant regarding the surgical procedure, the IV infusing into the patient, the ventilator, and the inhaled and injectable anesthetics administered. At certain times during the case, when the surgeon is sawing into  the facial bones, he will ask you to lower the patient’s blood pressure in order to minimize bleeding from the bone. You do this by adding intravenous anti-hypertensive injections, and/or by deepening the level of general anesthetic drugs. As you near the end of this first case, you log into the second case of your anesthetic list on the EMR, and begin information gathering and EMR documentation as you did for your first case.

1130 hours—The surgery ends. You supervise the rotating of the operating room table 180 degrees, so the patient’s head and airway are adjacent to the anesthesia equipment again. You discontinue all anesthetic drugs and wait for the patient to regain consciousness. This can take from 5 to 15 minutes, and is a potentially hazardous time. Like landing an airplane, you need the patient to arrive at consciousness smoothly, without disruption in the vital signs. Most importantly you need him to be breathing safely through his newly remodeled face and airway.

1140 hours—The patient opens his eyes. You remove the ETT and place the oxygen facemask back over his nose and mouth. Once you’ve confirmed that he’s ventilating himself safely, you call for the gurney again. Together with the orderlies, the nurse, and the surgeon, you slide the patient back over to the gurney, and begin to transport him out of the operating room.

Post Anesthesia Care Unit

1145 hours—You push the gurney into the Post Anesthesia Care Unit (PACU), and into a parking berth staffed by a different registered nurse and another battery of vital signs monitors. You and the nurse connect the patient to the same monitors you used in the operating room, and document that the vital signs within safe limits. Then you give the nurse a verbal report of the patient’s preoperative medical problems and the pertinent surgical and anesthetic details. You proceed to the charting room, where you log into the EMR again and finish documenting all the data from the anesthetic. Throughout the time the patient is recovering in the PACU, the nurse follows medical orders you’ve written, and you’re responsible for the patient’s safety and well-being. The PACU nurse will call you for any questions or problems.

1155 hours—You find lunch somewhere. At my hospital there is no doctor’s cafeteria, and there is insufficient time to wait in line at the regular cafeteria. You may bring a sandwich from home, or you may subsist on protein bars, a bagel, a banana, or some yogurt you find in the operating room lounge. For anesthesiologists, the interval between surgeries is a time when the surgeons, nurses, and the empty operating room are waiting for you to get things going again. No surgery can proceed without anesthesia, so your between-case time is to be minimized. In some models of anesthesia care, a certified registered nurse anesthetist (CRNA) may break you out during the anesthetic or between cases, but when there is 100% physician anesthesia staffing, everyone is waiting for you between cases to get the next patient asleep.

1225 hours—You meet your second patient and go through the steps outlined beginning at 0700 hours above once again.

Depending on the length of your anesthetic list, you may be finished by 1400 hours (a 7-hour day), or you may be finished at 1700 hours (a 10-hour day), or if you are on-call you may work all night, until 0700 the next morning. The good news is that your pay is proportional to the duration of time and the number and complexity of the cases you do. When you are on overnight call as an anesthesiologist, you will usually have the next day entirely off.

Ambulatory Surgery Center

On certain days you may work at an outpatient ambulatory surgery center (ASC) instead of at a hospital. At an ASC the surgical procedures are simpler, and medical problems are screened beforehand so that no sick patients are allowed. Many ASCs have no EMR, and the charting is done by writing on paper with a ballpoint pen, which is less time-consuming than the current sluggish and expensive EMR systems used at hospitals. During an ASC day you may do one 8-hour anesthetic, or you may do eight 1-hour anesthetics. An ASC often provides food for their staff and their doctors, and you will be finished at a reasonable and predictable time, usually between noon and 1700 hours.

How are your emotions during your day as an anesthesiologist? It depends on how experienced you are. Even veteran anesthesiologists are on edge during the induction of anesthesia and the placement of breathing tubes. The maintenance phase of anesthesia, during the middle of the surgery, is predictably stable most of the time. Are you bored during this time period? Not likely, as there is enough going on with the surgical procedure, its effects on the patient’s physiology, and the pharmacology you are commanding. The end of each surgery increases the vigilance and anxiety level of the anesthesiologist once again until the patient is safely transferred to the PACU. Some cases are more stressful than others. Emergency surgeries, patients at the extremes of age (very young or very old), trauma surgeries, cardiac surgeries, lung surgeries, and neurosurgeries are among the most stressful. Anesthesiologists who practice these subspecialties are often adrenaline junkies themselves, and enjoy the challenge of more difficult cases.

After your work day you’ll drive home and enjoy a free evening. You typically won’t have any phone calls regarding the day’s patients. Once a patient leaves the PACU without complications, it’s unlikely there will be ongoing any issues for the anesthesiologist. For these reasons, anesthesiology is often considered a “quality lifestyle” medical specialty. I’d agree. Your evenings and weekends are usually free unless you are on call, which makes anesthesiology appealing. 

On each work evening you’ll receive your list for the following day’s cases. In our practice, we telephone each patient the night before to go over essential questions. Hopefully then you can go to sleep when you please. In my career I’ve had quite a few nights where the next day’s difficult cases gave me cause for concern or worry. Concerns and worries can lead to insomnia, a not-uncommon stressor for a practicing anesthesiologist. You might be worrying about a re-do heart valve replacement anesthetic on an 80-year-old woman, a throat surgery on a 340-pound man, or a list of 3-year-olds with obstructive sleep apnea who are having tonsillectomies. 

A career in anesthesia is not for the faint at heart. Mistakes or complications in our specialty can lead to bad outcomes in a matter of minutes. That said, a career in anesthesia is a fascinating and complex lifetime passion, during which you can help tens of thousands of patients undergo surgery safely.

*

*

popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE PHYSICIAN ANESTHESIOLOGIST JOB MARKET LOOKS EXCELLENT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The physician anesthesiologist job market looks excellent. Medical students, college pre-med students, and academically successful high school students, are you wondering if anesthesiology is a great career for you? The current demand for anesthesiologists is high. If you’re geographically mobile and willing to relocate to where the demand for anesthesiologists is maximal, you’ll have little problem securing a solid job.

Career Explorer reports, “There are currently an estimated 33,000 anesthesiologists in the United States. The anesthesiologist job market is expected to grow by 15.5% between 2016 and 2026.” Over the next 10 years, it is expected that America will need 6,200 anesthesiologists. That number is based on 5,100 additional anesthesiologists, and the retirement of 1,100 existing anesthesiologists.

Anesthesiology News reports a shortage in the anesthesia job market, which is fueling high job demand in the field.

The American Society of Anesthesiologists surveyed the job market in 2016. Their study reported: “At the time of the survey, almost all the (anesthesia resident) respondents had received job offers, with 97 percent having confirmed jobs. Among the geographic regions, percent of residents having a confirmed job ranged from a 93 percent (Midwest) to 100 percent (Northeast and West). Nationwide, a majority (55 percent) of residents were joining anesthesiology groups with plans to become a partner, while 45 percent accepted employed positions. The mean starting salary was $299,605 with a standard deviation of $77,000, reflecting considerable regional differences. Residents were asked to rank factors most important in choosing a job. The three most important factors included geography, job description and monetary compensation.” 

In just the past 7 days, I received the following unsolicited job offers via personal email. Seeing is believing, so peruse these requests for anesthesiologists and see what you think:

Here’s my advice:

Anesthesiology is a fascinating, challenging, adrenaline-charged career choice with a burgeoning job market. If you’re a student considering a career as a physician, The Anesthesia Consultant website strongly recommends a career as a physician anesthesiologist. For further information, I recommend the following columns from this blog:

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE TEN MOST SIGNIFICANT ADVANCES IN ANESTHESIOLOGY IN THE PAST DECADE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

What were the ten most significant advances in anesthesiology in the past decade, 2010 – 2020? Here are my picks:

  • Sugammadex. Sugammadex was FDA-approved in December 2015, and the practice of chemically paralyzing surgical patients and reversing their paralysis has been forever changed. For my non-medical readers, sugammadex is an intravenous drug which reverses the paralysis of rocuronium, the most commonly used anesthetic paralytic drug, in approximately one minute. Sugammadex replaced the decades-old practice of injecting a combination of neostigmine and glycopyrrolate to reverse paralysis. Neostigmine and glycopyrrolate were slow to act (a wait of up to nine minutes), and could not reverse paralysis if zero twitches were present on a nerve stimulator monitor. In addition, 16 mg/kg of sugammadex IV can reverse an intubating dose of rocuronium, which makes rocuronium more quickly reversible than succinylcholine for rapid sequence intubation. Sugammadex is not cheap (a cost of $100 per 200 mg vial), but since the availability of sugammadex, no anesthesia practitioner should ever have an awake and still-paralyzed patient at the conclusion of an anesthetic. A terrific advance. Five stars.
  • Use of Zoom. In the era of COVID, Zoom videoconferencing made person-to-person communication involving anesthesiologists possible. During the early days of the COVID outbreak, the American Society of Anesthesiologists was able to keep its members informed and educated via Zoom conferencing. At the present time, almost all anesthesia continuing medical education (CME) is conducted effectively via Zoom. I attend the Stanford anesthesia Grand Rounds each Monday morning via Zoom, and the educational value is as high as it was when I attended in person. Expect Zoom CME to continue as a major vector in the years to come. Although Zoom may adversely affect in-person attendance at medical meetings forever, I believe widespread videoconferencing education is a tremendous advance. Five stars.
  • The Stanford Anesthesia Emergency Manual. See this link.  The algorithms set out in the red laminated ring-bound Stanford Anesthesia Emergency Manual filled a fundamental need in acute care medicine. When perioperative emergencies arise, a delay in treatment can result in death or irreversible brain damage. The presence of this Stanford book of checklists assures that every operating room is equipped with the cognitive aids needed for standard of care treatment. The manual is available at https://emergencymanual.stanford.edu. The authors chose not to glean profits from the publication of the Stanford Emergency Manual, but instead made it available for physicians and nurses everywhere for free. Five stars.
  • Safer care. Anesthesia care has become safer and safer. Deaths and adverse outcomes continue to decrease because of improved monitoring, vigilance, education, and training. The Cleveland Clinic writes, “In the 1960s and 1970s, it wasn’t uncommon to have a death related to anesthesia in every one of every 10,000 or 20,000 patients. Now it’s more like one in every 200,000 patients—it’s very rare.” The continuing advances in anesthesia safety are a bellwether for other specialties, who must envy the progress made in anesthesiology quality assurance. The Anesthesia Patient Safety Foundation is a hub of all advances. Five stars.
  • Pubmed/Internet/the Cloud. This past decade saw an explosion of handheld mobile devices and phones, as well as an expansion in the use of the cloud and the internet. Anesthesiology benefited from these technological advances. Information regarding anesthesia care is immediately available to any anesthesia provider anywhere in the world, if they have internet access. The ability to do a Google search on any topic is outstanding and immediate. Pubmed is a National Library of Medicine website which catalogs an abstract on every medical publication. Pubmed is an essential tool for every physician who is investigating previously published medical knowledge. Five stars.
  • Closed loop TIVA (total intravenous anesthesia).  Anesthesiologists and pharmacologists have been working on the pharmacokinetics of automated administration of intravenous anesthetics for years. Utilizing EEG monitoring data (BIS monitor levels) to titrate the depth of anesthesia shows promise. For a typical anesthetic, TIVA requires more work than vapor anesthesia with sevoflurane, because the anesthesiologist must load a syringe with propofol and/or remifentanil, attach an infusion line, load the syringe into the infusion pump, and program the pump to the correct infusion rate. In contrast, a sevoflurane vaporizer is already loaded with liquid anesthetic, is easy to use, and merely requires the pushing of one button and turning of one dial. Closed loop TIVA is not in clinical use at this time, but you can expect that the future, anesthesia recipes will include automated sedation/anesthetic depth titration via computer administration. The TIVA research of the past ten years has paved the way for this advance. Three stars.

The ultrasound-guided regional anesthesia boom. In the past ten years the number of ultrasound guided regional anesthesia blocks has mushroomed. Regional nerve blocks decrease the need for postoperative narcotics. Evidence shows that ultrasound guidance reduces the incidence of vascular injury, local anesthetic systemic toxicity, pneumothorax and phrenic nerve block for interscalene blocks, but there has not been consistent evidence that ultrasound guidance is associated with a reduced incidence of nerve injury. The ultrasound-guided regional anesthesia boom has led to tens of thousands of additional nerve blocks, and an unfortunate fact is that a small but non-zero number of these patients develop permanent nerve damage in their arms or legs after their blocks. Regional anesthesia specialists who publish in the medical literature have made little effort to quantify or report these complications. Prospective data on nerve injuries is needed. Honest verbal informed consent to each patient before a nerve block is needed. See this link. Three stars.

Point of care ultrasound (POCUS). In recent years, anesthesiologists began to aim their ultrasound probes at the abdomen, thorax, and airway, to gain real-time information and immediate knowledge of the anatomy and pathology beneath the skin and to better manage and treat critically ill patients. POCUS is proving useful in trauma , chest examination, and pediatric anesthesia. Because POCUS is a recent development, the majority of anesthesiologists do not have the training, skills, or knowledge needed to use this new technique. Recent graduates of residency and fellowship programs will lead the way as the anesthesia workforce transitions toward mastery of POCUS. Three stars.

  • ASA Monitor/Dr. Steven Shafer. I list this development last, but my enthusiasm for the ASA Monitor and its Editor-in-Chief Steven Shafer is extremely high. The American Society of Anesthesiologists revamped their ASA Monitor publication into a monthly newsletter reporting up-to-date information regarding our specialty. The ASA hired Steven Shafer MD PhD as the editor. Dr. Shafer is a Professor of Anesthesiology at Stanford, and is an outstanding scientist, author, and humorist. I’ve known Steve for nearly forty years, since he was a medical student. He has authored more than 200 peer-reviewed publications in the field of anesthesiology, and was the Editor-in-Chief for Anesthesia and Analgesia from 2006-2016. Dr. Shafer possesses a razor-sharp intellect and a flippant sense of humor seldom seen in scientific writing. His lead editorial in each month’s issue of the ASA Monitor is required reading for every anesthesia professional. Dr. Shafer also personally authors a daily update on COVID research and statistics—a Google group which you can personally subscribe to as an email offering. See this link. Five stars.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

HOW DO PANDEMICS END? EXAMINING THE 1918 SPANISH FLU PANDEMIC

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

How do pandemics end? Now that COVID-19 vaccines have been approved, we’re all hoping this is the beginning of the end of this coronavirus pandemic. What about a history lesson—how did the last large respiratory viral pandemic end? The 1918 Spanish flu pandemic killed between 50 million and 100 million people, and was the third worst pandemic in the past 1000 years. (Number one was the bubonic plague/Black Death in the 1300s which killed 75 to 200 million people, up to 70% of Europe’s population.1 Number two is the HIV/AIDS pandemic which has killed 32 million people from 1981 to the present.2) How did the Spanish flu pandemic end? There was no vaccine technology in 1918. There were no intensive care units, there were no ventilators, and there wasn’t even a microscope powerful enough to see or identify the virus. There were no anti-viral drugs such as remdesivir or Regeneron’s monoclonal antibodies, and there were no antibiotics to treat the bacterial pneumonias that developed as complications of the flu. When people got a severe case of the Spanish flu, they died. 

H1N1 influenza virus

Novel coronavirus

The difference between the 1918 pandemic and the 2020 pandemic is the fact that the Spanish flu was an influenza virus, and COVID is caused by a novel coronavirus. Both are respiratory viruses, but influenza and coronavirus are two very different entities. Influenza is a seasonal infection which usually runs from autumn until spring. In a typical year, 200,000 Americans are hospitalized for flu-related complications. Over the past thirty years there have been between 3,000 to 49,000 influenza-related U.S. deaths every year. The 1918 Spanish flu pandemic was caused by an H1N1 influenza virus A. It lasted from 1918 to 1920, and infected 500 million people, more than one-third of the world’s population. REF https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/1918-pandemic-history.htm  ). The pandemic killed between 50 million and 100 million people, including 675,000 in the United States. The pandemic occurred during World War I. The press in the United States and much of Europe censored early death tallies from the disease to minimize global panic. Spain was a neutral country in the war, and their newspapers were free to report on the disease, especially since their King Alfonso XIII  contracted the disease. Early stories from Spain created the impression that Spain was hard hit by the disease, and because of this the pandemic was named “Spanish flu.” 

The first wave of the Spanish flu began in the spring of 1918. The second wave began in August, and was more lethal than the first wave. In the United States the peak number of deaths were reported between September and December of 1918.  Infected individuals experienced typical flu symptoms such as sore throat, headache and fever. In January 1919 a third wave of the Spanish flu spread in Europe. The troop deployments and trench warfare of World War I facilitated disease transmission. Death was often caused by bacterial pneumonia  due to common upper respiratory-tract bacteria which invaded the lungs by infecting the viral-damaged airway cells.

Ninety-nine percent of Spanish flu deaths in the United States occurred in people younger than age 65, and fifty percent of the deaths were in young adults 20 to 40 years old. As in the COVID-19 pandemic, the entertainment and service industries suffered heavy economic losses. Public policy on curbing the spread of the Spanish flu was similar to the advice offered in the COVID pandemic: social distancing and masks-earing were encouraged. Frequent hand-washing, quarantining of patients, and closure of schools, public spaces and non-essential businesses were all utilized to minimize the spread of the disease.

How did the Spanish flu pandemic end? Individuals who were infected either died of influenza or survived and developed immunity. In the middle of 1920, the Spanish flu faded away enough on its own so that the pandemic ended.

Let’s compare this to the current novel coronavirus pandemic. As of this week there have been 300,000 COVID-19 deaths in the United States and 1.7 million deaths worldwide. So far less than 1 percent (74 million infected/7.8 billion total world population = .0095) of the world’s population is known to have been infected with the novel coronavirus. While the Spanish flu eventually faded away, as annual seasonal influenza usually fades away, the novel coronavirus has so far showed no signs of weakening. We are nowhere near herd immunity. Herd immunity is defined as “when a large portion of a community (the herd) becomes immune to a disease, making the spread of disease from person to person unlikely. As a result, the whole community becomes protected — not just those who are immune.”  

Doctors don’t expect the current COVID-19 pandemic to end until a significant percentage of the world’s population is vaccinated. According to Dr. Anthony Fauci, “Let’s say we get 75 percent, 80 percent of the population vaccinated. If we do that, if we do it efficiently enough over the second quarter of 2021, by the time we get to the end of the summer, i.e., the third quarter, we may actually have enough herd immunity protecting our society that . . . we can approach very much some degree of normality that is close to where we were before.”

Between twenty and forty percent of Americans say they will not take the COVID vaccine. This is a high number, and it strikes me as lunacy. The health consequences of you, your family members, or your friends developing a severe case of COVID-19 are well documented. Both the Pfizer and the Moderna vaccines showed minimal side effects in their clinical trials. Be smart. Get vaccinated as soon as you can. Herd immunity to the COVID-19 virus will only develop if we vaccinate the populace. Hopefully vaccine-induced immunity will curb the COVID-19 pandemic so the world can once again return to the lifestyles and freedoms we enjoyed in 2019.

References:

  1. Austin Alchon, Suzanne (2003). A pest in the land: new world epidemics in a global perspective. University of New Mexico Press. p. 21. ISBN 978-0-8263-2871-7. Archived from the original on 2019-04-01. Retrieved 2016-04-22.
  2. “UNAIDS report on the global AIDS epidemic 2010”. UNAIDS. UNAIDS. 2010. Retrieved 5 September 2020.


*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

SUFFOCATING ALONE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
Dr. Shirlee Xie, Minneapolis

This week Dr. Shirlee Xie, Associate Director of Hospital Medicine at Hennepin Healthcare in Minneapolis, Minnesota, taped an interview in which she described her personal experiences caring for COVID inpatients. I encourage you to watch the video on this link. Dr. Xie was highly emotional as she made the following remarks regarding COVID: (beginning at 2:53 of the video)

“I don’t think that people can really comprehend how horrific this disease is, unless they’ve been personally touched by it. I mean, people are literately suffocating inside our hospitals, and they are dying alone. And truly, my heart breaks for everybody who has lost their jobs or their housing, and for kids that aren’t able to go to school, and for people that aren’t able to see their families. And they don’t get the luxury to complain about COVID fatigue, and their families don’t get the luxury to complain about it, because they’re living in, like, COVID hell.”

I’d like to emphasize two words that Dr. Xie chose: suffocating and alone.

We’re all going to die someday. There are terrible ways to exit this life, and there are dignified, tranquil exits. 

As a physician, regarding end of life matters I prefer to see people die without pain and without suffering. Gasping for your next breath is a terrible way to exit this world. I place breathing tubes for a living, and I’ve seen patients gasping for their last breaths in emergency rooms, intensive care units, and other hospital settings. These patients are terrified and panicked. It’s an awful way to die. When I was in college and medical school I smoked Marlboros and enjoyed every puff. When I began my internal medicine residency I worked at the Palo Alto VA hospital, where I first saw veterans dying of emphysema and chronic obstructive pulmonary disease (COPD). Many World War II veterans smoked from the 1940s until the 1080s, and had destroyed their lungs. At their baselines they were unable to walk up one flight of stairs. When one of these patients acquired a respiratory viral infection, they would become acutely ill and need to be admitted to the hospital. These patients were gasping for breath and had to be supported in the ICU on ventilators. Being a patient on a ventilator is an ordeal. When you have a breathing tube in your windpipe, you can no longer talk. When you have a breathing tube in your windpipe, the stimulus of that plastic in your trachea is extreme (your reflex is to cough hard and reject the plastic tube from your airway). When you have a breathing tube in your windpipe, you need to be sedated so that you don’t panic, cough, buck, or pull the tube out of your body. After I’d seen a dozen formerly brave soldiers on ventilators, I quit smoking cigarettes for good. I hope never to die that way—sucking for my last breath.

In the intensive care unit, intubated and ventilated
In the intensive care unit, on a ventilator

When it’s time to die, most of us hope to die with someone we love near us at the bedside. I’ve stood witness to hospice deaths, where family members surround the bed as their loved one drifts off to sleep under the cloak of narcotic sedation and breaths their last. This is a calm, honorable death. No one wants to die alone, staring up at some white ceiling with an array of fluorescent lights as our last image of this world. No one wants to die alone, listening to ICU alarm bells chiming instead of the sound of our spouse’s voice or our children’s voices. Because of social distancing, family members and loved ones are not allowed inside hospital intensive care units during this time of COVID. When you’re dying of COVID, you’re alone, and you may never see the people you love ever again.

Hospice

Listen to what Doctor Xie says about COVID deaths. Suffocating alone. No one wants to die a premature COVID death. As doctors, we are well aware that the economic downturn of the COVID pandemic is affecting millions of people. An economic downturn such as this is awful. Hopefully Congress will seek to soften the hardship for those without jobs or housing. 

But when you’re dead, you’re dead. You don’t want “COVID hell.” You don’t want to die a COVID death. You don’t want your loved ones to die a COVID death. You don’t want your friends to die a COVID death. You don’t even want people you don’t like to die a COVID death.

Hang in there for a few more months. Do what the CDC and Dr. Fauci advocate: Socially distance, wear masks, and stay home as much as possible unless you’re exercising outside with social distance. 

Vaccines are on their way. This is just one year of our lives. Long lives, we hope. 

Without suffocating alone.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

WHAT ANESTHESIOLOGISTS DO… AN EXAMPLE ANESTHETIC

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Most patients have no real idea what anesthesiologists do. Most college premed students have no real idea what anesthesiologists do. Most medical students have no real idea what anesthesiologists do.

Anesthesiologists are responsible for your medical care before, during, and after surgeries. At Stanford University we’re called the Department of Anesthesiology, Perioperative and Pain Medicine. “Perioperative” means “around the time of operations.” Today I’ll walk you through an example anesthetic which shows how an anesthesiologist approaches the challenges of a difficult surgical problem: emergency non-cardiac surgery in a patient with heart disease.

John Doe is a 58-year-old man with an acute inflammation of his gallbladder (acute cholecystitis), who needs to have his gallbladder removed (cholecystectomy). For the past 24 hours, Mr. Doe has suffered fever and acute right upper quadrant abdominal pain. His general surgeon advises surgery as soon as possible. Mr. Doe’s past medical history is positive for obesity (six feet tall, 240 pounds, BMI=32.5), coronary artery disease, and a history of stable angina.

PREOPERATIVE WORK: Anesthesiologist Dr. A reviews the chart and learns that Mr. Doe has had chest pain (angina) with exercise for the past two years. His cardiologist dida heart catheterization one year ago and discovered that Mr. Doe has small vessel coronary artery narrowing. His narrowed  vessels were too small to treat with coronary stents, and Mr. Doe received only medical therapy for his angina, in the form of isosorbide nitrate pills, diltiazem (calcium channel blocker pills), and nitroglycerin tablets as needed for chest pain. 

Mr. Doe takes a nitroglycerin tablet about once a week. This medical regimen has been effective in avoiding unstable angina and preventing heart attacks. Mr. Doe also takes atorvastatin (Lipitor) to control his hypercholesterolemia. Dr. A speaks with the cardiologist and asks two questions: “Are there any other diagnostic tests needed before surgery, and are there any other therapeutic measures needed before surgery?” The cardiologist answers that a preoperative echocardiogram is indicated, and he orders the test. The echocardiogram shows Mr. Doe’s heart is contracting normally (ejecting 60% of its volume with every beat). The cardiologist also measures the patient’s blood troponin level. Troponin levels are elevated when a patient is having an acute heart attack. Mr. Doe’s troponin levels are within normal limits, therefore no heart damage has occurred so far. Regarding therapeutic intervention, the cardiologist advises a continuous infusion of nitroglycerin to help prevent cardiac ischemia/heart attack damage during the anesthetic. 

An anesthesia machine, with the vital signs monitor screen on the left, and the electronic medical records computer screen on the right.

Dr. A meets Mr. Doe and interviews him. Mr. Doe is currently having moderately severe abdominal pain, nausea, fever, and chills. He has not had any chest pain for the past two weeks, and has no shortness of breath. His vital signs are heart rate = 100, BP = 150/80, respiratory rate =  20 breaths/minute, oxygen saturation 95% on room air, and temperature 100.2 degrees. Dr. A examines the patient and finds that the airway looks normal, the lungs are clear, the heart sounds are normal, and the abdomen is tender over the area of the gallbladder. Dr. A explains the general anesthetic plan to Mr. Doe, and informs the patient that his risk of heart complications for this acute surgery is higher than average because of the past cardiac history. Dr. A then records all pertinent preoperative information into the electronic medical record (EMR) via a computer keyboard and screen located just to the right of his anesthesia machine.

IN THE OPERATING ROOM: Mr. Doe will be asleep for the surgery, and Dr. A will be present the entire time. Mr. Doe has a preexisting intravenous (IV) line in his left arm. Prior to the surgery, Dr. A sedates the patient with 2 milligrams of IV midazolam (Versed) a benzodiazepine anxiety-reducing drug, and 100 micrograms of IV fentanyl, a narcotic.  

He then inserts a second catheter into the patient’s radial artery in its location at the right wrist. (I’ll use the male pronoun “he” for Dr. A in this example case, but be aware that as of 2017, 40% of anesthesiologists under the age of 36 years are female. This arterial line is connected to an electronic monitor which shows the blood pressure wave and blood pressure value continuously throughout the anesthetic. Dr. A places five ECG monitoring stickers on the patient’s chest, and a pulse oximeter on the third finger of the patient’s right hand. Dr. A notes the pre-anesthetic vital signs are heart rate = 80 beats/minute, blood pressure (BP) = 130/80, and oxygen saturation = 96% on room air, increasing to 100% on mask oxygen. This data is automatically entered into the chart of the electronic medical record.

MONITORING SCREEN with vs

After the patient breathes oxygen via a mask for two minutes, Dr. A performs a rapid sequence induction of anesthesia by injecting propofol (a hypnotic sleep drug) and succinylcholine (a muscle paralyzing drug) into the IV. The operating room nurse presses down on Mr. Doe’s cricoid cartilage in his neck, to compress the esophagus and prevent any stomach contents from regurgitating upward into the airway. 

Ten seconds after the propofol injection the patient is asleep. Forty seconds after the succinylcholine injection the patient is paralyzed. At this time Dr. A inserts a laryngoscope into the patient’s mouth and visualizes the patient’s vocal cords and the opening into the larynx or windpipe.

Under direct vision, Dr. A inserts a hollow plastic endotracheal tube (ET tube) into the patient’s windpipe, and then withdraws the laryngoscope. The cuff on the distal end of the ET tube is located just below the vocal cords, and Dr. A injects 3 milliliters of air into the cuff to inflate it and to secure the tube with a seal at the level of the windpipe. 

Dr. A then uses his anesthesia machine apparatus to squeeze breaths through the ET tube into the lungs, and listens to both sides of Mr. Doe’s chest with a stethoscope to document that breath sounds are present in both lungs. Dr. A glances at his anesthesia monitoring screen, which includes a row for the carbon dioxide detected in the exhaled breathing gas. The monitor screen traces a square wave vs. time, indicating that the ventilation of carbon dioxide (CO2) is now occurring out of the lungs with each ventilation. 

Dr. A secures the ET tube to the upper lip with adhesive tape, so the critical breathing tube cannot dislodge during the surgery. He sets the ventilator to deliver a volume of 800 milliliters into the lungs, nine times every minute. He sets the mixture of the inhaled gas as 50% oxygen and 50% air, with a resultant oxygen concentration of 60% oxygen. Dr. A turns on the sevoflurane vaporizer at this point, which releases a 1.5% concentration of sevoflurane vapor into the breathing mixture. 

Sevoflurane vaporizer (see yellow knob) on anesthesia machine

Sevoflurane, a potent inhaled general anesthetic drug, travels from the lungs via the blood stream to the patient’s brain, where sevoflurane molecules move from the bloodstream into the brain. This continuous delivery of sevoflurane molecules to the brain assures both sleep and amnesia. Dr. A injects an IV dose of 40 milligrams of rocuronium, a second paralyzing drug which will keep the patient motionless for approximately 30-40 minutes.

Dr. A prepares to start a central intravenous line into the right internal jugular vein. He preps the right side of the patient’s neck with Betadine iodine soap, and drapes the right neck with sterile towels. He places a probe on the patient’s neck from a device called an ultrasound machine. The ultrasound machine bounces soundwaves off the contents inside the neck, and generates a two-dimensional black and white image of the veins, arteries, muscles, and nerves found there. 

Dr. A inserts a needle into the right jugular vein under ultrasound visualization, and then inserts a wire through the needle into the lumen (center) of the vein. Seconds later, Dr. A slides a hollow intravenous catheter over the wire 14 centimeters into the center of the right internal jugular vein. 

Dr. A removes the wire and connects an intravenous drip to the central line catheter. He then connects a preprepared drip of nitroglycerin to a stopcock located on the central line IV, and turns on a preprogramed machine which infuses a small amount of nitroglycerin into the patient’s internal jugular vein continuously.

Dr. A steps back and surveys the patient’s vital signs. The BP is 100/50. The BP machine’s computer calculates a mean arterial blood pressure (MAP) as ((2 X diastolic BP) + systolic BP)/all divided by 3. The mean arterial pressure is thus ((2 X 100) + 50)/divided by 3 = 250/3, or 83. 

The desired range of the mean arterial pressure for this case will be from 65-90, and it will be Dr. A’s job to control the blood pressure within this range. The pulse rate is 60 beats per minute, and it will be Dr. A’s job is to keep the pulse rate from getting too high or too low (60 – 80 beats per minute is a desired goal). The oxygen saturation is 100%, and it will be Dr. A’s job is to keep the oxygen saturation, or O2sat, between 90-100%.

Dr. A administers an IV dose of an intravenous antibiotic prior to the surgical incision, and also administers two IV antinausea drugs, ondansetron (Zofran) and metoclopropamide (Reglan) prophylactically. He tapes the patient’s eyes shut so the corneas will not dry out and become scratched at any time during the surgery. 

Dr. A inserts an oral gastric tube through the mouth into the patient’s stomach, and suctions out any stomach contents. He inserts a temperature probe into the patient’s nose and connects it to a temperature monitor. He assists the nurses in positioning and padding the patient’s arms adjacent to the sides of his abdomen. He then wraps a plastic Bair Hugger blanket over the patient’s upper chest and head, and connects a Bair Hugger device which blows heated air through the bag to warm the patient if necessary during the anesthetic. 

The patient is now ready for the surgery to begin.

A nurse preps the abdomen by painting the skin with an antiseptic solution. The scrub technician and the surgeon drape sterile paper barriers over the perimeter of the abdomen, as well as a sterile paper vertical barrier (ether screen) between the anesthesiologist and the abdominal surgical site. 

The surgeon calls for a Time Out, at which time the operating room personnel review the patient’s name, the planned surgery, the patient’s allergies, and the estimated time for the surgery. Once the Time Out has been accepted, the surgeon begins the surgery. Almost all gallbladder excisions are done through a laparoscopic approach without opening the abdomen. The surgeon inserts a sharp trocar into the abdomen, removes the central core of this device, and then inflates carbon dioxide gas through the device into the interior of the abdomen. 

Once the interior of the abdomen is expanded like a balloon, an instrument with a camera on its tip is inserted into the abdomen, and the two-dimensional image of the interior of the abdomen is viewed on multiple video screens. The surgeon makes multiple small incisions and inserts additional surgical tools inside the abdomen.

The stimulus of the surgical incisions causes the blood pressure to increase. The mean arterial pressure (MAP) rises from 70 to 95. Dr. A deepens the anesthetic by injecting an additional two milliliters (100 micrograms) of IV fentanyl, which returns the MAP to 80 within two minutes. The insufflation of the abdomen with carbon dioxide is stimulating as well, because is stretches the lining of the abdomen (the peritoneum), and the MAP rises to 95 again. 

This time Dr. A increases the infusion rate of the nitroglycerin drip. Nitroglycerin dilates the venous blood vessels in the body which lowers the blood pressure, and also dilates the coronary arteries. He also begins a constant infusion of propofol via an intravenous pump to deepen the anesthetic level and lower the blood pressure further. The MAP decreases to 80 once again.

The surgeon requests the operating room table be tilted so the patient’s head is higher than the feet, and the right side of the patient’s body is higher than the left. Dr. A accomplishes this positioning by pushing buttons on the table controls. 

The purpose of this positioning is for gravity to move the intestines and abdominal contents downward toward the patient’s feet and toward the left side, thereby clearing the view of the gallbladder area in the right upper quadrant of the abdomen. 

There are hemodynamic (blood pressure and heart rate) consequences to this change in positioning. The MAP drops to 55 and the heart rate drops to 55. Dr. A treats the heart rate drop with an IV injection of atropine, an anticholinergic medication which blocks slow heart rates, and the pulse rate climbs back to 65. He chooses to treat the low MAP by injecting a small amount (5 milligrams) of a medication called ephedrine, which acts to increase both blood pressure and heart rate. The MAP returns to 70.

There is minimal bleeding during the gallbladder resection, and the experienced surgeon completes the surgery in 45 minutes. During this time Dr. A continues the maintenance anesthesia of sevoflurane and propofol, and injects further doses of the paralyzing drug rocuronium 20 milligrams (to keep the patient paralyzed ) and the narcotic fentanyl 100 micrograms (to provide ongoing pain relief).

As the surgeons close the final incisions, Dr. A removes the oral gastric tube and weans off the anesthesia drugs. The propofol infusion is discontinued. The sevoflurane is discontinued. The operating room table is returned to a level position. The rocuronium paralysis is reversed by the IV injection of a medication called sugammadex. As the anesthesia lightens, a predictable increase in blood pressure and pulse rate occurs, as the patient’s body begins to sense the stimulation of the breathing tube within the trachea and the sensation of the completed surgical repair. Once the patient is awake enough to breathe on his own, Dr. A removes the ET tube and places an oxygen mask over the patient’s nose and mouth. 

All critical care medicine is an effort to maintain Airway-Breathing-Circulation, in that order. Dr. A confirms that the patient’s airway is open in the absence of the ET tube, and that the patient is breathing adequately. 

Dr. A rechecks the vital signs and sees that the oxygen saturation is 98%, the pulse rate is 110, and the MAP is 110. The elevated pulse rate and blood pressure are dangerous in terms of this patient’s known coronary artery disease. The elevated high heart rate increases the cardiac oxygen consumption and lowers the time for the coronary arteries to fill between beats. The elevated blood pressure also increases the cardiac oxygen consumption, and puts the patient at a higher risk for heart damage or a heart attack. Dr. A treats both the elevated heart rate and blood pressure by injecting 10 milligrams of labetalol (an intravenous beta-blocker drug) which lowers the heart rate to 90 and lowers the MAP to 90 within two minutes. A second dose of IV labetalol brings the heart rate to 70 and the MAP to 80 within another two minutes. At this point Dr. A is satisfied that the patient is stable, and the staff prepares to transfer the patient to the post anesthesia care unit (PACU). A hospital bed is stationed to the side of the operating room table, and the monitors are disconnected from the patient. 

The orderlies, nurses, and doctors slide a roller device under the patient, and on the count of three they roll the patient onto the hospital bed. Dr. A secures an oxygen mask over the patient’s face, elevates the patient’s head to 30 degrees, and makes sure the IV line, the arterial line, and the internal jugular line tubings are all intact and not tangled for the transfer to the PACU. The baseline infusion of the nitroglycerin is continued throughout, as the cardiologist requested.

POSTANESTHESIA:  In the PACU, nurses reconnect the patient to the same monitoring devices worn during the anesthetic. A registered nurse personally attends to the patient in the PACU. The anesthesiologist writes all the orders for pain medications, cardiac medications, and anti-nausea medications.

The patient will stay in the PACU for approximately one hour, before he is transferred to the intensive care unit (ICU) for continued observation of his vital signs, cardiac condition, and for ongoing administration of the IV nitroglycerin. Once the patient is transferred to the ICU, Dr. A contacts both the ICU team and the cardiologist and signs off responsibility for the patient to them. In the ICU the cardiologist orders troponin levels once again, to determine whether or not the patient suffered a heart attack during surgery. The troponin levels are found to be low, indicating no heart damage occurred. The patient wakes up in a satisfactory status, with resolution of his abdominal pain. His vital signs remain normal.

Post Anesthesia Care Unit (PACU)

On the next day the patient’s nitroglycerin infusion is discontinued, his oxygen therapy is discontinued, and he’s discharged to a post-surgical ward bed. On the following day he’s discharged home.

This describes what an anesthesiologist does in performing a moderately difficult anesthetic. This model case is not unique to a university hospital—it could occur as described in any community hospital near you. Gallbladder surgery is not without risks, and not all gallbladder surgeries end well. In 5-10% of laparoscopic gallbladder surgeries, technical difficulties with the anatomy require the surgeon to switch to an open surgical method which requires a larger incision, and results in more postoperative pain. 

Open gallbladder surgery incision

As in any intraabdominal surgery, gallbladder surgery can lead to surgical complications such as:

  • Infection
  • Bleeding
  • Swelling
  • Bile leakage
  • Damage to the bile duct
  • Damage to the intestine, bowel, or blood vessels

Laparoscopic gallbladder surgery can lead to postoperative medical complications such as heart attacks, sepsis, pneumonia, pulmonary embolus (blood clot to the lungs), or rarely death. In 1987 pop icon Andy Warhol, age 58,  died just hours after gallbladder surgery in a prominent New York City hospital.  

No one ever disclosed what went wrong in Mr. Warhol’s case, but the anesthesia challenges for that surgery would have been similar to what was outlined above. 

This is what an anesthesiologist does. Your physician anesthesiologist is much more than a “sandman” or a “gas man.” Your physician anesthesiologist is your protector when you lose consciousness and go under the knife. While your surgeon attends to the surgical repair, your anesthesiologist will attend to your heart, brain, lungs, and the rest of your body . . .  before, during, and after your surgery.

Additional information on the profession of anesthesiology is available at the American Society of Anesthesiologists website.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

This image has an empty alt attribute; its file name is Screen-Shot-2020-09-15-at-11.03.31-AM-788x1024.png
ç

WHY IS THERE AN ANESTHESIOLOGIST ON PRESIDENT TRUMP’S WALTER REED MEDICAL TEAM?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Why is there an anesthesiologist on President Trump’s Walter Reed medical team? Why would the president need an anesthesiologist?

This morning Dr. Sean Conley, the White House Physician, introduced President Trump’s medical team of seven doctors. Dr. Conley spoke to the nation from the approach to Walter Reed National Military Medical Center in Bethesda, Maryland. He introduced the team behind him with these words:

“Behind me are some of the members of the president’s medical team, whom I’d like to introduce. Dr. Sean Dooley, pulmonary critical care doctor. Brian Garibaldi, pulmonary critical care. Dr. Robert Browning, pulmonary critical care. Dr. Jason Blaylock, infectious disease. Dr. Wes Campbell, infectious disease. Dr. John Hodgson, anesthesia. Major Kurt Klein, Army Nurse. Commander Megan Nasworthy, Navy Nurse. Lieutenant Julianna Lavopa, Navy Nurse. Lieutenant Commander John Shea, clinical pharmacist. And not present with us are Lieutenant Beth Carter, Lt.. Maureen Meehan, both Navy nurses and Dr. Jesse Schonau, director Executive Medicine Program.”

The tally of these seven doctors reads:

3 Pulmonary and Critical Care doctors

2 Infectious Disease doctors

1 Anesthesiologist

1 Emergency Room doctor, (this is Dr. Conley, a doctor of osteopathic medicine, or D.O.)

Why an anesthesiologist? President Trump is diagnosed with COVIE-19. Details of his illness are few. We were told that as of today, Saturday, October 3rd 2020, President Trump has no fever, no trouble breathing, is not currently on oxygen therapy, and has an oxygen saturation of 96% (normal = 90-100%).

COVID-19 is an infectious disease, so it makes sense that two infectious disease doctors are attending to him.

COVID-19 most commonly causes serious illness by lung infection, so it makes sense that two pulmonary and critical care doctors are attending to him.

But why does President Trump need an anesthesiologist on his medical team at Walter Reed Medical Center?

The answer: Airway Management.

If a patient with COVID-19 becomes acutely ill and his respiratory status declines so much that he cannot keep a safe oxygenation level merely by breathing oxygen through a supplementary mask or an oxygen tent, then that patient needs to be placed on a ventilator.

Ventilators pump oxygen in and out of a patient’s lungs via a breathing tube placed in the patient’s windpipe (trachea). This is called an endotracheal tube, and every anesthesiologist places hundreds of these tubes each year. The placement of an endotracheal tube into a COVID-19 patient who is gasping for breath is an acute procedure which requires an expert. A general anesthetic drug and a paralytic drug would be injected into the patient’s intravenous line, and then an anesthesiologist (wearing a space suit of extensive personal protective gear) would use a device called a laryngoscope to place the tube into the trachea under direct vision of the patient’s voice box.

If you’re a patient and you begin gasping for breath because of respiratory failure secondary to COVID-19, you don’t want your anesthesiologist to be far away. That’s why there’s an anesthesiologist on President Trump’s current medical team. The next few days will be telling. The president may remain stable and have only minimal or mild illness, but there is a nonzero chance that he will decompensate and become acutely ill.

Placing an endotracheal tube into Donald Trump would probably be an uneventful task for an expert, but the president is overweight and he does have a thick neck. Patients whose airway looks like his can prove difficult for an anesthesiologist to intubate the trachea. The attending anesthesiologist would most likely use a video laryngoscope, which has a camera on the tip of the scope that is inserted into the patient’s throat. This technology allows the anesthesiologist to “see around the corner” into the patient’s larynx or voice box. The image of the patient’s airway appears on a video screen.

Regarding President Trump’s treatment to date: he has already been treated with Remdesivir, an antiviral therapy which is administered via an intravenous line. There is data that Remdesivir is effective in animals for COVID viral prophylaxis or immediately following viral inoculation.

 It appears he also received an antibody cocktail yesterday, REGN-COV2, developed by Regeneron. The development of this cocktail was described in the journal Science in August

No one knows how President Trump’s medical course will proceed. As a medical doctor, I can only wish him the best of health, the best of medical care, and the best medical outcome that is possible. I hope no anesthesiologist has to place a breathing tube.

Stay tuned in these interesting and difficult times.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

This image has an empty alt attribute; its file name is Screen-Shot-2020-09-15-at-11.03.31-AM-788x1024.png
ç

THE TWO LAWS OF ANESTHESIA (ACCORDING TO SURGEONS)

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

There are Two Laws of Anesthesia, according to surgeon lore. They are:

  1. The patient must not move.
  2. The patient must wake up (when the surgery is over).

Surgeons work with physician anesthesiologists, with certified nurse anesthetists (CRNAs), or with an anesthesia care team that includes both physician anesthesiologists and CRNAs. Most surgeons’ comprehension of what anesthesiologists are doing is limited. Most surgery residencies have zero months of anesthesia training out of their sixty months of total residency. No matter who supplies the anesthesia services, to our surgical colleagues the critical requirements of anesthesia include 1. and 2. above. 

Period.

Physician anesthesiologists finish medical school and complete at a minimum four additional years of training. Surgeons finish medical school and complete at a minimum five additional years of training. There’s not much difference there. Anesthesiologists typically spend 90+% of their working hours in the operating room. A busy surgeon will spend 50% of their time in the operating room, and the other 50% in preoperative clinic, postoperative clinic, or rounding on patients in the hospital. Anesthesiologists win the tally for most operating room hours per week. Anesthesiologists take care of a patient’s heart, lungs, brain, and kidney function before, during, and after surgery. Surgeons perform a specific operation on one organ system, e.g. heart surgeons operate on the heart, orthopedic surgeons operate on a bone or a joint, and ear surgeons operate on ears.

Yet in all the surgical specialties, Two Laws describe the surgeons’ lofty expectations of anesthesia professionals:

  1. The patient must not move.
  2. The patient must wake up (when the surgery is over).

Physician anesthesiologists learn to perform anesthesia for all types of surgery, including cardiac, vascular, trauma, neurosurgery, pediatrics, eye, ear nose and throat, urology, and obstetrics. Physician anesthesiologists attend to patients of all ages, from newborns to centenarians. Physician anesthesiologists develop an extensive understanding of physiology as well as the pharmacology of hundreds of medications. Physician anesthesiologists regularly insert breathing tubes, venous catheters, arterial catheters, and stomach tubes, and inject regional anesthetic blocks into the spinal fluid, the epidural space, and learn nerve blocks of every major peripheral nerve.

Yet to our surgical colleagues, Two Laws describe an excellent anesthesiologist’s work:

  1. The patient must not move.
  2. The patient must wake up (when the surgery is over).

Let’s examine the Two Laws:

  1. The patient must not move. This Law is important because a surgeon must not be distracted by motion within the surgical field. If a patient coughs or bucks on the breathing tube, movement will occur. The surgeon must stop, sometimes for 60 seconds or more, while the anesthesiologist administers additional drugs to the patient. During these 60 seconds, it’s important that the surgeon sighs, crosses his or her arms, or otherwise expresses what a major inconvenience this loss of 60 seconds has been. Has a patient ever been harmed by an episode of brief movement? In the overwhelming majority of surgeries there is no harm whatsoever. In a perfect anesthesia world, patients will not move. But in the majority of anesthetics the patient is not chemically paralyzed, and it is possible for movement to occur. An overly deep level of anesthesia will help prevent movement, but has the adverse consequence of requiring a longer time to wake the patient at the end of the surgery. Which brings us to Law #2:
  2. The patient must wake up. When the surgeon finishes suturing the skin incision and  concludes the surgery, he or she will remove their gloves and gown and wait for the anesthesiologist to wake the patient. Modern anesthetics wear off quickly, and for most surgeries the duration of time from the end of surgery to the patient waking and talking is approximately 10 – 15 minutes. But these are minutes during which the surgeon must watch and wait. These are minutes during which the surgeon’s valuable time is ticking by, and seemingly wasted. In the overwhelming majority of surgeries, anesthesiologists successfully wake the patient and remove the breathing tube. At this time the surgeon can leave the operating room to meet with the patient’s family and discuss the successful operation. None of this could happen if the anesthesiologist was not competent with Law #2. 

If you’re a medical student considering a surgical specialty, it’s important you understand the Two Laws. If you become an anesthesiologist or a surgeon, you will be on one side or the other of the Two Laws. 

If you’re a patient, consider that it’s your surgeon’s job to cut and cure while it’s your anesthesiologist’s job to keep you from moving and to wake you up. Of course, your vigilant physician anesthesiologist will also assure that you’re safe, asleep, and unaware. Your vigilant physician anesthesiologist will also assure that you’re as stable and as healthy as possible after surgery. Trust your anesthesiologist  and realize that while these Two Laws come from the lips of surgeons, the genesis of the Two Laws perhaps occurred with a tongue in cheek. I’ve had excellent relationships with hundreds of surgeons over decades, and despite these Two Laws, the majority of surgeons are wonderful doctors and healers who are not condescending toward their anesthesia colleagues whatsoever.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

TOXIC MARIJUANA SYNDROME YOU’VE NEVER HEARD OF: CANNABINOID HYPEREMESIS SYNDROME

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Cannabinoid Hyperemesis Syndrome. Chances are you’ve never heard of it, but one of your patients, or someone you know, may develop this syndrome in the coming years. Cannabis use is common. According to The Washington Post, in 2017 more than half of American adults had tried marijuana at least once in their lives, and a total of 55 million Americans currently used the drug. This number approaches the total of 59 million cigarette smokers in America. Each year 2.6 million Americans become new cannabis users. The majority of marijuana users are male, earn under $50,000 a year, and lack a college degree. The 18–25 year old age group has the highest prevalence of marijuana use. 

Emesis is the medical word for vomiting. Hyperemesis means excessive vomiting. The number of people affected with Cannabinoid Hyperemesis Syndrome is estimated at about 2.7 million people in the United States per year. Cannabinoid Hyperemesis Syndrome (CHS) presents as a triad of chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. If the patient withholds the history of chronic cannabis use, it’s difficult to impossible to make the correct diagnosis. Despite months of cyclical symptoms and thousands of dollars of Emergency Room visits and lab tests, the syndrome may not be correctly diagnosed or treated.

Let’s look at a case study of CHS to learn how it may present, and why it is uncommonly recognized:

A 25-year-old male presents for a diagnostic upper gastrointestinal endoscopy. He has a three-month history of persistent nausea, vomiting, and weight loss. His laboratory tests and CT scans of his abdomen and chest are normal. He carries a presumptive diagnosis of GERD (gastroesophageal reflux disease), and treatment with anti-acid drugs such as proton-pump inhibitors and H2-blockers have not improved the symptoms. The young man has been afraid to eat because of nausea and retching. He has been unable to work, and his sleep has been significantly impaired. He has lost weight from 150 pounds to his current weight of 135 pounds. On exam he appears well. His vital signs are normal, and his abdominal exam is negative for tenderness. He is scheduled for general anesthesia for the endoscopy procedure. He was referred for the upper GI endoscopy by his primary care doctor, and the gastroenterologist has yet to meet the patient.

Twenty minutes before his procedure, the anesthesiologist asks the patient if he takes any medicine or drugs. “Only the stomach pills my doctor prescribed,” he replies. “They aren’t working at all. I also use marijuana to decrease the nausea, but it’s not working either.”

“How frequently do you use marijuana?” the anesthesiologist asks. 

“Promise not to tell my parents?” he says. “I use a vape pen about 8 – 10 times a day.” 

“For how long have you been doing that?”

“About five years. I’ve increased my use over the past few months, because it’s supposed to be helpful for nausea, but it’s not working anymore.”

The anesthesiologist excuses himself, and sets off to find the gastroenterologist scheduled to do the procedure.  The anesthesiologist shares the cannabis history, and the gastroenterologist immediately says, “No one ever told me this patient was a chronic marijuana user. This changes everything. His history is classic for Cannabinoid Hyperemesis Syndrome.”

The gastroenterologist interviews the patient and confirms the correct clinical diagnosis. The treatment is immediate cessation of marijuana use, and the endoscopy is cancelled.

One week after stopping all cannabis use, the patient’s symptoms have completely resolved. He is eating well without nausea or vomiting, and has gained back 8 pounds.

Cannabinoid Hyperemesis Syndrome was first described in 2004 in a series of 9 patients from Australia.  In all of the cases, chronic cannabis abuse preceded the onset of a cyclical vomiting illness. Stopping cannabis led to cessation of the vomiting in seven cases. Three cases did not abstain and continued to have recurrent vomiting. Three other cases rechallenged themselves after a period of abstinence and relapsed to the same illness. Two of these cases abstained again, and remain well. The third case did not abstain, and remained ill. The majority of the patients displayed abnormal washing behavior during episodes of active nausea, in which they took repeated hot showers or baths, which temporarily relieved their symptoms.

Δ9-tetrahydrocannabinol (THC) is the principle psychoactive compound in cannabis. There are two distinct cannabinoid receptors, CB1 and CB2, in the human body, located predominately in the central nervous system and also in the gastrointestinal tract. THC stays in the body for a prolonged time, with an elimination plasma half-life of 20–30 hours. THC accumulates within body fat, and body fat serves as a long-term storage site. Typically THC can be used for its antiemetic (anti-nausea) property, and has been used to blunt nausea in cancer chemotherapy patients. With chronic use THC can induce a paradoxical nausea-inducing effect by unknown mechanisms on the central nervous system and the gastrointestinal system, causing the Cannabinoid Hyperemesis Syndrome. Patients with Cannabinoid Hyperemesis Syndrome are chronic users of cannabis who likely have large lipid reservoir stores of THC. 

CHS patients are typically young adults with a long history of marijuana use. There is usually a delay of several years following the onset of the chronic marijuana habit before the onset of symptoms. CHS patients often remain misdiagnosed. Erroneous diagnoses considered included a broad range of conditions affecting the gastrointestinal tract. In one study the average duration of cannabis use prior to onset of the recurrent vomiting was 19.0 ± 3.4 years, and had an average of 7.1 ± 4.3 emergency room visits, 5.0 ± 2.7 clinic visits, and 3.1 ± 1.9 admissions for the CHS syndrome. Daily marijuana use was typical, often exceeding 3 – 5 times per day. 

The three phases of CHS are prodromal, hyperemetic, and recovery. In the prodromal phase patients develop early morning nausea, a fear of vomiting, and abdominal pain. The hyperemetic phase includes episodes of intense and persistent nausea and vomiting. Patients vomit profusely, and can vomit or retch multiple times per hour. In the original 2004 Australian study, 70% of patients reported weight loss of at least 5 kg (11 pounds). Symptomatic patients typically undergo extensive diagnostic work ups, including laboratory and imaging studies, which are all normal or nondiagnostic. The recovery phase can last for days, weeks, or months. It occurs after the cessation of cannabis consumption, and is associated with return to normal eating patterns and original body weight.

The diagnosis of CHS must be made entirely by clinical history. The history of extensive previous cannabis use is universal, but may be unrealized if the patient withholds the information for personal reasons. A Mayo Clinic study in 2012 which included 98 patients, was the largest study to date. Characteristics of the Mayo CHS patients are shown in this table:

The Mayo series of 98 CHS patients helped establish these  diagnostic criteria. These criteria include: 

  • Essential for diagnosis: Long-term cannabis use. 
  • Major features: Severe cyclic nausea and vomiting, Resolution with cannabis cessation, relief of symptoms with hot showers or baths, abdominal pain epigastric or periumbilical, weekly use of marijuana. 
  • Supportive features: age less than 50 years, weight loss of > 11 pounds (5 kg), morning predominance of symptoms, normal bowel habits, negative laboratory, radiographic, and endoscopic tests.

Acute medical treatment for severe CHS episodes includes IV fluids for dehydration and supportive care. Traditional anti-emetic drugs such as Zofran have been largely ineffective. The only reliable long term treatment is the cessation of cannabis. The percentage of patients who relapse has not been quantified to date. The case series data in the medical literature currently document that many of the patients who return to cannabis use have recurrent CHS.

Voters have legalized the recreational use of cannabis in 11 states (California, Colorado, Washington, Oregon, Nevada, Maine, Alaska, Michigan, Illinois, Massachusetts, and Vermont). Because cannabis was legalized through popular vote and not via the usual Food and Drug Administration (FDA) channels, the drug did not undergo government scrutiny regarding toxicities and long term health effects. I discussed this topic in an earlier column.  

Cannabinoid Hyperemesis Syndrome should be considered as a plausible diagnosis in anyone with recurrent severe vomiting and a strong history of cannabis abuse. 

Because of recent legalization of recreational and medical cannabis use in many states, expect the incidence of Cannabinoid Hyperemesis Syndrome to increase. If your patient, or someone you know and love, develops recurrent severe vomiting in the setting of a strong history of cannabis abuse, the diagnosis may very well be Cannabinoid Hyperemesis Syndrome. 

The good news is that once the diagnosis is made, the syndrome is curable with cannabis abstinence.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DSC04882_edited

QUALITY ASSURANCE IN ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
This image has an empty alt attribute; its file name is 2444107_orig.jpg

Case study #2020: A healthy 48-year-old woman is anesthetized for a hysterectomy. As the surgery is ending, her blood pressure skyrockets to 220/160 and her pulse rate rises to 165 beats per minute. She is resuscitated and transferred to the Intensive Care Unit (ICU).

What happened? The hospital’s Quality Assurance (QA) program, also known as a Quality Improvement (QI) program, is charged with investigating this adverse event.  

Mistakes happen in medicine.

In 1999 the Institute of Medicine published the landmark “To Err is Human” report, which described that adverse events occurred in 3 – 4% of all hospital admissions, and that over 50% of the adverse events were due to preventable medical errors. Approximately 10% of the adverse events led to deaths. The report estimated that 44,000 – 98,000 Americans died each year due to medical errors. The report estimated that medical errors were the 8th leading cause of death in the United States. The report recommended that instead of blaming individuals, to instead prevent future errors by designing safety into the system. 

My experience in Quality assurance/Quality improvement programs includes:

  • Stanford University Hospital QA Committee (Care Review Committee), 1997 – 2009
  • Stanford University Anesthesia QA Committee, 2002 – 2009, and
  • Waverley Surgery Center QI Committee (Chairman), 2002 – present.

The analysis of complications is one of the most interesting aspects of medicine. Every complication has an opening event, a story line, and a conclusion. Using Case study #2020 above, let’s trace through the steps involved in improving medical quality:

  1. CAPTURE THE CASES. The first task is to find out about all adverse events. This can be harder than it sounds. Ideally the involved MDs and nurses will fill out an Incident Report or an Adverse Event Report, which includes the details of what happened to their patient. But many clinicians are reluctant to hang out their dirty laundry, and it’s possible for adverse events to be hidden, buried, or ignored. This hampers care improvement. We can’t fix problems we haven’t identified. At a large hospital, Adverse Event Reports are digitally entered into a computer site. At a smaller facility such as a surgery center, Adverse Event Reports are filed on paper forms. In either case, once the case is captured, the QA system can analyze the event. Case study #2020: The attending surgeon and the operating room nurse each filed digital Adverse Event documents because of their patient’s extremely high blood pressure and heart rate, and her unplanned admission to the ICU.
  2. ANALYZE ADVERSE INCIDENT REPORTS FOR SIGNIFICANT NEGATIVE CLINICAL OUTCOMES, OR THE NEAR MISS OF A NEGATIVE OUTCOME. Some Adverse Events reports are more significant than others. Some reports reveal only minor issues such as prolonged post-operative nausea and vomiting, or a prolonged Post Anesthesia Care Unit stay. An MD or specially trained RN will sift through the stack of Adverse Event Reports and choose those problems which require attention. Case study #2020: The chairperson of the QA Committee notes the elevated BP and heart rate and the unplanned ICU admission, and flags this case for immediate committee evaluation.
  3. ROOT CAUSE ANALYSIS . . . RETRIEVE AND REVIEW ALL RELEVANT MEDICAL RECORDS FOR COMMITTEE: Root Cause Analysis (RCA) is an organized approach to ferreting out the causes for any adverse medical event. The goal of RCA is to find out what happened, why it happened, and what can be done to prevent it from happening again. After a hospital complication, all electronic medical records (EMRs) pertinent to the incident are reviewed to discern what happened. A time line is formulated, with the goal of finding a cause and effect relationship that led to the complication. The hospital EMR may be hundreds of pages long, depending on the complexity of the case. At an outpatient surgery center where medical records are usually kept on paper, the review process is faster and easier, as the entire case may be documented in twenty pertinent pages or less. Case #2020: Review of the case shows that the BP and heart rate increases occurred within minutes after the anesthesiologist administered an intravenous dose of the drug atropine.
  4. INTERVIEW THE CLINICIANS: Members of the committee are charged with interviewing the individuals present at the time of the complication. Case #2020: The surgeon, operating room nurse, and the anesthesiologist are interviewed. The initial interviews with the clinicians are done prior to the QA Committee meeting on the case, although key clinicians may be interviewed at the actual QA Committee meeting. The pertinent revelation was that the anesthesiologist administered an intravenous dose of 4 mg of Zofran, and charted that the dose was administered. After the case was over, he said he looked for the empty atropine ampoule, and discovered that it was instead an empty 1 mg epinephrine ampoule.
  5. ASSESS WHAT HAPPENED: In Case #2020: The unintended intravenous bolus injection of 1 mg of epinephrine into a stable patient caused life-threatening hypertension and elevated heart rate. Epinephrine is adrenaline, and a dose of 1 mg IV bolus is only appropriate if a patient is in cardiac arrest situation, such as ventricular fibrillation, asystole (flat line), or pulseless electrical activity. The administration of a wrong medicine by human error is called “syringe swap” or “ampoule swap.”  It’s a preventable human error. In this case the atropine and epinephrine ampoules were nearly identical in size, color, and shape. The two different ampoules were stored in the same drawer in the anesthesiologist’s drug cart, and the distance between the two storage areas was only 2 inches.
  6. REVIEW THE RELEVANT MEDICAL LITERATURE: Using PUBMED.com,     it’s easy to search for similar incidents in the medical literature. The committee found an example of the very same epinephrine ampoule swap occurring previously.  In this published case report, an epinephrine ampoule was erroneously injected instead of a similar appearing neostigmine ampoule at the conclusion of a hysterectomy. The patient had an immediate cardiac arrest. The patient survived, but required an ICU stay. The neostigmine and adrenaline ampoules were very similar and were stored in adjacent compartments in the anesthesia cart.
  7. THE QA COMMITTEE DISCUSSES THE CASE: The committee consists of MDs from multiple specialties. Case #2020: These MDs  discuss the case and the probable cause of the adverse event, and discuss possible system improvements to prevent repeat of the error in the future. These suggestions are based on the education, experience, and training of the committee members, as well as from input from the relevant medical literature. Note that the committee does not criticize or blame the anesthesiologist for making the error, and does not make a point of singling out the individual physician as the culprit. 
  8. MAKE SYSTEM CHANGES TO AVOID FUTURE SIMILAR COMPLICATIONS: Case #2020: The committee decides to remove all 1 mg  epinephrine ampoules from the readily accessible anesthesiologist drug drawers in all operating rooms, to prevent the inadvertent administration of another dangerous bolus of epinephrine when it could be mistaken for Zofran or any other drug. (Epinephrine is an important medication to be administered during cardiac arrests, allergic reactions, or for cardiac patients whose blood pressure is falling precipitously, so the medication must be available.) The committee recommends that the only formulation of epinephrine included in the anesthesia drug drawer be the clearly labeled cardiac arrest epinephrine bolus syringes, which are packaged in individual cardboard  boxes. The dangerous 1-milliliter epinephrine ampoules are moved out of the operating room. The recommended policy and procedure is for anesthesiologists to request the 1-milliliter ampoules to be retrieved for them from pharmacy storage, by the operating room nurse, only when needed. This is expected to be a rare occurrence.
  9. SOME PEER REVIEW OUTCOMES REQUIRE REPORTING TO THE CALIFORNIA STATE MEDICAL BOARD: QA/QI work is part of peer review, and cannot be subpoenaed during any legal malpractice litigation. In California, a QA investigation triggers a obligated report to the state Medical Board when the following may have occurred: (A) Incompetence, or gross or repeated deviation from the standard of care involving death or serious bodily injury to one or more patients, to the extent or in such a manner as to be dangerous or injurious to any person or to the public; (B) The use, prescribing, or administration to himself or herself of any controlled substance, or the use of any dangerous drug or of alcoholic beverages, to the extent or in such a manner as to be dangerous or injurious to the licentiate, any other person, or the public, or to the extent that such use impairs the ability of the licentiate to practice safely; (C) Repeated acts of clearly excessive prescribing, furnishing, or administering of controlled substances or repeated acts of prescribing, dispensing, or furnishing of controlled substances without a good faith effort prior examination of the patient and medical reason therefor; or (D) Sexual misconduct with one or more patients during a course of treatment or an examination
  10. ONGOING METRICS ARE TRENDED TO TRACK CHANGES IN COMPLICATION RATES: The QA Committee must collect follow up data to determine if the suggested system change improved future outcomes. If the data indicates worsening trends, then the committee will investigate and consider further Quality Improvement measures. Case #2020: for two years following the new epinephrine policy there were zero ampoules swaps involving epinephrine. In addition, zero other episodes of ampoule swap of any other drugs occurred. 

Mistakes happen. The role of a QA Committee is to prevent them from happening again. This method of making system changes so that Hazards are less likely to become Losses, is depicted in the Swiss Cheese model below:

The Swiss Cheese Model was originally designed to eliminate errors in the oil industry, and was later adopted by the airline industry. Visualize the pieces of Swiss Cheese as barriers between Hazards and Losses. Each single Swiss Cheese barrier isn’t perfect and isn’t sufficient to prevent a hazard. Each additional barrier is designed so that the error that penetrated through the first barrier is stopped by the second barrier. Designing different barriers at different stages of medical care, with different strengths and weaknesses, makes it more difficult for a Hazard (mistake) to lead to a Loss (serious injury or death). The Swiss Cheese model is designed to make it difficult for a straight line to exist from Hazard to Losses.

The Quality Assurance process is summarized in the article Overview of the Quality Assurance Movement in Health Care.  Hospitals and surgery centers in your area are following Quality Assurance processes similar to those discussed above, so that when you or your loved ones are admitted for medical care, the chances of a serious complication will be as close to zero as possible.

Note: The Anesthesia Patient Safety Foundation (APSF) is the national organization that deals with safety issues in anesthesiology practice. The monthly APSF newsletters are available online at https://www.apsf.org, and serve as valuable educational material for every anesthesiologist regarding safety issues in our specialty.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DSC04882_edited

COMPUTER SCIENCE VS. MEDICAL SCHOOL

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
Computer code
medical school

You’re a high school or college student with proficiency in science and math, and you’re wondering about your eventual career path. Two of the most ambitious career choices would be to go to medical school, or to go into some form of computer science/software/hardware engineering.

Which road is the correct road for you? 

It depends.

I’ve been a medical doctor for 40 years, practiced three different specialties, and worked on a top medical school faculty for 30 years. I understand the pathway of a medical career very well. I live and work in Silicon Valley. I have many friends and many patients who work in the tech/computer world, so I understand the life of a high tech career.

I have three sons, all of whom are skilled in science and math. I’ve discussed the pros and cons of being a physician with them since they were in elementary school, and they’ve observed my lifestyle. The career choices of my sons so far: one businessman, one computer scientist, and one 9th grader who is yet undecided (but leaning toward computer science).

Why are none of them pursuing medicine? They’ve listened to me and have made their own choices. What follows is the advice I give to young students skilled in science and mathematics who are trying to decide between medical school and a computer science career:

MEDICAL SCHOOL:

Positives:

  1. There is a high demand for MDs. You will have a job. As the Baby Boomer generation ages, they’re all requiring an increased level of health care intervention.
  2. You will be well paid. The average salary varies by specialty from $230,000/year for pediatrics to $480,000/year for orthopedic surgery.
  3. You’ll help people get healthy. That feels good. 
  4. Respect. Most people respect physicians.
  5. You can work into your 70s if you want to. There is minimal age discrimination.
  6. You’ll be a lifelong student. An emersion into medical knowledge makes you both an interested and interesting person your whole life. 

Negatives:

  1. Deferred gratification: it takes a long time to become an MD. You’ll be 30 years old at a minimum when you finish training. At that age you’ll have a negative net worth, and you’ll be financially years behind your friends who went to work immediately out of college
  2. You’ll work ong hours, including sleeping overnight in hospitals during your training. 80-hour work weeks are common.
  3. You’ll acquire significant debt that will take you many years to repay. An October 2019 report from the Association of American Medical Colleges stated that 73% of medical students graduate with a mean debt of $201,490 and 18% with a mean debt exceeding $300,000.
  4. Medicine isn’t what it was in the 1960s-2000s, when MDs hung out their own shingle, thrived in private practice, and had significant autonomy. At the present time many young MDs are settling for a salary as an employee of a large organization. 
  5. Burnout is a constant risk. Electronic medical records require a significant portion of your work time, you may be required to see patients in 10-minute production-pressure clinic visits, and you’ll be on call during nights and weekends. Answering phone calls or being summoned into the hospital at 3 a.m. gets old.

COMPUTER SCIENCE/SOFTWARE/HARDWARE ENGINEER

Positives:

  1. You’ll be employable right out of college at age 22, with a good salary. The average income for a computer scientist is listed as $84,796, with a range from $69,000 – $114,000.
  2. High demand exists. You’ll get a job.
  3. You’ll have less educational debt, because you only went to four years of school after high school.
  4. Many students find computer science challenging and interesting.
  5. Computer science is changing the world we live in.
  6. It’s possible to work from home.

Negatives:

  1. Your salary will likely max out at less than an MD would earn. 
  2. It can be a lonely work life—just you and your computer. Computer science is rarely described as a social job.
  3. It’s possible your job will age-out in later years as you compete with younger, cheaper graduates with the same degree.
  4. You’ll probably have little autonomy. Most computer scientists work as a cog in some giant company. Think Google, Facebook, Apple, or Amazon.
  5. Competition exists. It’s difficult to be accepted into computer science programs at quality colleges—but it’s not as competitive as medical school acceptance. 

Listing the pros and cons of each career as I’ve done above will not make your decision for you. I recommend you make the decision between computer science and medical school with your gut, based on the following thought process:

Computer science and medical school are two appealing careers for students with strong science and mathematics backgrounds, BUT THE TWO JOBS ARE SO DIFFERENT. Medical doctors take care of people. We listen to patients, we hold their hands, we comfort them, and we attempt to heal them. Computer scientists work with code, chips, software, or hardware. The emotional milieu of these two careers could not be more different. 

Search your heart and you’ll know whether you’d rather spend decades working with people, or whether you’d rather spend decades working in a tech job. Search your heart and you’ll know whether you’d rather spend decades in an operating room/clinic setting, or whether you’d rather spend decades staring at a computer.

Then follow your heart based on those two images, and you’ll wind up where you need to be.

If you’re a real go-getter, you can complete undergraduate training in computer science and then go to medical school. Reference my column on How to Make a Billion Dollars in Healthcare to learn why a combined degree might be the educational pathway of choice for super-ambitious science and math students.

Good luck!

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

HILARIOUS GUFFAW-OUT-LOUD MEDICAL SATIRE BY TWO STANFORD PROFESSORS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Publish, Don’t Perish is a hilarious guffaw-out-loud medical satire written by two Stanford anesthesia professors, Dr. Jay Brodsky and Dr. John Brock-Utne. Not since The House of God have I read a book that spoofed the medical world in such accurate detail—absurd but almost believable.

The premise of the book relates to the truism than university medical faculty must “publish or perish.” Indeed the path of promotion to tenured professor status requires academic physicians to publish original clinical or laboratory research in reputable journals. Brodsky’s and Brock-Utnes’ book focuses on the new phenomenon of “predatory internet medical journals,” which will publish nearly anything if the author pays them a fee. 

An example email a doctor will receive from one of these predatory internet journals would be a poorly worded offer such as:  “Greetings. I hope you are well and trust you are doing splendidly. I’m Editorial Manager of The New American Journal of Medicine. We have seen your recent published articles and they seem to be very fascinating and it will be grateful if you accept to contribute a manuscript to our journal . We’ll accept anything. I really hope you won’t deny my mail and will surely submit a paper to the journal. We’ll publish it within two weeks.”

Publish, Don’t Perish presents fictional examples of medical studies that these new internet journals would be happy to publish. The parody examples from Publish, Don’t Perish include:

Study: Face Masks Can Alleviate Surgical Stress. Results:

Study: The Body Habitus of Miss America Contestants Have Shown an Ominous Decrease. “Since the iconic beauty pageant was established in the 1920s, the average BMI of the Miss America winner has now dropped to < 18 kg/m2. At the current rate of decline Miss America will have a BMI of Zero by the year 2300.”

Study: The Ideal PPE (Personal Protective Equipment) for the Operating Room. “To minimize exposure in the COVID-19 crisis, . . . we have provided all our physicians and nurses with atmospheric diving suits.” See below:

Letter: Orthopedic Surgeon Presents Alternative to Tracheostomy for ICU Patient. “An orthopedic surgeon was called to perform a tracheostomy in a COVID-19 patient with respiratory failure, . . . but the surgeon was unfamiliar with that procedure and decided to proceed with the only surgical airway management operation he was comfortable with.”

News: All Ancient Women Were Obese. “In a stunning announcement by several prominent anthropologists, the scientific and medical communities were shocked to hear of a new insight into human history. ‘We believe, rather than being the exception, that all Neolithic women were obese, and in most instances they were morbidly obese. . . . At excavations of sites twenty thousand years old, just a few examples of our finds are shown below.’”

The conclusion of this stunning announcement is, “Contrary to current teaching, it is obvious that the female body is meant to be obese.”

New Nursing Journal Announced. “The American Nurses Association is proud to announce the publication of our newest nursing journal, called ‘Anecdotes, not Science, Involving Nurses In New Environments,’ or ASININE.”

Case Report: Alexa Wakes Patient Up From Surgery. “When the surgeon told me he had ten minutes left in the case, I asked Alexa to set an alarm for thirty minutes because as you know, it always takes them about three times as long to finish.”

Other laugh-out-loud faux examples include:

Study Finds That Having Sex Without a Condom May Lead to Pregnancy.

Hospital News: Hospital CEO Accidentally Visits Operating Rooms: Finds Visit Productive

Case Report: Every Hospital Service Consulted on One Patient. 

120-Year-Old Doctor Called Out of Retirement to Fight COVID-19.  “As a young physician Dr. Tuttle sherperded Washington state through the devastating 1918 Spanish Flu influenza epidemic, and Dr. Fauci is listening to his recommendations.”

News: Anesthesia Blamed for Everything.

Nurse Earns Final Degree: Now Has the Entire Alphabet Behind His Name. “Richard R. Whitaker has recently completed his advanced degree in zoophobia, and thus became the first nurse to have every single letter of the alphabet listed behind his name.” example: Richard Whitaker, RN, PhD, CNP, CNM, ADP, AARP, . . . ZD.

Dr. John Brock-Utne and Dr. Jay Brodsky

Doctors Brodsky and Brock-Utne are distinguished experts in genuine medical writing. Between them they have published over 500 articles in the peer-reviewed medical literature. Publish, Don’t Perish, an 8 X 10- inch paperback, 80 pages long, is their first full-length book of satire. In a parallel universe both authors could have made a solid living as Saturday Night Live comedy writers, or perhaps they could have penned an R-rated comedy movie or two.

Five stars. This reviewer recommends you order a copy from Amazon right now. Make sure to order a gift copy or two for your orthopedic surgeon, hospital CEO, or favorite nurse as well.

Back Cover of Publish, Don’t Perish

PATIENTS: IS IT SAFE FOR YOU TO HAVE SURGERY DURING THE COVID PANDEMIC AS OF MAY 2020?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

An important question for many Americans is, “Is it safe for me to have surgery during this COVID pandemic?”

It depends. 

In the San Francisco Bay Area where I work, the answer as of today, May 13th, 2020, is “yes.”

This is a key point: Healthcare professionals are more concerned with catching COVID-19 from you, the patient, than you should be concerned with catching COVID-19 within the healthcare facility. Read on to learn why.

The main questions as to whether a hospital or an ambulatory surgery center can resume elective surgery as of May 2020 are:

  1. What is the incidence of COVID-19 in your geographic area?
  2. Is testing for the virus that causes COVID-19 available in your area?
  3. Is there adequate personal protective equipment (PPE) at the facility?
  4. If you are having a major surgery in a hospital, will there be an adequate number of ICU and non-ICU beds, ventilators, medications, anesthetics and medical surgical supplies at the facility?

Your state health department will have statistics regarding the incidence of COVID-19 in your area. In Palo Alto, California, where I work at Stanford, the percentage of asymptomatic patients who have a positive COVID posterior nasal swab is quite low at 0.4%, or only 1 out of 250 people. The incidence of positive COVID antibody tests, indicating a prior exposure to the disease, is only 3%. Our county and state health administrations have noted a decline in the incidence of COVID cases, and have authorized a reopening of elective surgery. 

The American College of Surgeons, the American Society of Anesthesiologists, the American Association of periOperative Registered Nurses, and the American Hospital Association issued a joint statement on April 17th2020, stating that for reopening to occur, “there should be a sustained reduction in the rate of new COVID-19 cases in the relevant geographic area for at least 14 days and the facility shall have appropriate number of intensive care unit (ICU) and non-ICU beds.”

The joint statement also said that “facilities should use available testing to protect staff and patient safety whenever possible and should implement a policy addressing requirements and frequency for patient and staff testing.” Most facilities are interpreting this to mean that patients should have a negative COVID virus screening test prior to surgery. Most of these swab specimens are taken from the posterior aspect of the nose, although some tests only require an anterior nasal swab or a sputum/saliva sample. 

When you enter the healthcare facility, a nurse will question you regarding virus symptoms, and will screen you by taking your temperature. The inside of the healthcare facility will be cleaned prior to any patient care, and will be recleaned after each patient leaves an operating room. Everyone in the healthcare facility will be wearing masks. Everyone will be practicing social distancing of 6 feet unless they need to be closer to you to do their duty. All the precautions you’ve heard about multiple times from TV news reporters over the past weeks are strictly practiced inside healthcare facilities. When I’m at Stanford Hospital or the surgery centers in our area I’m confident the environment is safe.

Changes in the care of surgical patients during the time of COVID are best discussed in terms of preoperative care, intraoperative care, and postoperative care:

Preoperative care: No visitors are allowed into the perioperative region. At Stanford, if you have not had a COVID test prior to elective surgery, a nasal swab is taken on admission, and a rapid COVID test is done with the result available within about 2 hours. Healthcare workers take respiratory precautions with all patients as if that patient was COVID positive, whether the COVID test result has come back yet or not. You will wear a mask in the preoperative room, and that mask will remain on your face until just prior to the induction of anesthesia.

Intraoperative care: The American Society of Anesthesiologists states that “virus-carrying droplet particles become aerosolized into finer particles by airway procedures such as laryngoscopy, intubation, extubation, suctioning, and bronchoscopy, as well as by coughing and sneezing. These airway procedures and exposures carry a higher risk of infection for anesthesia professionals and other healthcare workers and require the use of rigorous PPE and environmental protection.” This means that when you are going to sleep or when you are waking up, airway procedures such as placing and removing a breathing tube are high-risk times for you to cough and project virus-carrying droplets into the atmosphere around you. The anesthesiologist wears full PPE (N95 mask, face shield, gown, two pair of gloves) during these times, and all other healthcare professionals (surgeons, nurses, techs) are to be at least 6 feet away or preferably outside of the operating room entirely. This is what your anesthesiologist will be wearing immediately prior to the time you go to sleep:

Postoperative care: When you awaken and your breathing tube is removed, the anesthesiologist once again places a paper surgical facemask over your mouth and nose to prevent you from coughing virus-containing droplets into the atmosphere of the operating room or the post-anesthesia care unit (PACU). If the procedure was an outpatient surgery, you will leave the facility and return home after you’ve recovered from anesthesia. Outpatient surgeries have the advantage of not requiring a hospital bed or an ICU bed/ventilator, which leaves these supplies available if a resurgence of COVID occurs in the community.

Which surgeries are commonly done as of May 13th, 2020? 

Each hospital or ambulatory surgery center is supposed to establish a prioritization policy committee consisting of surgery, anesthesia and nursing leadership, to develop a strategy to screen which surgical cases are appropriate to proceed with or not.

What do you, the patient, do with all this information? 

The timing of scheduling a surgery is always a balance of benefits and risks. Your surgeon will perform an essential surgery for you whenever a delay could cause harm. Your surgeon will weigh the risk of delay against the benefit that can be achieved by moving forward with your surgery. If your surgeon says your surgery is appropriate at this time, and you are willing to consent to the surgery, then you can move forward with the procedure. 

Healthcare professionals will adhere to the high quality standards as outline above, and surgery and anesthesia should be safe for you. 

References: 

Joint Statement: Roadmap for Resuming Elective Surgery after COVID-19 Pandemic. (The American College of Surgeons, the American Society of Anesthesiologists, the American Association of periOperative Registered Nurses, and the American Hospital Association) 

Anesthesia Patient Safety Foundation, COVID-19 and Anesthesia FAQs

*

*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

CAN WEARING A FACE MASK SAVE YOUR LIFE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

During the COVID-19 pandemic we’ve been told not to wear a face mask if we don’t have viral symptoms.

Is this a mistake? Can a face mask save your life? I’m not talking about an N-95 mask, which blocks virus entry into your nose and mouth, and which are in short supply even for health care professionals during this pandemic, but a typical surgical mask, as pictured above.

Today I’m forwarding excellent information from a post by American viral specialist, James Robb MD, Fellow of the College of American Pathologists, a former Professor of Pathology at the University of California San Diego, and one of the first molecular virologists in the world to work on coronaviruses in the 1970s.

Dr. Robb is a proponent of individuals wearing surgical masks in public during a pandemic. He writes: 

“Stock up now with disposable surgical masks and use them to prevent you from touching your nose and/or mouth (We touch our nose/mouth 90X/day without knowing it!). This is the only way this virus can infect you – it is lung-specific. The mask will not prevent the virus in a direct sneeze from getting into your nose or mouth – it is only to keep you from touching your nose or mouth.

“The virus is on surfaces . . . This virus only has cell receptors for lung cells (it only infects your lungs). The only way for the virus to infect you is through your nose or mouth via your hands or an infected cough or sneeze onto or into your nose or mouth.”

This is a controversial recommendation. There are currently not enough surgical masks for everyone in the United States to be wearing one, but a face mask forms an effective blockade to an individual touching their own mouth and nose. The most common form of transmission of COVID-19 is likely autoinoculation of the virus from our hands to our nose, mouth, and eyes.

Dr. Jerome Adams, the Surgeon General of the United States, an anesthesiologist himself, and a professional I have tremendous respect for, tweeted this advice on February 29th, 2020:

“Seriously people- STOP BUYING MASKS! 
They are NOT effective in preventing general public from catching #Coronavirus, but if healthcare providers can’t get them to care for sick patients, it puts them and our communities at risk!”

It’s true that a typical surgical mask will not prevent you from inhaling the COVID-19 virus. And it’s also true that the medical teams in the United States need to have an adequate supply of surgical masks. But during this pandemic the facts are:  a) those doctors and nurses who are actually caring for or screening for coronavirus patients are wearing specialized N-95 masks, not regular surgical masks; and b) the need for surgical masks in the hospital has markedly declined because elective surgery in the United States is grinding to a halt during the current shutdown. Santa Clara County, where I practice in California, received a CDC recommendation that all elective and non-urgent surgical procedures be cancelled, and we are complying with this shutdown.

What if everyone in the United States started wearing a surgical mask all day? I’m not talking about an N-95 mask, which has twin elastic bands and forms a tight seal where the edges meet your skin. I’m talking about the looser version commonly worn in operating rooms. A tight N-95 mask is uncomfortable and will be often adjusted, necessitating multiple touching of the mask with your hands, which is could transmit the virus to the surface of the mask:

A looser fitting surgical mask is not uncomfortable, and is both a barrier to touch and a reminder not to touch one’s nose and mouth:

Is there any data that the barrier to touching their noses and mouths would slow the spread of COVID-19? No, there is no data, and there will not be anytime soon because no one has time to do such a study right now. But it’s common sense, as Dr. Robb recommends above, that preventing hand to face transmission is a vital part of curbing the spread of the virus.

On February 28th, 2020 a surgical colleague of mine who had just returned from Asia came to work and did surgery in one of our outpatient operating rooms here in California. One week later he was diagnosed with COVID-19 infection, and he was hospitalized. All the nurses, doctors, and techs who were present at work that day were placed on 14-day surveillance for the onset of COVID-19 symptoms, i.e. fever, cough, or shortness of breath. Sixteen days later, none of them have developed any symptoms of COVID-19. One of the reasons we attribute this positive outcome to is that all the doctors, nurses, and techs, as well as the infected surgeon, were wearing face masks. Almost no one will touch their nose and mouth if they are wearing a mask, and no one who is scrubbed in for surgery can touch their nose or mouth.

On March 12, 2020, in coverage of the COVID-19 pandemic, Time Magazine published an article Why Wearing a Face Mask is Encouraged in Asia, But Shunned in the U.S.” In Asia it became commonplace for individuals to wear face masks after the COVID-19 outbreak. They don’t have any data. They’re just worried.

We all should be worried at this point. If you cannot stop touching your mouth, nose, and face, and you can acquire a face mask, then consider wearing it. You don’t have to have a clean one each day. It’s not to prevent you from coughing on others, it’s to prevent you from touching your own face.

Is there any harm to wearing a face mask if you have one? I don’t think so. The benefit/risk ratio is high. Protect yourself and your family.

CORONAVIRUS AND ICU VENTILATORS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The question isn’t how many people in the United States will contract the coronavirus COVID-19. The key question is how many of these coronavirus cases will become extremely ill and wind up in an ICU. Authorities tell us two criteria define the threat of a virus: how quickly it can spread, and how severe or virulent the cases are.

How many of the infected patients will develop respiratory failure, and how many will require admission to an Intensive Care Unit (ICU) to be kept alive by a ventilator? To date there have been 90,000 coronavirus cases in the world and 3,000 have died, for a mortality rate of 3.33%. To date there have been 127 coronavirus cases in the United States and 9 have died, for a mortality rate of 7%. This statistic deserves an asterisk, because the denominator is likely too low. We don’t have data as to how many patients have contracted coronavirus, because testing has been limited to date.

We also have no information the numerator, the people who died. The Center for Disease Control (CDC) has released minimal information on the fatalities. For example, how many of the Kirkland, Washington deaths were elderly patients who were Do Not Resuscitate (DNR) status? That is, they were to be denied ICU treatment, ventilator support, and cardiopulmonary resuscitation (CPR) if they became seriously ill? How many of the deaths were vigorous adults who succumbed despite a full ICU effort to keep them alive?

What would the cause of these deaths be in a coronavirus-infected patient? The coronavirus is a respiratory virus which primarily infects respiratory tissues, much like the influenza virus does.  Symptoms could include sudden onset of fever, cough, headache, muscle pain, severe malaise (feeling unwell), sore throat, and a runny nose. With influenza illness may range from mild to severe and even death, but hospitalization and death occur mainly among high risk groups such as elderly patients or those with preexisting chronic illnesses.

A severe coronavirus infection would infect the lungs, and cause progressively increasing shortness of breath and dropping oxygen levels in a patient’s bloodstream. The medical treatment would be supportive, that is, a breathing tube would be placed in the patient’s windpipe (trachea) by an anesthesiologist, an ICU doctor, or an emergency room doctor, and the tube would be connected to a mechanical breathing machine, called a ventilator.

As of 2015, there were 94,837 ICU beds in the United States. Many or most of these beds are already filled by patients who need ICU support. If the new coronavirus were to become a pandemic which caused thousands or tens of thousands of cases of respiratory failure in the United States, each of these new coronavirus patients would require an ICU bed and a ventilator. This could quickly overrun our ICU capacity in America. 

That is the real scare of the coronavirus issue—the fear that our hospitals could not handle the volume of severe infections. Could temporary ICU beds be set up? Each bed would require a ventilator, a set of monitors, and around-the-clock nursing staffing. The supplies of each of these is finite. In addition, with an infectious disease such as coronavirus, each of these ICU beds would ideally be an isolation bed, which kept that patient quarantined from other patients and staff.

Can an anesthesia machine in an operating room be used as an ICU ventilator? Yes. Read more about that topic here. An operating room can be converted into an ICU room with the anesthesia machine ventilator keeping the patient alive.

In week one of the pandemic in California, I went grocery shopping at my local Safeway. The parking lot was full. When I arrived at the front door there were no shopping carts. Inside the store I saw hundreds of shoppers elbow to elbow in all the aisles. I asked an employee why the store was so busy, and she said, “This is nothing. You should have seen it yesterday—even busier!” “Why is it?” I asked. 

Her answer was two words: “The virus.”

She went on to say that customers were buying cleansing wipes, Advil, Tylenol, water, and food provisions that they could survive on for months. On my way out of the store, I saw my own primary care physician in the parking lot, and we discussed the shopping mayhem. He validated my views with the remarks, “It’s not if, but when, people will get infected. It’s just  too soon to know how many severe cases there will be.”

The Safeway customers buying Advil and Tylenol are worried. If you have a severe infection, Advil and Tylenol are not going to save you. What you would need is an intensive care bed with a ventilator, equipment to support your vital signs, and doctors and nurses to care for you 24 hours around the clock.

I hope and pray the overwhelming majority of coronavirus infections in the United States will be mild and self-limiting. A search for a vaccine and/or useful treatment drugs are underway. But because American medical systems need to be prepared, those in charge of health care administration are no doubt preparing contingency plans on how they can manage thousands of new patients in respiratory failure if needed. For more information on this topic see Stockpiling Ventilators for Influenza Pandemics.



*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ARE DOCTORS THE CULPRITS IN THE RISING COST OF HEALTHCARE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Are doctors the culprits in the rising cost of healthcare? In a word, no. 

Does this story sound familiar? Your health insurance premiums are increasing by 12% each year. You or your employer pays this amount directly to Anthem, United Healthcare, or one of the other major health insurance companies. A drawback is  your health insurance policy comes with a $5000 deductible per person insured, so that you are paying out of pocket to get the first $5000 of each family member’s medical care each year. Because of this deductible cost, you choose to utilize as little health care as possible each year.

The result of this scenario? The insurance company wins in two ways:

1) The insurance company is collecting all time high premiums

2) You and the rest of the insured population are utilizing your insurance less, and choosing less health care visits and procedures because you have to pay cash for the initial expenses. 

Health insurance companies are primary culprits in the rising costs of healthcare.

I’m writing this from the viewpoint of a father who pays for the health insurance for a family of four. I currently pay $2000/month, or $24,000/year, for my group’s Anthem PPO (Preferred provider organization) coverage. My family’s in-network deductible is $5000/person, and our out-of-network deductible is $10,000/person. With this $5000 deductible per person, I may pay $20,000 in deductible payments before I gain any significant insurance coverage. If my family remains healthy, we are paying deductibles all year and gaining very little coverage for our insurance dollars. Our insurance is, in essence, catastrophic coverage in case we incur a major illness. 

I’m also writing this from the viewpoint of a working MD who sees declining payment and increasing difficulty contracting with these same healthcare organizations as a provider. 

The majority of health insurance companies are for-profit, and they are making record profits at this time. Forbes magazine reported that the health insurance industry “is enjoying a Golden Age of growth, sales and profits. ”

The top eight for-profit health insurance companies and their revenue for 2018, as reported by Forbes and Becker’s Hospital Review are listed below:

1. UnitedHealth Group
Membership: 49.5 million 
Revenue: $201 billion 

2. Anthem
Membership: 40.2 million
Revenue: $90 billion 

3. Aetna
Membership: 22.2 million 
Revenue: $60.6 billion

4. Cigna
Membership: 15.9 million
Revenue: $41.6 billion 

5. Humana
Membership: 14 million
Revenue: $53.7 billion

6. Centene
Membership: 12.2 million 
Revenue: $48.3 billion

7. Molina Healthcare
Membership: 4.4 million 
Revenue: $18.8 billion 

8. WellCare Health Plans 
Membership: 4.37 million
Revenue: $16.9 billion

The five largest health insurance or pharmacy benefit management (PBM) companies (Anthem, Cigna, CVS Health, Humana and UnitedHealth Group) in the United States collect revenues as large as the five dominant tech companies (Facebook, Amazon, Apple, Netflix and Google). 

Data: Company filings and FactSet; Chart: Naema Ahmed/Axios

  Data: Company filings and FactSet; Chart: Naema Ahmed/ 

These five health insurance/pharmacy companies had revenue of almost $787 billion in 2019, compared with $783 billion of projected revenue for the five largest tech companies. (Note: health insurers and pharmacy benefit managers pay much of their revenues to hospitals, doctors and drug companies, but these five companies are still recording billions in profit.) TheBest’s Market Segment Report stated that “through third-quarter 2018, health insurers’ net income grew by 19% to $25.8 billion compared with the same prior-year period.”

Los Angeles Times article said, “The truth is that private health insurers have contributed nothing of value to the American healthcare system. Instead, they have raised costs and created an entitled class of administrators and executives who are fighting for their livelihoods, using customers’ premium dollars to do so.”  The same article quoted Wendell Porter who said, “Health insurers have been successful at two things: making money and getting the American public to believe they’re essential.” 

The article went on to say, “The most perplexing aspect of our current debate over healthcare and health coverage is the notion that Americans love their health insurance companies. The increasingly prevalent mode of health coverage in the group and individual markets is the narrow network, which shrinks the roster of doctors and hospitals available to enrollees without heavy surcharges.  . . . Private insurers don’t do nearly as well as Medicare in holding down costs, in part because the more they pay hospitals and doctors, the more they can charge in premiums and the more money flows to their bottom lines. They haven’t shown notable skill in managing chronic diseases or bringing pro-consumer innovations to the table. . . . In reality, Americans don’t like their private health insurance so much as blindly tolerate it. That’s because the vast majority of Americans don’t have a complex interaction with the healthcare system in any given year, and most never will. As we’ve reported before, 1% of patients account for more than one-fifth of all medical spending and 10% account for two-thirds. Fifty percent of patients account for only 3% of all spending.”

(Image source: NIHCM)

Why do Americans want to keep their present healthcare insurers? Because the vast majority of Americans have very little need for medical care in any given year. That’s why most people are satisfied with their coverage. 

When will we see new models for private health insurance? The joint venture of Amazon, Berkshire Hathaway and JPMorgan Chase hired Harvard’s Atul Gawande MD, MPH as their CEO of their medical partnership. Many believe this organization will attempt to contract directly with major health systems, thereby bypassing traditional health insurance companies, in a quest to bring down costs. 

What can Congress do? What if they stipulate that health insurers pay out, for example, 97% of the premiums they collect? This concept, called a “medical loss ratio,” was part of the Affordable Care Act for plans sold on the federal health exchange to people under the age of 65. The Senior Citizens League webpage said, “The medical loss ratio sounds good in theory, but can contribute to rising healthcare costs due to ‘perverse incentives.’ . . If the insurance company has accurately built high costs into the premium, it can make more money.  Here’s how:  Let’s say administrative expenses eat up about 17 percent of each premium dollar and around 3 percent is profit.  Making a 3 percent profit is better if the company spends more.  It’s as if a mom told her son he could have 3 percent of a bowl of ice cream.  A clever child would say, ‘Make it a bigger bowl.’”

I’m not a socialist. I don’t support Medicare-for-all.  I’ve always believed capitalism and free enterprise would solve most economic problems. The current monopolies of health care insurance by a small number of for-profit health insurers is hardly a free market. There is inadequate competition against the Big 8 for-profit insurers, all of whom charge high premiums and bank massive profits. Health insurance companies are well represented in Washington D.C. Healthcare companies spent $3.9 billion dollars lobbying over the past 20 years.  

I encourage voters to pay careful attention to the issue of health insurance profits, and to pay careful attention to where presidential hopefuls and Congressional candidates stand on the issue. If politicians seem to be mouthpieces for the big business of health insurance industry, don’t vote for them. If they are advocates for change that help Americans gain affordable healthcare, I encourage you to vote for them.

As a physician, I’m particularly critical of the argument that doctors are causing the rising healthcare costs in American. The United States has the most expensive healthcare delivery system in the world, and it’s not because doctors make too much money. The administration of each healthcare dollar includes a syphoning off of huge profits by the insurance industry. A fine column by former President of the California Society of Anesthesiologists and UCLA professor Karen Sibert MD cites sources that physician are a mere 8% of America’s healthcare bill.  

Some journalists criticize physicians as an overpaid contingent who are inflating the cost of healthcare in America. Doctors are an essential profession in America. Physicians are suffering from high incidences of student debt, burnout, and premature retirement. As Karen Sibert MD wrote in another excellent column, “Keep up the insults, and good luck finding a physician in 10 years.”

Be informed and wary about the rising cost of health insurance and rising profits of the health insurance industry.

And I hope you stay healthy and don’t need to utilize your health insurance this year. 



*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ROBOTIC ANESTHESIA REALLY IS COMING

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The February 2020 edition of Anesthesiology, our specialty’s preeminent journal, published an article on robotic anesthesia.1

The accompanying editorial by Dr. Thomas Hemmerling was titled “Robots Will Perform Anesthesia in the Near Future.2 The author wrote: 

I have no doubt that closed-loop (i.e. robotic) anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”

The primary study by Joosten1 looked at the performance of multiple closed-loop systems for administration of anesthesia in 90 patients undergoing major noncardiac surgery in a single center in Belgium. The conclusion of the study was that the automated system outperformed manual control, as there was minimal but significantly better cognitive function in the patients one week after surgery when the closed loop control was used. 

A BIS monitor

The depth of anesthesia was measured using a BIS (bispectral index) monitor. A BIS electrode was applied to each patient’s forehead and temporal regions to capture the frontal electroencephalogram (EEG) from the brain. 

three Base Primea infusion pumps

In the closed-loop (automated, or robotic) group, two infusion pumps were used to deliver target-controlled intravenous infusions of the hypnotic drug propofol and the narcotic remifentanil, in order to maintain BIS values between 40 and 60. BIS values between 40 and 60 have been shown to correlate with adequate anesthesia depth.

In his editorial, Dr. Hemmerling wrote:

“Robotic anesthesia, defined as anesthesia delivered by an automated control system, will soon be available. It is my opinion that closed loop devices will become available in the United States . . .  

One of the changes our profession has gone through is an ever-increasing demand to multitask, be it by running more than one operating room, or by simultaneously performing administrative or teaching tasks. In addition, the number of parameters to monitor has also increased. It is therefore not surprising that one of the common denominators of studies comparing closed loop control versus manual control is the finding that humans change a given target infusion rate far less frequently than closed loop devices do.

I have no doubt that the practice of running more than one operating room, common in the United States but less so elsewhere, will soon be an international standard. Closed loop devices will allow us to maintain a high standard of quality independent from the amount of physical presence.

Robotic anesthesia delivered in Washington by Dr. Smith would essentially be the same as robotic anesthesia performed in Chicago by Dr. Miller. . . . 

I think technology will advance similar to what we have seen and see in the car manufacturing industry. First, there was manual transmission, then automatic transmission, double clutch systems, navigation systems, all sorts of safety assist systems…soon, there will be self-driving cars.

How will we do anesthesia in the future? It is 2030 and I am scheduled to supervise anesthesia for a 40-yr-old patient undergoing laparoscopic cholecystectomy.

In the operating room, I tell my robot—let’s call it A-bot—about the surgery, the patient, and the type of anesthesia I would like performed. “Can I get a propofol, remifentanil-based anesthesia? Can we target 45 as a Bispectral Index? A-bot, can you maintain mean arterial pressure around 65? Can you maintain cardiac index during surgery of more than 2.5 l · min–1 · m–2? A-bot, I would like to use rocuronium, bolus application is good enough, but please keep neuromuscular blockade lower than 25% at all times. Please choose a respiratory rate of 12 and adjust tidal volumes to maintain end-tidal carbon dioxide of 32 mmHg in 50% air! Let’s provide preemptive analgesia using morphine and ketorolac—usual dosages, A-bot, you know.”

A-bot answers: “Sure will, Tom—you keep me informed about surgical progress?”

“Yep.”

When I look at all the literature, including the fine work by Joosten et al.,1  I have no doubt that closed loop anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”2

In 2019 I wrote an editorial that robotic anesthesia was coming.3 And as I wrote the novel Doctor Vita 4 over a 15-year span from 2004-2019, I became more and more convinced of the role technology will play, for better or for worse, in replacing the human element in patient care. The premise of the novel is valid.

Will artificial intelligence in medicine provide the world with healthcare workers who work simply by plugging them in? Will some form of Doctor Vita populate future operating rooms?

An editor in the world’s leading anesthesia journal has predicted it. 

References:

  1. Joosten, A, Rinehart, J, et al. Anesthetic management using multiple closed-loop systems and delayed neurocognitive recovery: A randomized controlled trial. Anesthesiology. 2020; 132:253–66.
  2. Hemmerling TM. Robots will perform anesthesia in the near future. Anesthesiology 2020: 132:219-220.
  3. Novak R. “Artificial Intelligence in Anesthesia and Perioperative Medicine is Coming.” EC Anaesthesia 5.5 (2019): 112- 114. 
  4. Novak R. Doctor Vita. All Things That Matter Press, 2019.




*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

CANNABIS AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You use cannabis products. 

You’re about to have an anesthetic. 

Should you tell your anesthesiologist or not? Read on . . . 

PREVALENCE OF MARIJUANA USAGE

Cannabis, or marijuana, is used by approximately 2.7-4.9% of the world’s population, making it the most widely used illicit drug on Earth. Cannabis is also one of the most widely used drugs in the United States, where an estimated 22 million people over the age of 12 use cannabis products each year. 

SCHEDULE 1 DRUG 

Fifty years ago, in 1970, the Drug Enforcement Agency (DEA) regulated all cannabis products in the United States to Schedule 1 classification. Schedule 1 drugs have no accepted medical use and have a high potential for abuse. Other Schedule I drugs include heroin, LSD, mescaline, psilocybin, and ecstasy.  This classification of cannabis as a Schedule I drug made it impossible for American-based researchers to conduct research studies on cannabis products on humans. Typically a new medication must clear specific hurdles with the DEA before it is approved for public usage. At present the recreational use of marijuana is legal in 11 states: Alaska, California, Colorado, Illinois, Maine, Massachusetts, Michigan, Nevada, Oregon, Vermont and Washington, and also in Washington, D.C.

A problem exists because cannabis is categorized as an abuse drug that was not able to be studied, and has now been legalized without appropriate research. The physiology and pharmacology of cannabis in humans is also difficult to study because a) there are many different cannabinoids present in marijuana products, each with variable effects, and b) the drug can be either inhaled or ingested orally. If the DEA eventually removes cannabis from the DEA Schedule I list, then scientific prospective clinical trials can be done to better evaluate the implications of cannabis use.

WHAT WE DO KNOW

The most potent psychoactive product in the marijuana plant is delta-9-tetrahydrocannabinol, or THC.

THC is found in the flowering buds of the plant, and to a lesser degree in the leaves, stems, and seeds. The half-life of THC in the body is 5-13 days. Modern cultivation improvements have increased the THC content of cannabis. The average marijuana cigarette in the 1970s contained 1 – 3% THC, the average marijuana cigarette in the 1990s contained 6 – 20% THC, and some currently available strains have up to 33% THCButane hash oil extracts may have a THC concentrations as high as 90%.  The effects of cannabis are difficult to predict because the THC concentration in any delivered dose depends on both the THC concentration of the product, and the route of delivery.

CBD, short for cannabidiol, is a product marketed for antianxiety and chronic pain problems. CBD is not psychoactive, meaning it doesn’t have a strong effect on cognitive brain activity and doesn’t cause the central nervous system high associated with THC. Like all cannabis products, CBD is still classified as a Schedule 1 drug by the DEA. To date I’m unaware of any data that CBD interacts with anesthetics in any important way. 

ACUTE AND CHRONIC EFFECTS OF CANNABIS

To an anesthesiologist, a patient’s three most important physiologic systems are the brain, the heart, and the lungs. These are also the systems most effected by cannabis. Inhaled cannabinoids are rapidly distributed within the vessel-rich group of organs in the human body (the brain, lungs, heart, kidney, and liver), and effects are seen within seconds to minutes after an inhaled dose. The effects of orally ingested cannabinoids may be delayed up to 1 to 2 hours. 

CENTRAL NERVOUS SYSTEM/BRAIN

The most well known effects of marijuana involve the central nervous system, and include euphoria, sedation, and relaxation. Adverse side effects include apathy and lack of motivation.  Some users report reduced anxiety with cannabis use, but there are reports of worsened anxiety leading to paranoia or psychosis with cannabis use.There have also been case reports of acute psychosis after rapid ingestion of high doses of oral THC. Due to the central nervous system effects of cannabis, marijuana use has been implicated in motor vehicle accidents. Studies have shown a dose-dependent effect of acute cannabis administration on slowing the reaction time of drivers, and causing them to weave between traffic lanes. This is worsened by co-administration of marijuana with ethanol.These marijuana-plus-or-minus alcohol users may present to anesthesiologists for emergency surgical procedures related to traffic accidents. 

CARDIAC

The acute cardiac effects of cannabis administration include rapid heart rates (tachycardia) and the peripheral dilation of blood vessels, which causes low blood pressure.  A study showed that tobacco smokers with stable angina who never smoked cannabis developed angina with exercise significantly faster after smoking cannabis.  A second study showed a 5-fold increased risk of a heart attack (myocardial infarction or MI) in the first hour following cannabis smoking, compared to a 24-fold increased risk of MI in the hour following cocaine ingestion. The elevated risk of heart attack in cannabis users is thought to be due to a combination of the increased heart rate, the lower blood pressure, and the increase in cardiac work.  In the United States, cannabis use disorder has not been associated with any change in overall perioperative morbidity, mortality, length of hospital stay or costs, but cannabis use disorder is associated with an increased risk of postoperative myocardial infarction

LUNGS

Studies show bronchodilation and decreased airway resistance with either inhaled or ingested THC, but marijuana smoking can also result in airway hyperreactivity similar to that seen with tobacco smoking. Marijuana can be more irritating to airways because it burns at a higher temperature than tobacco. Cannabis is commonly smoked in hand-rolled and unfiltered cigarettes, or “joints,” introducing high concentrations of carcinogenic chemicals and irritants into the airways and lungs. Vaping cannabis oil promotes the inhalation of respiratory carcinogens and irritant compounds which can cause lung injury. Characteristics of cannabis smoking such as prolonged and deep inhalation, a shorter joint butt, and the higher combustion temperature, may result in greater carboxyhemoglobin  levels and tar retention in the airways. The chronic effects of inhaled marijuana include cough, bronchitis, and emphysema similar to those seen in chronic tobacco smokers.

WITHDRAWAL SYNDROME

The cannabis withdrawal syndrome is validated as a clinical entity in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as well as in the International Classification of Diseases (ICD) systems. Cannabis withdrawal syndrome can develop within a day after stopping high-dose chronic cannabis use. The symptoms include irritability, aggression, anxiety, insomnia, disturbed dreams, depressed mood, weight loss, abdominal cramping, sweating, fevers and chills.  

BEFORE SURGERY

In every cannabis using patient, the anesthesia preoperative evaluation should include assessment of the psychologic, cardiac, and pulmonary systems in order to minimize any risk of a perioperative complication. 

It’s important for the anesthesiologist to know the duration, frequency, and route of their patient’s cannabis use, as well as the time of most recent intake. Anesthesiologists should seek to identify patients as new or chronic cannabis users. If a patient exhibits any central nervous symptoms of acute cannabis intoxication, it’s important to assess the patient for symptoms of escalating anxiety, paranoia, or psychosis, as these symptoms may predict a violent emergence from anesthesia. The current lab testing methods assaying for plasma or urine cannabis levels do not provide effective quantitative data on cannabis intoxication. The history and physical examination by a physician are more important than a toxicology screen. Drug screening for cannabis is not currently a standard of care in preoperative medical evaluation.

Prior to urgent anesthetics on a patient with acute cannabis intoxication, the anesthesiologist will 1) consider delaying the induction of anesthetic induction until the resolution of tachycardia and/or low blood pressure, and 2) conduct a preoperative evaluation for chronic marijuana smokers similar to that used for chronic tobacco smokers. This includes questioning the patient regarding exercise tolerance, shortness of breath, chest pain, and listening to the lungs for evidence of chronic bronchitis or emphysema. 

ANESTHESIOLOGIST CONCERNS 

When attending to a cannabis user, the anesthesiologist must be aware that:  a) cannabis consumers may have an increased tolerance to anesthetics,  b) cannabis consumers have an unknown cross-tolerance to the anesthetic agents, c) cannabis consumers have an increased risk of myocardial infarction (MI or heart attack) within one hour after use, and d) cannabis consumers may have increased airway reactivity (i.e. wheezing, coughing, shortness of breath, or asthma symptoms).

In a prospective, randomized, single-blinded study, thirty male patients using cannabis more than once per week and 30 nonusers aged 18-50 years had anesthesia induced with propofol. The dose of propofol required for successful placement of a laryngeal mask airway (LMA) tube was significantly higher in the cannabis group than in nonusers

Researchers studied 27 patients undergoing elective orthopedic surgery who were randomly allocated to high dose cannabis (6 patients), low dose cannabis (8 patients), active placebo (6 patients) and placebo (7 patients). The cannabis drugs were administered 20 minutes before induction of general anesthesia in a double-blind fashion. During inhaled anesthesia, the researchers examined the patient’s bispectral index (BIS index, i.e. an intraoperative brain EEG level that measures depth of  general anesthesia). The average BIS values were significantly higher (i.e. the patients were not as deeply anesthetized) in the high dose cannabis treatment group. The researchers concluded that for cannabis consuming patients, one cannot rely on the EEG-BIS monitoring for the purpose of determining the patient’s anesthetic depth. An inference from this data is that cannabis patients were more tolerant of maintenance inhaled general anesthesia doses than non-cannabis users.

Because cannaboids are Schedule I drugs, and the effects of cannabis have been more thoroughly studied in animals. Studies in mice and rats showed cannabinoid-induced analgesic tolerance to morphine. There have been no similar studies in humans published to date. 

POSTOP:  INCREASED PAIN AND POSSIBLE WITHDRAWAL SYNDROME:

Following surgery, cannabis users report higher pain scores, worse sleep, and require more narcotics than non-cannabis users.  In Jamaica, a prospective randomized study was carried out on 73 patients who underwent elective surgery. There were 42 cannabis users and 31 non-users. The cannabis users required significantly higher supplemental Demerol (meperidine) doses after surgery.  (J Psychoactive Drugs. 2013 Jul-Aug;45(3):227-32)

As discussed previously, after surgery physicians should remain vigilant to cannabis withdrawal symptoms in chronic cannabis users.

AS THE PATIENT, WHAT SHOULD YOU DO?

If you are the patient, when you present for surgery and anesthesia, will the nurses and doctors specifically ask you if you use cannabis or marijuana? Perhaps not. Current routine preoperative evaluation usually includes the question “Do you use any street drugs?” Nearly 100% of patients answer “No.” As discussed above, 22 million people in the U.S. use cannabis, yet very few will admit this on a preoperative questionnaire. Why? I believe most people do not want to be identified as using a drug which is still deemed illegal by the federal government. Most people do not want “marijuana user” to be part of their medical history problem list. They may fear the moniker of “marijuana user” following them onto some digital database, damning them in future insurance applications or legal actions. I believe most people do not believe identifying themselves as cannabis users makes any difference to their doctors and nurses. Per the discussions above, there are important reasons for an anesthesiologist to know if you use cannabis. But if you are a cannabis user, will you reveal the truth?

Cannabis is currently legal and commonly used in multiple states in America. The drug has specific effects on the brain, heart, and lungs which can affect your health during or after an anesthetic. 

For your own welfare, be honest and discuss your cannabis use with your anesthesiologist prior to surgery. 



*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ROBOT SURGERY . . . A VIEW FROM THE ANESTHESIOLOGY COCKPIT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Almost every anesthesiologist in America has experience with surgery using the da Vinci robot system. Is robot surgery a miraculous futuristic device that advances surgery to a higher plain? Or is it an expensive gadget for hospitals and surgeons to market and attract potential patients?

To answer these questions let’s first review some history. Until the 1990s most abdominal surgery was done through an open incision. To remove a gall bladder or an appendix, the surgeon made an incision into the abdomen, inserted his hands and instruments, cut out the tissue under direct vision, and then sewed the abdomen together again. A gall bladder incision might be five inches long. An appendix incision might be 2½ inches long. The surgical times were short—a private practice surgeon could complete an open gall bladder surgery in 30 – 40 minutes, or an open appendectomy in 20 – 25 minutes. A disadvantage was that the patient had pain from the incision, and the recovery time was days to weeks before the patient could return to normal activities.

Laparoscopy

Enter laparoscopy, a true major advance in surgery. The first video laparoscopic gall bladder resection (cholecystectomy)  was performed in 1987. A quantum advance occurred in the 1990s when video laparoscopic surgery became widespread. Laparoscopy required only small incisions in the abdomen, through which slender instruments were inserted. The interior of the abdomen was insufflated (blown up like a balloon) and one of the slender instruments held a camera. The image of the inside of the abdomen was visualized on a video screen while the surgeon manipulated instruments seen on that two-dimensional view. My colleague and Stanford clinical faculty member Camran Nezhat, the author of multiple textbooks on the topic, was a leading pioneer in the development of video laparoscopy. Laparoscopic surgery took longer than open surgery—a laparoscopic gall bladder or laparoscopic appendectomy usually lasted about twice as long as an open surgery—but the significant advantage was the lack of a painful open incision, which led to significantly less postoperative pain and a shorter postoperative recovery time. Many patients could be discharged the same day as their surgery, and most returned to normal activities sooner than if they had open surgery.  Video laparoscopy surgical equipment and the longer operating times were increased expenses, but the advantages of outpatient surgery and quicker recovery made the new technique the standard of care for many surgeries within the abdomen.

Anesthesia for laparoscopy was similar to the anesthetic for open abdominal surgery. Patients were asleep and paralyzed, and their breathing is done by a ventilator. The laparoscopy patient had a tense abdomen—it was essentially a balloon full of carbon dioxide—that usually required smaller volume breaths from the ventilator, but in most ways the two anesthetics were alike. 

da Vinci robot

Using the da Vinci robot for abdominal surgery is an extension of laparoscopic techniques, but the instruments are connected to robot arms rather than held by surgeons. The da Vinci surgeon sits at a console in the corner of the operating room, with his back to the patient and his face in a 3-D viewer, which gives a high-definition, magnified view of the surgical site. Assistant surgeon(s) and techs stand at the patient’s side, watch the surgery on video screens, and assist during the operation. The surgeon manipulates handles on the da Vinci device, which move the instruments within the patient’s body. The three-dimensional view within the abdomen is superior to a two-dimensional view on a video screen. I’ve personally had the opportunity to look through the 3-D viewer into the abdomen, and it’s a remarkable phenomenon. It’s as if you were a microscopic insect inside the patient, and looking around at the intestines, liver, arteries and veins that surround you. Another touted advantage of the robot is the ability for the surgeon to make precise movements via the robot’s mechanism. 

surgeon (at left) with his back to the operating room table and patient

The non-profit SRI (Stanford Research Institute) developed the early da Vinci system in the late 1980s with funding from the National Institutes of Health. The system was thought to have promise in allowing surgeons to operate remotely on surgeons wounded on battlefields. (When you read on you’ll realize how improbable this application would be.) 

In the 1990s, John Freund negotiated an option to acquire SRI’s intellectual property, and started a company named Intuitive Surgical Devices, Inc. The company’s prototype was ready for clinical testing in 1997. In 2000 the Federal Drug Administration (FDA) approved use of the da Vinci Surgical System for laparoscopic surgery, and Intuitive raised $46 million in an initial public offering. One year later the FDA approved use of the system for prostate surgery. In subsequent years the FDA approved the system for thoracoscopic surgery, cardiac procedures, and gynecologic procedures.

The da Vinci Surgical System spread slowly at first. Sixty hospitals in the United States used the system in 2002, but this number grew to 431 hospitals by 2014. Approximately 1,500 United States  hospitals now have the da Vinci Surgical System, according to Modern Healthcare. The system costs approximately $2 million, and there are costs for maintenance and for the non-reusable instruments held by the arms during surgery. A robotic surgery generally costs anywhere from $3,000 to $6,000 more than traditional laparoscopic surgery.  In 2016 Healthline wrote, “To justify its price — roughly 10 times that of a traditional laparoscopic surgery — da Vinci would need to do a lot better overall.” 

For abdominal surgery, use of the robot is as follows: The assembled robot is draped in sterile plastic and positioned distant to the patient, while the anesthesiologist induces general anesthesia and inserts an endotracheal breathing tube into the patient’s windpipe. The circulating nurse then preps the patient’s abdomen with antiseptic solution and the scrub tech surrounds the patient’s abdomen with sterile drapes. The surgeons insert a trocar to inflate the abdomen with carbon dioxide gas, and then make the incisions required for the insertion of the instruments into the patient’s body. When the robot is finally moved in over the patient and the instruments are connected to the robot arms, the anesthesiologist has limited access to the patient’s head, neck, and chest, due to the size, breadth and girth of the robot. The anesthesiologist’s station is within 4 – 6 feet of the patient’s head. At least one surgical assistant and one scrub tech stand at the patient’s side throughout the surgery. At a university teaching hospital, this number could be significantly greater. 

anesthesiologist (at right) during robotic surgery

The anesthetic for robotic abdominal surgery is no different than the technique for laparoscopy, except for one important feature. Robotic surgeries take longer than the same surgery done via traditional laparoscopy—a fact that makes most robotic procedures tedious for anesthesia personnel. Robot surgeries take up more of an operating room’s most precious resource—time. Hospital operating room resources—nurses, techs, orderlies, and administrative staff—are paid by the hour. Longer surgeries mean longer staffing hours and greater expense.

Do anesthesiologists prefer, enjoy, or feel challenged by these robotic surgery cases? In a word—no. There is little that is unique or challenging after one has done a few of these cases. In general anesthesiologists prefer surgery that is fast, efficient, safe, and effective.

1248 papers on “robot surgery” in 2019 to date

What does the world’s medical literature have to say about robotic surgery? When I entered the keywords “robot surgery, 2019” into the Pubmed search engine today, I discovered 1,248 papers published on robot surgery in the first 11 months of 2019. This is an exceptionally large number of publications. Robot surgery is a hot topic in the community of academic surgery. Multiple surgical specialties, including general, gynecology, cardiac, thoracic, cancer, and head and neck surgeons, are writing about their experiences with the da Vinci robot. You’ll find individual case reports, series of cases, meta-analyses, and comparison of current outcomes/complications to historical controls. 

Pertinent studies include the following:

Gall bladder surgery: In a 2019 study in the American Journal of Surgery, a national databank review of gall bladder resections (cholecystectomy) showed that the direct cost of robotic cholecystectomy was significantly higher than laparoscopic cholecystectomy, with no added benefit. The conclusion of the study was that “routine use of the robotic platform for cholecystectomy should be discouraged until costs are reduced.” 

Prostatectomy: A randomized controlled trial compared robotic surgery with open surgery for patients with localized prostate cancer, and showed that both robotic and open surgery achieved similar results in terms of key quality of life indicators at three months. 

Kidney surgery: A study published in the Journal of the American Medical Association (JAMA) showed the percentage of radical nephrectomies using the robot increased from 1.5% in 2003 to 27.0% in 2015. There were no significant differences between robot-assisted vs laparoscopic radical nephrectomy in major postoperative complications. The robot-assisted procedures had both longer operating times and higher direct hospital costs. 

Gynecology: The mortality in benign minimally invasive gynecologic surgery was low, and the mortality for laparoscopic vs robotic approaches was similar. 

Rectal surgery: JAMA publication showed that for patients with rectal carcinoma, robot-assisted laparoscopic surgery did not significantly reduce the risk of conversion to open laparotomy, when compared with conventional laparoscopic surgery. These findings suggested that robot-assisted laparoscopic surgery did not confer an advantage in rectal cancer resection. 

What will be the future direction of robotic surgery? Currently Intuitive Surgical and the da Vinci Surgical System have a monopoly. No other company has any significant market share. In 2017 Intuitive Surgical had $3.12 billion in total revenue, with a net income of $660 million. Their stock price is currently $549/share, up 300% from $178/share in January of 2016. The volume of robotic surgeries continues despite a paucity of published data that robotic surgery is any better. The cost of these procedures is high, and most hospitals are losing money on robot cases. Hospital executives seem to see the robot as a loss leader. No administrator wants to lead an old-fashioned hospital that doesn’t have a robot, while their competitor hospital across town is advertising robotic surgery on the side of buses traveling down Main Street.

Robotic surgery is a technology looking for a reason to exist, and a solution looking for a problem. Robotic surgery is not nearly the advance that laparoscopy was. Technology is pervasive and is changing healthcare. Enter any hospital today and you’ll see doctors and nurses peering into computer screens. They are pointing, clicking, entering information, and typing in findings on their patients. Where are the patients? Often they’re looking at the backs of these same doctors and nurses who are sitting at the computer terminals. Medicine, as I was taught in the 20th Century, was a profession dedicated to caring for and healing people. Modern medicine is increasingly pushing the hands of doctors and nurses toward keyboards and gadgets.

a doctor charting on electronic medical records
a da Vinci surgeon at work

The surgeon with his face in a robot console’s 3-D viewer, while his back is to his patient, is a powerful metaphor for the technologic trend in medical care. I believe patients want to see our faces, and we need to look into their eyes. I doubt that great American physicians from our past—William Osler, Harvey Cushing, the Mayo Brothers, or Norm Shumway—would be fans of robotic surgery.


*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?




LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ANESTHESIOLOGISTS, DON’T BE AFRAID TO CUT INTO A PATIENT’S NECK

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re an anesthesiologist. You’ve lost the airway on your obese anesthetized gynecology patient, your multiple attempts to intubate the trachea have failed, you cannot mask ventilate the patient, and insertion of a laryngeal mask airway did not help. Your patient’s skin and lips are purple and you are terrified. What do you do?

  1. Call a surgeon stat to do a tracheostomy
  2. Ask the gynecologist to cut an airway into the patient’s neck
  3. Keep trying to intubate the trachea yourself
  4. Insert a needle into the cricothyroid membrane, and begin jet ventilation
  5. Cut an airway into the neck yourself.

A study in the October 2019 issue of Anesthesiology showed that when a “can’t intubate, can’t oxygenate” crisis occurred, there were delays finding someone prepared to cut a surgical airway into the front of the neck in time to save the patient’s life. The study looked at malpractice closed claims and found: 1) Outcomes remained poor in malpractice closed claims related to difficult tracheal intubation; 2) The incidence of brain damage or death at induction of anesthesia was 5.5 times greater in the years 2000 – 2012 than in the years 1993 – 1999; 3) Inadequate planning and judgement errors contributed to the bad outcomes; and 4) Delays in placing a surgical airway during “can’t intubate, can’t oxygenate” emergencies were a major issue.

A closed claims study is akin to a large mortality and morbidity (M & M) conference. A closed claims study tells us which complications led to malpractice settlements. Each malpractice closed claim marks a negligent practice which caused an adverse outcome.

I’d like to focus on one specific aspect of this important study: anesthesiologists need to lose their reluctance to cut a surgical airway into a patient’s neck in a “can’t intubate, can’t oxygenate” airway emergency. A surgical airway is an invasive airway via the front of the patient’s neck into their trachea. Waiting for a surgeon to cut a surgical airway, or fearing to cut a surgical airway yourself, could cost your patient his or her life. Delay or failure in placing a surgical airway was described in 10 of the specific 12 cases listed in the Appendix of this Anesthesiology closed claims study, as follows:

Case 1: “Eventually a surgical airway was performed after the patient arrested.”

Case 2: “A surgical airway was performed after the patient arrested.”

Case 3: “The surgeon was called to the room to perform an emergency surgical airway, but there were not any instruments available in the room. The patient sustained anoxic brain injury and later died.”

Case 4: “Ventilation was difficult and the patient arrested. The surgeon arrived and attempted to perform an emergency surgical airway, at which time the anesthesiologist successfully intubated the patient’s trachea as the hematoma was drained. The patient was resuscitated but later died of anoxic brain damage.”

Case 5: “The anesthesiologist asked the surgeon to perform an emergency cricothyrotomy. However, the surgeon insisted that an electrocautery to be set up first. Nine minutes after cardiac arrest, a surgical airway was secured by the surgeon. The patient was resuscitated but remained in a persistent vegetative state.”

Case 6: “An ear-nose-throat surgeon was called to perform a surgical airway, who suggested a supraglottic airway be inserted instead. After the supraglottic airway was placed, the patient became impossible to ventilate and went into cardiac arrest. The surgical airway was placed with some difficulty. The patient sustained severe hypoxic brain and died.”

Case 8: “The surgeon performed a cricothyrotomy after the patient had marked bradycardia and hypotension.”

Case 10: “A surgeon was called to place a cricothyrotomy. The patient was resuscitated but had severe anoxic brain damage and died.”

Case 11: “Multiple intubation attempts and supraglottic airway insertion were made for more than an hour before a surgical airway was performed. At that time, the patient was asystolic and had a tension pneumothorax. The patient died.”

Case 12: “The patient had a hypoxic cardiac arrest. The surgeon arrived 22 min after induction and secured an emergency surgical airway. The patient was resuscitated but sustained hypoxic brain damage requiring assistance with activities of daily living.”

It’s tragic that 10 of the 12 listed cases involved delayed or failed front of neck access to the airway. In an editorial in the same issue of Anesthesiology, authors Takashi and Hillman wrote, “Decision to provide a surgical airway was frequently delayed by repeated attempts at tracheal intubation, anesthesia care providers being hesitant to initiate surgical procedures, or surgeons being reluctant to perform tracheostomy or simply not available.”

The American Society of Anesthesiologists Difficult Airway Algorithm, shown below, clearly describes invasive airway (i.e. surgical airway) access via the front of the neck when attempts to intubate the trachea and oxygenate the patient both fail.

“Can’t intubate, can’t oxygenate” events are rare, but they do occur with a published incidence of 1 in 50,000 anesthetics, per the fourth national audit project in the United Kingdom.  

The brain can be permanently damaged following episodes in which the brain sees no oxygen for five minutes or longer.

Approaches to front of neck access include either cannula techniques or surgical techniques, with significant differences:

Cannula Technique:

This involves inserting a large bore IV catheter through the cricothyroid membrane.

Because the lumen of a 14-gauge IV catheter is small, ventilation requires a high-pressure jet oxygen delivery system. In a publication from 2016, the failure rate with cannula techniques was 42% in “can’t intubate, can’t oxygenate” emergencies. Failure can occur because of kinking, malposition, or displacement of the needle/cannula. Because of the high failure rates, use of the cannula technique is discouraged.

Surgical Technique:

Most surgeons are trained to perform tracheostomies during their residencies, but when a “can’t intubate, can’t oxygenate” emergency occurs, tracheostomy is not the preferred procedure.

Tracheostomy – tube is inserted between tracheal rings

  Cricothyroidotomy, a technique which is faster and requires less surgical skill, can be performed by anesthesiologists, and is the preferred procedure.

In a cricothyroidotomy, the cricothyroid membrane is divided by a surgical incision made with a wide scalpel (#10 scalpel).

a cricothyrotomy is inserted in the cricothyroid space, cephalic to the trachea

Using the scalpel, bougie, tube (SBT) technique,

a bougie is inserted into the trachea through the incision. A lubricated 6.0 mm cuffed endotracheal tube is advanced over the bougie into the trachea, and the bougie is removed as demonstrated in this video link: 

This technique has been specifically endorsed in the United Kingdom in the algorithm from their Difficult Airway Society.  The British Difficult Airway Society guideline for a Can’t Intubate, Can’t Oxygenate crisis follows: 

How to train anesthesiologists to perform SBT cricothyroidotomy:

Are anesthesiologists trained to perform cricothyroidotomy? Not really. Even though the procedure is the last safety valve on the Difficult Airway Algorithm, most anesthesiologists have minimal or no experience in this life-saving procedure. How can we train anesthesiologists to perform cricothyroidotomies? 

In my residency in the 1980s we were trained to do cricothyroid injections of cocaine prior to awake fiberoptic intubation procedures. Each resident performed dozens of these injections, and I became extremely comfortable locating and piercing the cricothyroid membrane with a needle. In 35 years and 25,000+ anesthetics, I’ve never needed to place a surgical airway through that same membrane, but I feel confident I could do so with the scalpel, bougie, tube technique. 

The problem is that most anesthesiologists have never had to perform this front of neck access procedure on a patient. The stakes are high, because there is little time for failure. After several minutes of “can’t intubate, can’t oxygenate,” someone needs to take a scalpel to the cricothyroid membrane. That someone can and often should be the anesthesiologist.

In the October 2013 American Society of Anesthesiologists Monitor we read, “Perhaps the most important problem encountered in “can’t intubate, can’t oxygenate”  is a delay in recognition or institution of emergency airway management. . . . While someone clearly needs to make the decision to obtain a surgical airway, both the surgeons and the anesthesiologist may feel uncomfortable in this role. Retrospective studies, including closed claims analysis, demonstrate that most patients are already in cardiac arrest before emergency invasive airway attempts are performed. While decisive and timely action is clearly needed, the decision to pursue a surgical airway is not an easy one; . . . In fact, there is little legal risk from a surgical airway attempt – no matter how messy – if the patient survives, but enormous liability if the procedure is not attempted.”

In a study from Great Britain, 104 anaesthetists received a structured training session on performing cricothyrotomy. These anaesthetists then took part individually in a simulated “can’t intubate, can’t oxygenate” event using simulation and airway models, to evaluate how well they could perform front‐of‐neck access techniques. First‐pass tracheal tube placement was obtained in 101 out of the 104 cricothyroidotomies (p = 0.31). They concluded that anaesthetists can be trained to perform surgical front of neck access to an acceptable level of competence and speed via simulator training

What needs to happen? Anesthesiology residents need to be trained to do front of neck access, and they need to be trained not to delay if the procedure is indicated. This training needs to be a requirement for all anesthesia professionals. Mid-career anesthesiologists pay for weekend Continuing Medical Education courses on subjects such as ultrasound-directed regional blocks or transesphogeal echocardiography. While these topics are important, they are not life-saving skills such as front of neck access. Anesthesiologists in training, practicing anesthesiologists, and Certified Registered Nurse Anesthetists (CRNAs) must receive hands-on education on performing front of neck access, as well as the reasoning behind not delaying the procedure. 

You’re an anesthesiologist or a CRNA. What should you do now?

  1. Familiarize yourself with the anatomy of the cricothyroid membrane on each of your patients.
  2. Have a scalpel, bougie, tube kit containing a #10 scalpel, a bougie, and a #6 cuffed endotracheal tube included with each difficult airway cart at each facility you anesthetize at.
  3. I now carry a scalpel, bougie, tube kit in my briefcase which I take with me every day at work. In the current model of private practice in California, where we work at multiple different freestanding surgery centers and surgeon offices, this is a reliable means to assure that I have front of neck access equipment with me wherever I anesthetize patients.
  4. Review and rehearse the anatomy and skills necessary to perform front of neck surgical cricothyroidotomy.
  5. Work to avoid “can’t intubate, can’t oxygenate” events. Evaluate each airway prior to surgery. If a significant concern exists regarding a difficult intubation, a difficult mask ventilation, or difficult front of neck access, use your judgment and perform an awake intubation. Securing an airway prior to anesthesia induction is a reliable way to avoid “can’t intubate, can’t oxygenate” disasters.

The closed claims study on difficult tracheal intubation in the October 2019 issue of Anesthesiology should serve as a bellwether for our profession. The practices of waiting for surgeons to arrive to do front of neck access, or of anesthesiologists delaying front of neck access in a “can’t intubate, can’t oxygenate” emergency must cease. Emergency front of neck access must be a core skill that all anesthesiologists are both willing and able to perform when a patient is turning purple before their eyes. 

We owe it to our patients to be ready to save their lives.


*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?




LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

THE ELECTRIC CHAIR AND ANESTHESIOLOGY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

What do the electric chair and anesthesiology have in common? The pertinent Venn diagram includes capital punishment, death by lethal injection, electrocution, and anesthesiology ethics. Anesthesiologists inject intravenous drugs to keep people alive during surgery. No anesthesiologist would be involved in lethal injection procedures or in recommending methods for killing another human being. Lethal injection requires someone to administer anesthetic medications in high concentrations without supporting breathing or cardiac function. On August 15, 2019 the state of Tennessee executed Steven West by electrocution for raping a 15-year-old girl and then killing both her and her mother in 1986. 

When given the option of lethal injection or the electric chair, West chose the chair. Uncertainties regarding current lethal injection drug regimens may have played a part in a recent inmate execution via the electric chair. Let’s look at the issues.

lethal injection table

Capital punishment by lethal injection is a relatively recent development. In 1982 Texas became the first state in the United States to use lethal injection to carry out capital punishment. The three intravenous drugs usually involved in lethal injection were (1) sodium thiopental, a barbiturate drug that induces sleep, (2) pancuronium, a drug that paralyzes all muscles, making movement and breathing impossible, and (3) potassium chloride, a drug that induces ventricular fibrillation of the heart, causing cardiac arrest.  

A barrier to lethal injection arose in January 2011 asHospira Corporation, the sole manufacturer of sodium thiopental, announced that they would stop manufacturing the drug. Hospira had planned to shift production of thiopental from the United States to Italy, but theEuropean Union also banned the export of thiopental for use in lethal injection.

Several death-row inmates have brought courtroom challenges claiming lethal injection violated the ban on “cruel and unusual punishment” found in the Eighth Amendment to the United States Constitution. There are drug regimen factors and technical factors regarding lethal injection problems. Regarding drug regimen factors, alternative sedative drugs such as midazolam, fentanyl, Valium, or hydromorphone have been considered to replace sodium thiopental, but there have been legal challenges as to whether inmates are indeed unconscious under these newer lethal injection recipes. The potential of cruel and unusual punishment can occur if the sedative combination does not reliably induce sleep, so that the individual to be executed is awake and aware when the paralyzing drug freezes all muscular activity. About ten years ago I was contacted by the Deputy Attorney General of a Southern state, who asked me if I would testify that a massive overdose of a single-drug intravenous anesthetic would reliably render an individual unconscious and anesthetized. The Deputy AG sent me the position paper authored by the opposition’s expert for the abolitionist argument. That paper was a massive treatise authored by an MD-PhD anesthesiologist-pharmacologist. The paper was approximately 80 pages long with hundreds of references. The abolitionist movement against capital punishment is strong. I declined to testify in support of the state’s lethal injection protocol. 

There are also technical factors involved with intravenous injection. A 100-fold overdose of a sedative should render an inmate asleep, correct? Not necessarily. What if the intravenous catheter or needle is incorrectly positioned, and the drug does not enter the vein in a reliable fashion? Is this a possibility? It is. If the catheter is not inserted by a trained medical professional it’s possible that the catheter will be outside of the vein, and the intended medications will spill into the soft tissues of the arm. The intended site of action of intravenous anesthetic drugs is the brain. To reach the brain the drug must be correctly delivered into a vein. Cases in which failure to establish or maintain intravenous access have led to executions lasting up to 90 minutes before the execution was complete. Thus the role of a medical professional to insert the intravenous catheter and administer the lethal injection is critical. The dilemma is that medical professionals are trained to save lives, not to execute people. The Hippocratic Oath clearly states that physicians must “do no harm” to their patients.

The American Medical Association states, “A physician, as a member of a profession dedicated to preserving life when there is hope of doing so, should not be a participant in a legally authorized execution.”

The American Society of Anesthesiologists states, “Although lethal injection mimics certain technical aspects of the practice of anesthesia, capital punishment in any form is not the practice of medicine . . . The American Society of Anesthesiologists continues to agree with the position of the American Medical Association on physician involvement in capital punishment. The American Society of Anesthesiologists strongly discourages participation by anesthesiologists in executions.”

The American Nurses Association states, “The American Nurses Association is strongly opposed to nurse participation in capital punishment. Participation in executions is viewed as contrary to the fundamental goals and ethical traditions of the profession.”

Without a trained medical professional to administer the intravenous catheter and inject the drugs in a reliable fashion, the practice of lethal injection has stalled in the State of California. Since 2006 there have been no death penalty executions by lethal injection in the state of California. In February 2006, U.S. District Court Judge Jeremy D. Fogel blocked the execution of a convicted murderer because of concerns that if the three-drug lethal injection combination was administered incorrectly it could lead to suffering for the condemned, and potential cruel and unusual punishment. This led to a moratorium of capital punishment in California, as the state was unable to obtain the services of a licensed medical professional to carry out an execution. There are currently over 700 inmates on death row in California.

Death by electrocution reentered the news this month. In the electrocution method, the condemned inmate is strapped to a wooden chair and high levels of electric current are passed through electrodes attached to the head and one leg. Lethal injection has been considered a more humane method of capital punishment than the electric chair. Tennessee provided inmates with a choice of the electric chair or lethal injection, and inmate Steven West chose the electric chair. Will electrocution replace lethal injection as the most common form of capital punishment in the United States? There is no current trend to support this. In 2018 there were 23 capital punishment executions by lethal injection, and only 2 by the electric chair. In 2019 there have been 10 capital punishment executions by lethal injection, and only one by electrocution.

Challenges to lethal injection are ongoing, and are in the domain of lawyers and courtrooms. If current lethal injection methods are ruled cruel and inhumane or if they are ruled unconstitutional, and states cling to the goal of capital punishment, we may see more headlines like this month’s electric chair execution from Tennessee. 

For previous columns regarding lethal injection procedures, see

JANUARY 2014 LETHAL INJECTION WITH MIDAZOLAM AND HYDROMORPHONE . . AN ANESTHESIOLOGIST’S OPINION, and

APRIL 2014 LETHAL INJECTION IN OKLAHOMA . . . AN ANESTHESIOLOGIST’S VIEW.

LETHAL EXECUTION USING FENTANYL . . . AN ANESTHESIOLOGIST’S OPINION https://wordpress.com/post/theanesthesiaconsultant.com/2738

APRIL 2014 LETHAL INJECTION IN OKLAHOMA – AN ANESTHESIOLOGIST’S VIEW

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

DO DOCTORS EVER RIDE IN AMBULANCES?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Do doctors ever ride in ambulances? Ambulances are a territory usually staffed by Emergency Medical Technician (EMT) personnel, but yes, in certain emergencies doctors do ride in ambulances.

In the process of doing 30,000 anesthetics, I’ve taken several rides in the back of an ambulance with my patients. Why? Sixty-six percent of surgeries in the United States take place as an outpatient, and many of these surgeries are performed at freestanding facilities distant from hospitals. When a patient decompensates emergently at a freestanding ambulatory surgery center or in an operating room at a doctor’s office, the facility will call for an ambulance staffed with EMT personnel. If the patient is unstable, a physician, usually an anesthesiologist, will need to accompany the patient and the EMTs to the hospital emergency room.

The following are examples of cases in which I or my colleagues have ridden in ambulances from freestanding surgery centers to the Stanford Emergency Room and Stanford Hospital in Palo Alto, California:

  1. A 3-year-old girl developed negative pressure pulmonary edema with plummeting pulse oximetry readings 10 minutes after a tonsillectomy. Her breathing tube had been removed, but she developed upper airway obstruction in the Post Anesthesia Care Unit (PACU) and needed urgent reintubation. She was extubated one hour later at the surgery center after treatment with diuretic, oxygen, and ventilation via the tube. She was then transferred to the hospital for overnight observation of her airway, pulmonary function, and oxygenation. The duty in the ambulance included monitoring her oxygenation, her airway and her breathing.  The presence of an anesthesiologist was reassuring to the stunned parents who had no expectation of a complication after a common surgery such as a tonsillectomy. The patient was discharged the following day without further complication.
  2. A 75-year-old female underwent lateral epicondylitis release surgery on her right elbow, and developed acute pulmonary edema with failing oxygen saturation levels at the conclusion of surgery. The patient had a past history of aortic stenosis, and had her aortic valve replaced with a small metal valve two years earlier. She was active, although she did experience mild shortness of breath on walking stairs. She was obese with a BMI=35. She received a general anesthetic with an endotracheal tube. The surgery was simple and the surgical duration was only 17 minutes. When the anesthetics were discontinued at the end of surgery, her blood pressure climbed to markedly high levels, and her heart failed to pump effectively against the elevated blood pressure. Pulmonary edema fluid filled her lungs and filled the hoses of the anesthesia machine. Her oxygenation returned to normal after titrating her BP down with a nitroprusside drip, and her blood pressure needed to be monitored continuously by an arterial line inserted into her radial artery at the wrist. The duty in the ambulance included ventilating the patient via the Ambu bag, keeping the patient sedated, watching the arterial line pressure continuously, and titrating the level of the vasodilating nitroprusside infusion. She remained intubated overnight in the hospital and was extubated the next day. She survived without any further complication and did not have a myocardial infarction. 
  3. A healthy 45-year-old woman developed acute hypotension 6 hours following a laparoscopic hysterectomy. The surgery was done in a small community hospital where there was no ICU, blood bank, or emergency room. The patient had multiple low-normal blood pressure readings over the first 5 hours postoperatively, and was being observed by the nursing staff. At hour 6 her blood pressure dropped to a dangerously low level and her hematocrit level on a portable device came back as 9.9%, indicative of a severe acute anemia. She was transferred urgently to the hospital. The duty in the ambulance included resuscitation with IV fluids, and observation of her airway and breathing as her level of consciousness dropped. She required repeat surgery at the hospital to control the intraabdominal bleeding, as well as preoperative transfusion to treat her anemia and hypovolemic shock.

These three cases are examples of surgical patients who became acutely ill miles from the nearest hospital. Each case illustrates how a failure of airway, breathing, or circulation can lead to an emergency. The problem in the first case was airway obstruction leading to pulmonary edema. The problem in the second case was lungs filled with fluid which made normal breathing impossible. The problem in the third case was bleeding which caused the normal circulation of blood within the body to be inadequate.

Why did an anesthesiologist travel with each patient? 

  1. Each patient was extremely sick and required acute monitoring and treatment, and medical decisions needed to be made during the trip to the hospital. EMTs are trained in resuscitation, but EMT training is only a fraction of anesthesiologist training. Having the anesthesiologist who was already resuscitating the patient continue to care for the patient en route to the hospital was the wisest course.
  2. Acute medical emergencies are defined by resuscitation of Airway-Breathing-Circulation. Anesthesiologists are the physicians with the highest level of airway skills, as well they are experts in acute resuscitation. If any physician is to travel with the patient, an anesthesiologist is the wisest choice to manage Airway-Breathing-Circulation in ongoing emergencies.
  3. Medical-legal risk is minimized if the most highly trained physician involved in the case continues to manage the case. The handoff or transfer of medical care from one practitioner to another is a high risk time for errors. The anesthesiologist  is responsible for the safety and care of his or her patient, and the highest continuity of care occurs when the anesthesiologist who managed the emergency attends to the patient during the transfer to the hospital.

I’ve been the Medical Director at a freestanding surgery center near Stanford for the past 17 years. Surgery centers strive to minimize the potential of emergencies in outpatient surgeries. Medical Directors work to limit the types of cases performed in a freestanding surgery center. This includes avoiding procedures that cause major pain, bleeding, or disruption of physiology. Typical surgeries performed in freestanding centers include:

  • Arthroscopic orthopedic surgeries
  • Simple ear nose and throat surgeries
  • GI endoscopies and colonoscopies
  • Simple general surgery procedures
  • Simple ophthalmologic surgeries
  • Plastic surgeries

Surgery centers also strive to operate on healthier patients who lack major comorbidities. Surgery centers are reluctant to approve general anesthesia in a freestanding outpatient setting to patients who have: 

  • Severe sleep apnea
  • Severe cardiac problems such as shortness of breath or ongoing chest pain
  • Severe morbid obesity or super-morbid obesity
  • Renal dialysis
  • Severe abnormal airways
  • Markedly abnormal blood pressures, heart rates, or blood oxygen levels

Regarding ambulance rides, no one is going to advocate that MDs take over EMTs roles regarding riding in ambulances. But when surgery or anesthesia leads to an acute event at a site distant from a hospital, the anesthesiologist involved in that patient’s care is responsible for that patient’s safety and for the ongoing care and resuscitation. The anesthesiologist will be riding in the ambulance and doing what anesthesiologists routinely do–managing Airway-Breathing-Circulation.

If any anesthesia professionals have stories regarding their own emergency ambulance rides resuscitating patients, I invite you to share them with my readers. 

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

INTRAVENOUS CAFFEINE FOLLOWING GENERAL ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Data exists that intravenous caffeine may be effective in assisting the awakening of patients following general anesthesia. Will future anesthesiologists routinely use caffeine to wake patients after surgery? Will a shot of IV espresso be the stimulus for you to return to consciousness after your general anesthetic? Perhaps. 

Caffeine is the most popular and commonly used psychoactive drug in the world.In 2014 85% of American adults consumed some form of caffeine daily, 164 mg/person/day on the average.1A cup of coffee contains from 80 to 120 mg of caffeine.A 12-ounce cola contains from 30 to 50 mg. Currently intravenous caffeine is marketed as a three milliliter ampule that contains only 20 mg/ml of caffeine, or 60 mg total. Multiple commercial energy drinks include significantly higher doses of caffeine per the chart below

The safety of caffeine has been well established, and the energy drink market is expected to reach 83.4 billion dollars by 2024.

The market share for leading energy drink brands is shown below.

 

Intravenous caffeine post-surgery is not a new idea. When I first went into the private practice of anesthesia in 1986, gray-haired anesthesiologists at our community hospital in Fremont, California occasionally injected 100 mg of caffeine into a patient’s IV after a surgery if the patient was slow to wake. “It helps a lot!” my fellow anesthesiologists reported. I tried it on several of my patients who had prolonged awakening after general anesthesia. It seemed to speed the time to eye opening, but I had no metrics or data to evaluate whether this was a bona fide finding. Now we have more information.

The Department of Anesthesia and Critical Care at my alma mater the University of Chicago School of Medicine published two landmark papers on IV caffeine and anesthesia awakening. The first studies were conducted on rats.2Researchers placed rats in a gas-tight anesthesia box where the animals were exposed to 3% isoflurane until they became unconscious. The rats were then removed from the box, 2% isoflurane was delivered to them via an anesthesia nose cone, an intravenous line was inserted into their tails, and the rats were returned to the anesthesia box. After a total of 45 minutes of exposure to isoflurane, either IV caffeine 25 mg/kg or a placebo was injected into the IV. Anesthesia was terminated 5 minutes later and the rats were placed on their backs on a table. The recovery time was the time from when the animals were removed from the anesthesia box until they stood with four paws on the table. Rats who received IV caffeine doses awakened more quickly (in as quick as only 40% of the time) compared to those who received placebo.

In a second experiment they exposed rats to propofol anesthesia. The researchers placed the rats in a gas-tight anesthesia box where they were exposed to 3% isoflurane until they became unconscious. The rats were then removed from the box, an intravenous line was inserted into their tails, and they were allowed to wake up. A bolus of 4 mg/kg propofol was injected into the IV along with either 25 mg/kg caffeine or a placebo. Those treated with caffeine woke within an average of 6 minutes compared to 9.8 minutes for controls. There were no vital signs differences between the groups treated with caffeine or placebo in either rat experiment.

The Chicago researchers followed the rat studies with a randomized controlled study on human volunteers.3Eight healthy males each underwent two general anesthetics, one with IV caffeine and one without. The induction was with IV propofol, a laryngeal mask airway (LMA) was placed, and anesthesia was continued with isoflurane for one hour. Ten minutes before the termination of each anesthetic, the subjects were randomized to receive either IV caffeine 15 mg/kg or a saline placebo. (Note that this dose approximates 1000 mg of caffeine for a 70 kg adult, a large dose.) The recovery time was charted as the time from when the isoflurane was discontinued until the time the patient first gagged on the LMA. The average recovery time in the caffeine group was 9.6 minutes versus 16.5 minutes in the control group (P=0.002), a 42% reduction in time. Once again, there were no vital signs differences between the subjects treated with caffeine or with placebo.

Why does caffeine accelerate awakening from anesthesia? The Chicago researchers cited two mechanisms: caffeine acts by inhibiting phosphodiesterase to elevate intracellular cAMP, and it also antagonizes adenosine receptors A1and A2A. Caffeine reversibly blocks the action of adenosine on its receptors and consequently prevents the onset of drowsiness induced by adenosine.

Currently the only medical uses for caffeine are to treat neonatal apnea and to treat migraine or postdural puncture spinal headaches. Despite the fact that caffeine is considered safe,caffeine overdose can result in a central nervous system overstimulation called caffeine intoxication which typically occurs only after ingestion of large amounts of caffeine, (e.g. more than 400–500 mg at a time).4This is only half the dose that Chicago researchers administered in their human study. Symptoms of caffeine intoxication include restlessness, anxiety, a rambling flow of thought and speech, irritability, and irregular or rapid heartbeat.5Massive overdoses of caffeine can result in death. The LD50(lethal dose in 50% of cases) of caffeine in humans is estimated to be 150–200 mg per kilogram of body mass (i.e. 100-130 cups of coffee for a 70 kilogram adult).6

It’s too soon for caffeine use to become routine in the operating room. The Chicago researchers did not envision caffeine as a routine reversal agent for all general anesthetics. Anesthesiologists are skilled at weaning their patients from anesthetics for timely wakeups after the conclusion of most surgeries, but there are always outliers who are slow to wake. For these patients, a dose of IV caffeine may be helpful without introducing any increased risk. The Chicago researchers wrote, “the judicious use of caffeine could provide a tool to accelerate emergence in those individuals who manifest unanticipated prolonged emergence times and populations, such as the elderly, that are prone to prolonged emergence and recovery. . . . Further work is needed, and will follow, to extend these findings to other anesthetics including common IV agents like propofol, as well as demonstrating that these results are reproducible in patient populations, including females, older individuals, and those with chronic medical conditions undergoing operative procedures who receive multiple classes of pharmacologic agents in the course of a normal anesthetic.”

We may see intravenous caffeine following general anesthesia in the future for selected patients. Those private anesthesiologists I worked with in 1986 may have been correct when they injected IV caffeine into their sleepy patients after surgery and judged that “It helps a lot!”

References:

  1. Mitchell DC, et al (January 2014). “Beverage caffeine intakes in the U.S”. Food and Chemical Toxicology. 63: 136–42.
  2. Wang Q, et al. Caffeine accelerates recovery from general anesthesia, J Neurophysiol, 2014 Mar;111(6), 1331-1340.
  3. Fong R, et al. Caffeine accelerates emergence from isoflurane anesthesia in humans, Anesthesiology. 2018 Nov;129(5):912-920.
  4. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). American Psychiatric AssociationISBN 978-0-89042-062-1.
  5.  “Caffeine (Systemic)”. MedlinePlus. 25 May 2000. 
  6.  Holmgren P, Nordén-Pettersson L, Ahlner J (January 2004). “Caffeine fatalities–four case reports”. Forensic Science International. 139 (1): 71–3.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

SURGICAL CASES IN FOREIGN LANDS—INTERPLAST

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Interplast1-750x403

International Plastic Surgery

Imagine . . . rare unrepaired surgical cases in foreign lands, coupled with surgeons in America who rarely have the opportunity to operate on such cases. A win-win situation would be to fly American medical teams overseas to help these patients. This model for plastic and reconstructive surgery was born at Stanford University Medical Center in the 1960s in an organization named Interplast. During my anesthesia training at Stanford in the 1980s I was present through the growth years of Interplast, when traveling teams were dispatched to countries around the world to perform reconstructive surgeries on cleft lip and palate patients. Interplast was founded by Donald Laub MD, who was the Chief of the Division of Plastic and Reconstructive Surgery at Stanford from 1968-1980.

220px-DRLaub

Donald Laub MD

The idea for Interplast grew from the surgical history of Antonio Victoria, a 13-year-old with cleft lip and palate deformities that made him a social outcast in his home country of Mexico. Antonio arrived at Stanford University Medical Center in 1965. Dr. Robert Chase restored the boy’s appearance with three operations. Dr. Laub witnessed Antonio’s transformation and the idea for Interplast germinated.

In 1969 Dr. Laub founded Interplast (now called ReSurge International) with a mission statement to transform lives through the art of plastic and reconstructive surgery. Dr. Laub chronicles his history on his website Many People, Many Passports. Dr. Laub was the first academic to develop and lead multidisciplinary teams on humanitarian surgical trips to developing countries. The teams included plastic surgeons, anesthesiologists, pediatricians, and nurses experienced in the care of cleft palate reconstructions. The first trip to Mexicali was financed with a mere $500 of donations. Through contact with the governments and medical authorities in four countries, initial trips were scheduled to Mexico, Guatemala, Honduras, and Nicaragua. Seven hundred and fifty patients received treatment during the first five years, and an additional 150 were transported to Stanford for reconstructions in California. Through the 1970s and 1980s Interplast made trips to multiple other countries. The teams were made up of volunteers, and the trips were financed by charity donations.

04f

Cleft lip deformity before and after reconstruction

Cleft lip and cleft palate deformities were common in Mexico and Central America, and the chances for surgical repair in the poor areas of these countries were minimal. Individuals with other deformities such as extensive burn scars were also social pariahs because of their appearance. Interplast made it a humanitarian goal to reconstruct these patients as well.

In addition to reconstructing patients, Interplast doctors educated local physicians in modern techniques. This was the medical equivalent of “give a man a fish and he eats for a day, but teach a man to fish and he will eat for a lifetime.” The opportunity to reconstruct patients with deforming diagnoses uncommon in the United States was life-changing for the American doctors as well. In the United States, the specialty of plastic surgery was seen as one concerned with enhancing the cosmetic appearance of cash-paying customers who desired a more youthful or beautiful appearance. In the third world, helping change a deformed child’s appearance was a unique emotional reward for American physicians who traveled there.

The administration of the Stanford University School of Medicine understood the value of the program. Stanford lent financial support to Interplast and financed Interplast rotations as part of the residency training programs in plastic surgery and anesthesiology. In our final year of anesthesia residency, each resident was assigned to a one week Interplast trip to perform anesthetics overseas. The week was not a vacation—we were paid during that week and the expenses of our airfare were covered by Interplast. Trip members typically lodged with members of the local community.

In 1986 I was assigned to San Pedro Sula, Honduras for my Interplast experience. Two weeks before we were to depart, our team assignment was changed to Montego Bay, Jamaica. I asked my faculty member if that was a positive change and he remarked, “You just traded the dusty streets of San Pedro for a Caribbean resort city. What do you think?”

Each Interplast anesthesia team included one faculty member and one or more resident. For my trip the anesthesia staff consisted only of myself and one Stanford attending—thus I received both an introduction to international pediatric anesthesia and one-on-one teaching from an experienced professor.

A striking difference between Interplast anesthesia and American anesthesia was the lack of sophisticated equipment overseas. Interplast members carried no narcotic medications across borders, for obvious political reasons. All postoperative pain was treated with local anesthesia injections from the surgeons (if local anesthetics were available), or by verbal reassurance from the nurses in the Post Anesthesia Recovery Unit (PACU). The PACU was often full of children screaming in pain after their palate surgeries. There are many nerve endings in the human palate, and after cleft palate reconstruction the pain is roughly equivalent to the pain of a tonsillectomy without any narcotic analgesia. It was difficult to listen to the children crying, but in time their pain would subside.

In the 1980s Interplast teams carried halothane, a potent liquid general anesthetic, as well as a halothane vaporizer to convert the drug into an inhaled gas. General anesthetics were initiated by holding a mask over a child’s face while they inhaled halothane vapor until they fell asleep. We started intravenous lines after the induction of anesthesia, but we had very few medications to inject into those IVs. Because there were dozens of cases to be done, the anesthesia attending and the anesthesia resident each did their cases alone and independently, in adjoining operating rooms. The rooms were primitive and usually had piped in oxygen, but lacked nitrous oxide availability.

Complications were rare, but their incidence was not zero. The combination of tiny patients, a paucity of medical drugs, a relatively inexperienced (i.e. not fully trained yet) anesthesia resident working alone, no ICU, no laboratory, and no emergency backup made every case an adventure. We had no complications on our trip, but there were a few anecdotes of cardiac or respiratory arrests from my colleagues who went to other countries.

As a partially-trained resident, I’d anesthetized less than 20 children in my life by the time of my Interplast trip. I was nervous during every anesthetic induction and every anesthetic wakeup. There were no American lawyers or malpractice suits to worry about in Montego Bay, but my job required me to accept responsibility for a child’s life. I’d take a child from his or her parents prior to the surgery and I didn’t want anything but a happy ending for that child, his parents, or me at the end of the day. We performed anesthetics from dawn until dusk. The lines of patients awaiting surgery were long, and each family clamored for the opportunity for their child to receive life-changing free surgeries from the American team.

Dr. Laub set the tone for Interplast. He made 159 trips and personally performed over 1500 operations overseas. He was and is a giving, confident, warm, and intellectual visionary. HIs office was decorated with a 1986 photograph of himself and President Reagan in Washington DC, marking the 1986 Private Sector Initiatives award Dr. Laub received for the creation of Interplast.In 2000 Dr. Laub was diagnosed with an aggressive intravascular central nervous system lymphoma. He survived the malignancy but retired from active clinical practice. I admire him for his surgical skills, entrepreneurial skills and positive attitude. No matter what difficulties arose in one’s life, Dr. Laub was ready to listen, quick to smile, and in closing he’d say, “May the wind always be at your back.”

Dr. Laub recently authored Second Lives, Second Chances: A Surgeon’s Stories of Transformation, a book describing his life, his founding of Interplast, and his pioneer work in trans-gender surgery. The link to the book can be found here.

I’ve continued to anesthetize children throughout my career. Anesthetizing toddlers by yourself is not like riding a bike. Once you learn to do it, the skills must be retained with frequent repetition or else you run the risk of being unsafe. The majority of anesthesiologists cease anesthetizing children soon after residency, and choose not to build on the pediatric anesthesia skills they learned as trainees. I feel fortunate that my practice still includes anesthetizing children every week. In part I owe this to Interplast for introducing me to my early pediatric anesthesia experiences.

A medical career requires years of memorizing facts as well as tireless nights and days attending to sick patients to learn the art and science of healing. Interplast taught more—the doctors and nurses who journeyed to foreign lands to improve the lives of poor children reaped the emotional benefits of being a medical professional. Nothing in our job feels better than helping a sick child become healthier or helping a family gain a new lease on that child’s future.

Interplast has now become Resurge International (REF https://www.resurge.org). To date Resurge has performed 95,000 operations in 15 countries. The times are different, but the issues are still the same. Opportunities with Resurge are described on their website.

We’re lucky in America. Despite criticisms of our medical system and its costs, the availability of outstanding medical care is just a few miles down the road for most of us. Interplast patients were elated to benefit from American medicine abroad.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

GRADY HARP REVIEWS DOCTOR VITA. “A SPLENDID AND TIMELY NOVEL”

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

This image has an empty alt attribute; its file name is 41-ohrtMGeL._US230_.jpg

Grady Harp, Amazon Hall of Fame Top 100 Reviewer

April 20, 2019

Once again Rick Novak serves up a virulent novel that addresses an ongoing change in medicine that worries most of us – the growing dependence on robotics in surgery and the dehumanization of medicine: doctor patient interaction is altered by EMR and IT reporting of visits to insurance companies and the warmth of communication suffers. Rick takes this information to create a story about the extremes of AI in the form of a glowing globe that is Dr Vita and the struggle computer scientist/anesthesiologist Dr Lucas assumes as he tries to save medicine from the extremes of the ‘new age’ called FutureCare. As expected, Rick’s recreation of the tension in the OR and in interaction of the physicians is on target: his own experiences enhance the veracity of the story’s atmosphere.

Rick Novak writes so extremely well that likely has answered the plea of his readers to continue this `hobby’. He is becoming one of the next great American physician authors – think William Carlos Williams, Theodore Isaac Rubin, Oliver Wolf Sacks, Richard Selzer, and also the Brits Oliver Wendell Holmes et al. Medicine and writing can and do mix well in hands as gifted as Rick Novak. Highly Recommended. Grady Harp, April 19

This image has an empty alt attribute; its file name is fullsizeoutput_c952.jpeg

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

THE FIRST CHAPTER OF DOCTOR VITA BY RICK NOVAK

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

robotic-procedures

The first chapter of Doctor Vita by Rick Novak opens with a scene unlike any you’ve ever read before.

Chapter 1    THE BRICKLAYER

Alec Lucas’s first contact with FutureCare came in operating room #19 at the University of Silicon Valley Medical Center, where his patient Elizabeth Anderson blinked into the twin suns of the surgical lights hanging from the ceiling. A clear plastic oxygen mask covered Elizabeth’s nose and mouth, her cheeks were pale and tear-stained, and a strand of gray hair protruded from a blue paper bonnet. Her hand trembled as she reached up to remove the mask.

“I’m scared,” she said.

“I’m not,” said Dr. Lucas, who was her anesthesiologist. A green paper mask covered his face, but his pale blue eyes sparkled at her. He hummed to himself as he injected a dose of midazolam into Elizabeth’s IV to relax her.

“Am I crazy to go through this?” she said. “A 78-year-old lady with cancer?”

“We’re hoping your cancer can be cured with surgery,” Alec said. “Right now you’re doing great. Everything is perfect. Have a wonderful dream.” Elizabeth had cancer of the stomach, and presented today for robot-assisted laparoscopic surgery to remove half her stomach. It was a huge surgery—a risky surgery. Alec wondered why they were doing this operation on this lady. He questioned the aggressive strategy for a woman this old, but his job was to anesthetize, not to philosophize.

He’d seen presurgery anxiety like hers hundreds of times. The best way to cure her fears was to get her off to sleep. He injected doses of propofol and rocuronium into her intravenous line. The drugs flowed into Elizabeth’s arm, and within ten seconds her eyes closed. He inserted the lighted blade of a laryngoscope into her mouth, and visualized the white and shining upside-down “V” of her vocal cords, hovering in a sea of pink tissue. He slid a hollow plastic tube between the cords and into the blackness of the trachea beyond. Then he activated the ventilator, which blew a mixture of oxygen and sevoflurane through the tube into her lungs.

“I haven’t worked with you before, Dr. Lucas,” said the circulating nurse, who stood at the patient’s side. “My name is Maggie.”

“Of course you’ve never worked with me,” he said. “I told the nursing supervisor I never wanted to work with Maggie.” Then he winked at her and said, “We haven’t worked together because today is my first day on staff here. I’ve been at the University of Chicago since my first day of medical school. After fifteen years of shoveling snow, it was time to give California a try.”

Alec looked up as the surgeon, Xavier Templeton, entered the room. A tall scrawny man, Templeton had pale hairless matchstick arms that looked better hidden within a surgical gown. His bushy eyebrows met in the midline, and his left eye squeezed in an involuntary tic. Templeton’s hands wouldn’t touch Elizabeth Anderson’s skin or stomach today. His hands would control two levers on a console worthy of a spacecraft, and each move he made would be translated into the movement of a five-armed machine named the Michelangelo III, also known as The Bricklayer.

The five slender mechanical arms of The Bricklayer, dull gunmetal gray in color, dangled like the legs of a giant spider above Elizabeth Anderson’s abdomen. Each arm was draped in clear plastic to keep The Bricklayer sterile when it entered her body through tiny incisions.

Alec accepted his role of goaltender at the Pearly Gates. His assignment was to keep Elizabeth Anderson asleep and alive, while Templeton and The Bricklayer resected her tumor.

Twenty minutes into the surgery, Xavier Templeton sat on a chair in the corner of the room with his back to the operating table, and peered into a binocular stereo viewer. His hands maneuvered two levers on the console before him. On the operating table, the five robot arms reached into the abdomen though five one-centimeter incisions. One of the arms held a camera on a thin metal rod, movable at the surgeon’s control. A seventh-year resident worked as a surgical assistant, and attached appropriate operating instruments to the other 18-inch-long robot arms.

The two surgeons murmured to each other in quiet voices. Alec watched the surgery on a large flat screen video monitor that hung above him. He saw pink tissues, robot fingers moving, and a lot of irrigating and blunt dissection. The surgery was going well, and Alec made only minor adjustments in his drug doses and equipment as needed.

Then one thing changed.

One of the robot fingers on the video screen convulsed in staccato side-to-side slicing movements of its razor-sharp tip. A clear plastic suction tube exiting from the patient’s abdomen lurched and became an artery of bright red blood. The scarlet tube emptied into a bottle two feet in front of Alec. In sixty seconds the three-liter bottle was full of blood. Fifty-eight seconds prior to that, Alec was on his feet and both hands were moving. A flip of a switch sent a stream of fluid through the biggest IV into the patient. He turned off all the anesthesia gases and intravenous anesthetic medications.

“Big time bleeding, Dr. Templeton,” Alec shouted to the surgeon.

As fast as he could infuse fluid into two IVs, Alec could not keep up with the blood loss draining into the suction tube. The blood pressure went from normal to zero, and a cacophony of alarms sounded from the anesthesia monitoring system.

Templeton descended from his perch on the far side of the room, and put on a sterile gown and gloves. He took a scalpel from the scrub tech, and in one long stroke made an incision down the midline of the abdomen from the lower end of the breastbone to the pubic bone. With two additional long swipes, the left and right sides of Elizabeth Anderson parted. A red sea rose between them. The surgical resident and the scrub tech held suction catheters in the abdomen, but the stream of blood bubbled upward past the catheters. Templeton cursed and reached his right hand deep to the posterior surface of the abdominal cavity, feeling for the blood vessel on the left side of the spinal column. He found it, and squeezed the empty and pulseless aorta.

Alec looked at the monitors. The blood pressure was zero, and the electrocardiogram showed the heart was whipping along at a rate of 170 beats per minute. His patient had one foot in the grave. “Have you got control up there?” he screamed at Templeton.

“God damn it! I’m squeezing the aorta between my fingers,” Templeton answered. “As soon as I can see, I’ll put a clamp on the vessel. The bleeding is everywhere. I can’t see a damn thing.” Templeton’s face, mask, hat, and gown were drenched with the blood of Elizabeth Anderson. His unibrow was a red and black dotted line.

“Fire up the Maytag,” Alec said to Maggie. “Call the blood bank and activate the massive transfusion protocol.” Alec bent over the Maytag, a rapid blood infusion device with a bowl the size of a small washing machine. He turned the Maytag to its top flow rate. The machine hummed and spun, and the basin of IV fluid emptied into Elizabeth Anderson through a hose as wide as a small hot dog.

Despite the infusion of fluid, her blood pressure peaked at a dismal 65/40. “Have you found the hole yet?” he said to Templeton.

“Torn aorta. There are multiple holes—the aorta’s leaking like a sprinkler hose,” Templeton said without looking up. His left eye was blinking and squeezing repeatedly as he worked. “It’s terrible. The inferior vena cava is shredded and the blood from the lower half of her body is pouring out into her abdomen. The blood is everywhere.” Blink, squeeze. “Her vessels are falling apart like tissue paper.”

An orderly ran into the operating room carrying a red plastic beer cooler. Alec grabbed the cooler and popped off the top. Inside were six units of packed red blood cells, six units of fresh frozen plasma, and six units of platelets from the blood bank. “Check all the units and let’s get them flowing,” he said to Maggie.

Maggie picked up each bag and double-checked the patient’s name and the unit numbers with a second nurse, and then she handed the entire cooler to Alec. He drained each of the units of blood products into the basin of the Maytag, and the bowl hummed and pumped the blood into Elizabeth Anderson. The blood pressure began to climb, but one look at the crimson suction tubes exiting the patient’s stomach told Alec they were still in trouble. The bleeding wasn’t slowing. Blood was exiting faster than he could pump it in.

“We need a second cooler of blood products stat!” he said. Maggie picked up a telephone and relayed the order to the blood bank.

Alec looked at the surgical field, and the patient’s blood was everywhere—on Templeton’s face, hands, gown, on the surgical drapes and on the floor. It was everywhere but where it needed to be—inside her blood vessels. Templeton’s resident was jamming a suction catheter into the abdomen next to Templeton’s fingers, trying to salvage as much blood as he could.

“Damn it,” Templeton said. “She’s still bleeding, and now she’s bleeding pink piss water. I can see through her blood, it’s so dilute. How much fluid have you given her?”

“Six units of blood, six units of plasma, six units of platelets, and eight liters of saline.”

Alec glanced at the monitors and saw that her blood pressure had plateaued at a near-lethal level of 40/15.

“Her blood isn’t clotting anymore,” Templeton said. “The blood’s oozing and leaking everywhere I place a suture.”

Alec palpated her neck, and there was no pulse. “She has no blood pressure and no pulse,” he said. “We need to start CPR.”

Templeton’s resident placed the palms of his hands on Elizabeth Anderson’s breastbone and began chest compressions. The patient’s heart rate of 180 beats per minute slowed to 40 beats per minute, with premature beats and pauses between them. After twenty seconds of a slow irregular rhythm, her heartbeat tracing faded into the quivering line diagnostic of ventricular fibrillation.

Alec injected 1 milligram of epinephrine, and screamed, “Bring in the defibrillator.”

A second nurse pushed the defibrillator unit up to the operating room table. Templeton charged the paddles, applied them to the patient’s chest, and pushed the buttons. Elizabeth Anderson’s body leapt into the air as the shock of electrical energy depolarized every muscle of her body. All eyes turned to the ECG rhythm, and it was worse than ever.

Flat line.

“Damn it. Give me the scalpel back,” Templeton said. He carved a long incision between the ribs on the left side of Elizabeth Anderson’s chest, and inserted his hand into her thorax.

“I have her heart in my hand and I’m giving her direct cardiac massage,” he said. Alec looked at the monitors, and the direct squeezing of the heart was doing nothing. The blood pressure was still zero, and now blood was oozing from the skin around her IV sites, as well as from the surgical wounds in her abdomen.

Elizabeth Anderson’s heart was empty. Her blood vessels were empty. Her blood pressure had been near-zero for twenty-five minutes.

“What do you think, sir, should we call it?” Templeton’s resident said.

Templeton pulled his hand out of Elizabeth Anderson’s chest, and looked at the clock. “I pronounce her dead, as of 8:48 a.m. Damn, damn, damn it!”

Alec reached over and turned off the ventilator. The mechanical breathing ceased, and there was nothing left to do. He looked down at Elizabeth Anderson’s bloated face. Two strips of clear plastic tape held her eyes fastened shut, and her cheeks were as white as the bed sheet she rested on. A length of pink tape held the breathing tube fixed to her upper lip, and blood oozed from her nose and from the membranes between her teeth. This lady walked into the University of Silicon Valley Medical Center today hoping for a surgical miracle, and instead she was going to the morgue looking like this.

Xavier Templeton peeled his gloves off. “Goddamn it! The fricking robot went berserk. Sliced into the artery like a goddamned hedge trimmer. Now I have to tell the family she’s dead. Goddamn damn it!” He scowled in Alec’s direction. “Are you coming with me, Dr. Lucas?”

Alec nodded a yes. He looked at the gloomy outline of The Bricklayer’s arms, and then back at Templeton. Templeton was a fool to blame the medical device for his own ineptitude. The machine could do no wrong on its own.

This was the surgeon’s fault. Alec had heard it all before. Accept compliments and deflect all blame—it was an adage as old as the profession of surgery.

Templeton commanded The Bricklayer. And The Bricklayer was no better than the human hands that led it.

fullsizeoutput_c952

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

WHICH ANESTHESIA FELLOWSHIPS ARE MOST POPULAR?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Which anesthesia fellowships are most popular? How many anesthesia residents choose further subspecialty fellowship education at the end of their residency, and which subspecialties are those graduates choosing?

The grid below, published in the California Society of Anesthesiologists Vital Times 2018, lists the fellowship choices from the last five years of Stanford anesthesia resident graduates:

IMG_7419.jpg

The totals from most popular to least popular fellowship choices from this grid are as follows:

SUBSPECIALTY:

Cardiac anesthesia                17

Regional anesthesia              14

Pediatric anesthesia              12

ICU/critical care                        10

Pain medicine                             8

Research                                         8

Obstetric anesthesia               2

Neuro anesthesia                      1

ENT/airway                                    1

Transfusion medicine            1

Palliative care                              1

TOTAL                                             75

Approximately 28 residents graduate from Stanford each year, for a total of 140 graduates over five years. If 75 out of 140 graduates pursued fellowships, then approximately 53% of residents chose fellowships, while 47% entered the workforce without further fellowship training.

I’m a private practice/community anesthesiologist who also practices in a major university medical center at Stanford, and I have some reflections on this data. The fact that 47% of the graduates do not pursue subspecialty fellowship training doesn’t surprise me. If an anesthesiologist proceeds directly through college, medical school, internship, and then a three-year residency, he or she will be at a minimum 30 years old. Twelve years of post-high school education is enough for many graduates, and the desire to earn a paycheck can trump any desire to complete any more training. A board-eligible anesthesiologist without a fellowship can find a job in most geographical areas without difficulty. In a competitive marketplace such as the San Francisco Bay Area, I believe an anesthesiologist with fellowship training gains an advantage in the search for a plum job over someone who did not complete a fellowship.

Let’s look at the fellowships Stanford graduates chose, and discuss the merits of each subspecialty as of 2019:

220px-Cvt_anesthesologist

Cardiac anesthesia continues to be popular. Stanford has outstanding cardiac surgery and cardiac anesthesia departments. The technology and challenges of cardiac anesthesia tend to draw ambitious residents into this subspecialty. I practiced cardiac anesthesia for 15 years. Those years were notable for very early morning arrival at the hospital (circa 6 a.m.), lots of invasive anesthesia preoperative procedures (arterial lines, central venous pressure catheters, pulmonary artery catheters, and transesophageal echocardiography), long complicated surgeries, sick patients, takebacks for bleeding in the middle of the night, and several surgeons with demanding difficult personalities. The field of cardiac surgery has changed dramatically since the 1980s and 1990s, when one of my surgical colleagues then lamented, “What’s the difference between a cardiac surgeon and a dinosaur?” His answer was, “Nothing.” In the 1980s invasive cardiologists began inventing techniques to apply balloons and stents in the coronary arteries to replace the open-chest coronary artery bypass grafting that cardiac surgeons used to do. Today even valve replacements can be done by cardiologists. Today cardiac surgeries are primarily difficult tertiary cases and revision procedures, i.e. cases that cardiologists cannot fix via intravascular access.

5200004187231

Regional anesthesia is a growing field. Both academic and community anesthesia groups need individuals with expertise in ultrasound-guided regional blocks. Regional anesthesia specialists should have no trouble finding jobs.

pediatricanesthesia

Pediatric anesthesia specialists are found in every large anesthesia department. Pediatric hospitals need fellowship-trained graduates on their staff, but for private/community groups, the role of fellowship-trained pediatric anesthesiologists depends on the volume of pediatric surgery. Community groups often expect multiple anesthesiologists to cover routine pediatric cases (e.g. age 1 and over) when they are on call. If only 10% of cases are pediatric and those cases sometimes occur on weekends or at night when an on call anesthesiologist will staff the cases, it’s unlikely the group will hire a specialist pediatric anesthesiologist to be on call every night. For a large group, this may be possible, but for a smaller group, it may not.

Respiratory_therapist

ICU/critical care medicine fellowships have always been popular at Stanford. For years the anesthesia department ran the intensive care units at Stanford, and these anesthesia/ICU attendings were outstanding role models. I decided to follow my internal medicine residency at Stanford with an anesthesia residency because I was so impressed with the ICU attendings and their training. The current Stanford anesthesiologist department chairman, Ron Pearl MD PhD, was initially a Stanford internal medicine resident who then completed the Stanford ICU fellowship, and after all that enrolled in and graduated from the Stanford anesthesia residency program. The unique value of an ICU fellowship is that you attend to sick patients of every type, and you become comfortable managing the most demanding medical situations day and night. ICU/critical care graduates are become outstanding clinical anesthesiologists who add value in either an academic or a community setting. Note that in a private/community practice setting, the clinical work in an ICU setting often becomes secondary to operating room anesthesia work, because there have always been superior financial reimbursements for the time anesthesiologists spend in the operating room versus the time they spend in the ICU.

epidural-injections

Pain medicine is a vast frontier for anesthesiology. The anesthesia department at Stanford renamed itself the Department of Anesthesiology, Perioperative and Pain Medicine to emphasize the inclusion of pain medicine within our specialty. While the clinical features of operating room anesthesia care have changed very little in recent decades, the possibilities for research and growth in pain medicine are limitless. As an internal medicine doctor, I can tell you that almost everyone hurts in some part of their body, and the treatments for pain, especially for chronic pain, are still in their infancy. Opioid medications work for a while, but patients can become tolerant and addicted to the drugs. More specific pain treatments without the opioid side effects of respiratory depression, addiction, constipation, and nausea are desperately needed. The potential for basic science research in pain medicine is unequaled in any other field of anesthesia. In either community or academic practice, pain doctors staff pain clinics where other physicians can refer their most difficult and unhappy patients. Pain clinic waiting rooms are rarely empty.

2-laboratory-test-tubes-in-science-research-lab-olivier-l-studio

Research fellowships are a launching pad to an academic career. Selecting an outstanding mentor is a key factor. If a mentor is known to publish extensively, he or she can teach their fellow how to select important projects, design experiments and studies, write grants, write research papers, and get those papers published. Basic science laboratory research is becoming the domain of investigators with PhDs. Significant clinical research is done primarily by MD anesthesia faculty members at universities. The reputation of a professors is judged by the extent of their publishing and research. Research fellowships are not an important step to a career in private/community clinical medicine.

obanesth

Obstetric anesthesia is a valid subspecialty in academic centers. In private/community jobs, it’s expected that all anesthesiologists who are on call on weekends and nights can handle both routine and emergency obstetric cases. Completing an OB fellowship isn’t a direct link to landing a graduate an outstanding community job—almost every community anesthesiologist will be expected to have to have OB skills.

2-craniotomy-brain-surgery-dr-p-marazziscience-photo-library

Neuro anesthesia training will prepare a graduate for a wide array of brain surgery cases. This specialty will be valued in an academic practice or in a private/community group that does a large amount of neurosurgery.

Awake-Intubation.001

In Ear, nose and throat/airway subspecialty training, a graduate will gain expertise in managing difficult airway cases. This field will appeal to graduates seeking an academic job doing complex head and neck surgical cases.

I don’t have access to national data on the distribution of fellowships in graduates of anesthesia programs other than Stanford. While it’s possible that Stanford is an atypical peer group, I hope this analysis of the fellowships Stanford graduates choose gives you a better idea of the career choices available to anesthesia residents.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

MEDICARE FOR ALL and Anesthesiology

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

medicareforall_091317gn2_lead

Multiple Democratic candidates for President of the United States are advocating Medicare for All. Medicare for All would decimate the specialty of physician anesthesiologists in America. Medicare for All would cause an exodus from the specialty of anesthesiology.

I’m an independent voter—neither a Democrat nor a Republican, and this column is not in opposition to Democratic candidates or in any way supportive to a Republican agenda. My aim is to inform my readers, both anesthesia professionals and laypersons, that if Medicare for All becomes reality, there will be a dire consequence regarding anesthesia staffing and services to patients.

The Medicare pay rate for anesthesiologists is a mere fraction of the current insurance pay rate. Based on the 2018 American Society of Anesthesiologists report, the national average insured conversion factor for anesthesia (the amount paid for a 15-minute time period of service) was $76.32. The current national Medicare conversion factor for anesthesia is $22.18, or only 29% of the 2018 overall mean commercial conversion factor.

Anesthesia practices have varying ratios of insured patients, Medicare patients, Medicaid patients (which pay slightly less than Medicare), and patients with no insurance (who often pay zero). What happens if every anesthesia patient pays only Medicare rates in a Medicare for All future? Let’s look at some examples.

If a practice currently has 75% insured patients and 25% Medicare/Medicaid patients, the income for that practice would be (.75 X $76) + (.25 X $22) = $62.50 per unit. Under Medicare for All, their income would be $22.18 per unit. This is a pay cut of $40.32 per unit, or a decrease in pay to 35% of their prior income.

If a practice currently has 50% insured patients and 50% Medicare/Medicaid patients, the income for that practice would be (.50 X $76) + (.50 X $22) = $49 per unit. Under Medicare for All, their income would be would be $22.18 per unit. This is a pay cut of $26.82 per unit, or a decrease in pay to 45% of their prior income.

If a plumber, an accountant, a truck driver, an attorney, or a fast-food worker was forced to take a pay cut to 35%-45% of their previous income, they would be upset. Would they be looking for another career? Probably.

If a physician anesthesiologist is forced to take a pay cut to 35%-45% of their previous income, they will be upset too. Will they be looking for another career? Probably.

Expect the exodus from physician anesthesiology to look like this:

  • Older anesthesiologists would simply retire, rather than work for 35%-45% of their prior income.
  • Medical students who are evaluating different specialties for their lifetime vocation would look at anesthesiology and flee. Even prior to its arrival, it’s possible that the specter of Medicare for All in the near future will drive students away from careers in anesthesiology. Medicare pay rates for anesthesiology are significantly lower than Medicare pay rates for all other specialties. See the graph below, which shows the ratio of commercial pay rates/Medicare rates for various services. For most medical services, the ratio of the average insured payment/Medicare payment is between 1.0 and 2.0. This means that, at the lowest, the average Medicare rates are about 50% of insured rates. You’ll recall that the Medicare anesthesia rate is only 29.1% of insured rates.

Screen Shot 2019-03-19 at 11.13.44 AM

The declining number of the oldest and the youngest physician anesthesiologists would radically decrease the census of anesthesiologists in the United States. This likely would lead to an increased role for certified nurse anesthetists (CRNAs), and an eventual increase in the number of schools training CRNAs, but in the short term there would be no way to staff adequate numbers of anesthesia professionals. It’s possible the U.S. may increase immigration of anesthesiologists from other countries where, their pay rate is less than the new Medicare for All pay rate is in America.

Might Medicare for All be forced to quickly increase anesthesiology payment rates to secure an adequate number of physician anesthesiologists? Perhaps, but I wouldn’t bet on it. Medicare has always been a zero-sum system. If anesthesiologists are going to be paid more, then someone else would be paid less, and it would be hard to predict which specialties would be on the end of that further pay cut.

But take a deep breath and relax. Medicare for All will be debated for some time. Even if a liberal Democrat wins the presidency and Congress gains a majority of Democrats in both the Senate and the House, they will all have to overcome multiple powerful lobbies, including the medical insurance industry, hospitals, the pharmacology industry, and organized physician groups. Currently there are so many jobs and so much money involved in the health care systems in American that the battle of Medicare for All will be a true war. Patients would have a significant transition as well. David Brooks wrote in The New York Times on March 4, 2019, “Right now, roughly 181 million Americans receive health insurance through employers. About 70 percent of these people say they are happy with their coverage. Proponents of Medicare for All are saying: We’re going to take away the insurance you have and are happy with, and we’re going to replace it with a new system you haven’t experienced yet because, trust us, we’re the federal government!”

If you’re a layperson, you may think Anesthesiologists are overpaid right now, that’s the true problem with what you’re discussing in this column. Keep in mind that anesthesiologists must complete four years of college, four years of medical school, and at least four years of post-medical school internship and residency training to become board-eligible for work as a physician anesthesiologist. LINK. This means they are at a minimum 30 years old, have borrowed hundreds of thousands in student loans to pay for their training, and have endured significant delayed gratification compared to others they went to college with. Procedural specialties such as surgery and anesthesiology are higher paying than primary care specialties such as internal medicine or pediatrics. Why? The work of procedural physicians requires specialized skills, and their work incurs more risk than interviewing and examining patients in a clinic. I have worked as both an internal medicine doctor and an anesthesiologist, and I can attest that it is almost impossible to harm a patient in an internal medicine clinic, while it is possible to lose a patient to anoxic brain damage in five minutes in an operating room as an anesthesiologist if you err. Risk during an anesthesia career is omnipresent.

As I stated on the home page of my blog, “The profession of medicine offers a lifetime of fascination, and no specialty is more fascinating than anesthesiology.” In addition, freeing patients from pain and ushering them through surgery safely is a wonderful vocation. But if anesthesiology jobs someday pay 35%-45% of their current income, the exodus of anesthesiologists will occur despite the fascination and emotional rewards of the profession.

Life will go on, there will just be less anesthesiologists, which will be OK unless you need one for your upcoming surgery.

Further information on proposed Medicare for All is available at their home page at http://www.medicareforall.org/pages/Know.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

FREE SOLO

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Every anesthesia provider must learn to free-solo anesthesia early in his or her career. The 2018 movie Free Solo showcases Alex Honnold as he became the first person to free solo climb the 3000-feet high El Capitan wall of granite in Yosemite National Park without ropes or safety gear. This has been called the greatest feat in rock climbing history, and the movie is nominated for a 2019 Academy Award in the Feature Documentary category.

DutbM1KWsAE0zEV

FREE SOLO movie poster 2018

Believe it or not, but Free Solo could have been an anesthesiologist’s movie. How can that be? “Free-soloing” describes the most anxiety–producing event in every anesthesiologist’s life: the transition from anesthesia training when your faculty member is backing up your every move and every mistake, to the real world of anesthesia when you have to do scary cases alone without assistance.

During the dayshift, working alone is seldom an issue for any anesthesiologist. A typical hospital will have dozens of other anesthesia providers working in the same building. Within seconds or minutes, any anesthesiologist can be assisted or bailed out by a colleague.

Unlike Alex Honnold, the anesthesiologist is not putting their own life at risk—rather it is their patient who is at risk. The degree of risk is variable. For healthy patients undergoing elective surgery the anesthetic risks are minimal, and are similar to the risks of driving on a freeway in an automobile. For emergency surgeries, cardiac surgeries, chest surgeries, brain surgeries, or for anesthetics on patients with significant heart, lung, blood pressure, or airway problems, the risks of anesthesia are higher. The patient is totally dependent on their anesthesiologist to return them to consciousness safely.

Commercial aviation is sometimes compared to anesthesia practice. When commercial pilots take off in airliners, their passengers are totally dependent on the pilot to return them to the ground safely. But in commercial aviation there is one important difference: by law there must be a second pilot in the cockpit.

In anesthesia there is no guaranteed second anesthesiologist. There are multiple different models of anesthesia care. In an anesthesia care team, a physician anesthesiologist supervises up to four operating rooms and each operating room is staffed with a certified registered nurse anesthetist (CRNA). In a university hospital, a faculty member may supervise two operating rooms each with a resident anesthesiologist-in-training in attendance. In many hospital operating rooms, a solitary physician anesthesiologist attends to his or her patient alone. In seventeen “opt-out” states in America a solitary CRNA can attend to a patient without any physician anesthesiologist backup. Working alone may be less safe. A 2019 study from Europe reported an outcome advantage for anesthesiologist working in teams: The study showed that anesthesia given by teams of anesthesiologists and anesthesia nurses was associated with decreased 30-day postoperative mortality and a shorter length of stay when compared with solo anesthesiologists. There was no evidence for the specific cause of the decreased mortality.

Because of manpower necessities, there will never be a law mandating a second anesthesiologist for every surgery as there is in commercial aviation. There will always be emergencies at 2 a.m. or on weekend afternoons when all other anesthesiologists are elsewhere. As well, there are tens of thousands of freestanding surgery centers and office operating rooms where only one anesthesia professional is present.

Is there any data in the medical literature documenting that inexperienced anesthesia professionals have a greater incidence of adverse outcomes? Per Pubmed, there is no such publication. But there is no publication that denies the truth of this correlation. There is a paucity of data on the topic. The issue has not been rigorously studied in a scientific basis.

I review malpractice legal cases, and I can attest that inexperienced anesthesia personnel (who are less than board-certified physician anesthesiologists) are involved in many cases. I believe recent graduates are at particular risk when they work alone. In most cases with severe complications, the anesthesia professional (an MD or a CRNA) was managing the anesthetic alone until it was too late to save the patient.

During physician anesthesia training, a faculty member teaches, supervises, advises, and bails out each resident should there be a mishap. Following their three years of residency, a graduate is free to take a job as an attending anesthesiologist in any hospital system, multi-specialty clinic, or anesthesia group who will hire him or her. This is when the free-soloing begins.

shutterstock_292766960

Let me cite some examples of anesthesia free-soloing:

  1. The new graduate is on duty at 2 a.m., and a three-hundred-pound man arrives at the emergency room with the abdominal emergency of a dying, obstructed intestine. The surgeon decides the case is an emergency and cannot wait until morning. The typical anesthetic for this surgery is a rapid-sequence induction of intravenous general anesthesia, followed by the placement of a hollow breathing tube through the mouth into the patient’s windpipe. This sounds easy enough, except when it isn’t. Morbidly obese patients can be very difficult to intubate, and without a properly placed breathing tube these patients can be difficult to keep oxygenated. Five minutes without oxygen causes irreversible brain death. Sound scary? It is.
  2. The new graduate is on duty at 3 p.m. at a community hospital. A two-year-old girl arrives at the emergency room gasping for breath, crowing with each inspiration, febrile, drooling, and barely conscious. Both the emergency room physician and the anesthesiologist quickly make the diagnosis of acute epiglottitis, a rare bacterial infection which causes the epiglottis (the flap which covers the windpipe when you swallow) to become inflamed and swollen. This causes a severe obstruction during each inhaled breath. The patient needs a breathing tube within minutes, before the swollen epiglottis cuts off all passage for air inflow into the lungs. I had this very case during my first year in private practice. I’d read about the proper management, but I’d never seen acute epiglottitis myself. The appropriate treatment is to bring the patient to the operating room urgently, and to staff an experienced head and neck surgeon at the bedside. The anesthesiologist’s job is to induce sleep with an inhaled anesthetic (sevoflurane) via a mask, while carefully supporting the airway and facilitating the passage of oxygen and anesthesia gas in and out of the lungs until the patient falls asleep. Once the patient is asleep, a physician or nurse must place an IV catheter in the patient’s arm, and then the anesthesiologist must insert a lighted scope into the patient’s mouth, locate the swollen epiglottis and the opening to the windpipe below it, and insert a tiny hollow plastic breathing tube into the windpipe. If anything goes wrong and the breathing tube cannot be inserted before the child turns blue, the surgeon must immediately slice into the child’s neck and insert a breathing tube through the skin. Once again, five minutes without oxygen causes irreversible brain damage. Sound scary? It is.
  3. The new graduate is on duty alone at a dental office, anesthetizing a 17-year-old male for wisdom teeth removal. After the induction of general anesthesia but before the beginning of surgery, the anesthesiologist administers a requested dose of intravenous antibiotic. Minutes later, the patient’s blood pressure drops from 120/80 to 60/30, the heart rate climbs from 80 to 160 beats per minute, and the normal lung sounds convert to tight wheezes. Hopefully the anesthesiologist will make the correct diagnosis of an anaphylactic allergic reaction—most likely due to the antibiotic. The effective treatment requires perfect management of the patient’s airway, breathing, and circulation. The specific treatment for anaphylaxis requires intravenous injection of epinephrine (adrenaline). A misdiagnosis leading to the omission of epinephrine can be fatal. If the blood pressure remains low and the lungs continue to deteriorate, there will be a lack of oxygen delivery to the brain. Once again, five minutes without oxygen causes irreversible brain damage. Sound scary? It is.

What can be done to make free-soloing safer for patients? In my opinion, the best safety ropes are these:

  1. Most hospitals have an emergency room physician on duty at all hours. These MDs are multi-talented and have the acute care skills necessary to assist an anesthesiologist in an emergency. Rather than waiting until a patient has a cardiac arrest or until an airway is lost and the patient’s brain is losing oxygen, an anesthesia professional can consult the ER doctor in advance, e.g. requesting them to assist with a difficult induction of anesthesia on a morbidly obese adult or with a child with a difficult airway.
  2. Even if no experienced anesthesiologist is present in the hospital, there is always an experienced physician anesthesiologist colleague available on the other end of a phone call. Young or inexperienced anesthesia professionals can telephone senior anesthesiologists prior to the anesthetic, whenever a situation arises in which they are doubtful, insecure, or uncomfortable. It’s difficult to admit a lack of confidence, but it’s better to do this than to review a terrible complication with the senior anesthesiologist the next day, like two firefighters gazing over the burned basement remains of a previously preserved house.
  3. Most American anesthesia training programs are now utilizing simulation training facilities to prepare residents for severe acute care scenarios. A simulator lab has a surrogate patient and a full battery of vital sign monitors under the control of a teacher. The teacher can dial in a variety of emergencies and observe the pupil’s response to the emergencies. Feedback is given afterward regarding observed errors and any needed improvements in management. If a young physician anesthesiologist has faced emergencies in the simulator, we believe the anesthesiologist will be better prepared to free-solo following their training.
  4. The Stanford Anesthesiology department authored the Stanford Cognitive Aid Emergency Manual, a booklet of itemized recipes and checklists for all common dire emergencies one might see in an operating room. A PDF of this booklet is available for free of charge download here. Using the Stanford Cognitive Aid Emergency Manual in the operating room will help prevent medical errors, even by inexperienced anesthesia professionals.
  5. Whenever possible, solo anesthesiologists should have already passed the American Board of Anesthesiologists written and oral examinations, and therefore be board-certified. It’s a fact that one can practice anesthesiology in the United States without being board certified, but the ABA oral examination forces graduates to answer difficult questions in the pressure cooker of an oral exam room. Board-certified anesthesiologists will be better prepared for the pressure cooker of an operating room emergency as well.

If you’re a patient, should you worry about your anesthetist free-soloing during your surgery?

Let me reassure you. If you’re having an elective surgery in a hospital in the daytime, there are usually multiple backup anesthesia providers to assist with any problems. But for emergencies in the middle of the night, on weekends, or at freestanding surgical facilities with only one anesthesiologist present, your anesthesia care and outcome will be solely dependent on the skills, training, and experience of the solitary individual who is attending to you.

I’ve stood at the bottom of El Capitan in Yosemite National Park and looked upward at the vertical granite face with awe. I could never climb El Capitan, with or without ropes. I respect what Alex Honnold did at the highest level. He is brave beyond measure and he was willing to put his life on the line. Anesthesiologists, particularly junior anesthesiologists, must free-solo as well. No Hollywood cameras will be rolling, but the adrenaline will be pumping through their veins just as if they themselves were climbing El Capitan.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

8-YEAR-OLD CONGOESE BOY DIES FROM ANESTHESIA. WHAT HAPPENED?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

8-year-old Matadi Sela Petit, who journeyed from the Democratic Republic of Congo to Los Angeles for surgery, died at Cedars-Sinai Hospital on December 16, 2018, from what has been described as “a rare genetic reaction to the anesthesia.” Matadi was born with a cleft lip and a tumor on the left side of his face/cheek that grew into the size depicted in this photograph:

Matadi-Sela-Petit

Matadi Sela Petit

The Dikembe Mutombo Foundation, created by retired National Basketball Association star Dikembe Mutombo, sponsored the boy to come from Congo to the United States for the surgery. Matidi’s cleft lip was treated earlier with help from the foundation.

According to The Washington Post, “The Dikembe Mutombo Foundation . . . headed by the former NBA star said that during the delicate surgery on Dec. 16, the boy suffered a rare and unexpected genetic reaction to anesthesia.”

This was a tragic outcome, and my sympathies go out to the patient’s family, to the Foundation, and also to the physicians who treated the boy. Cedars-Sinai is an outstanding medical center—one of the finest in the United States—and has a reputation of having an outstanding medical staff.

What “genetic reaction” could have occurred during the anesthetic? No details have been released in the press, and readers are left to puzzle over what went wrong. As a practicing pediatric anesthesiologist, I’m interested in what happened. I have no access to medical records, nor any inside information on the case, but based on my education and experience my impressions follow below.

Regarding “a rare and unexpected genetic reaction to anesthesia,” the phrase used in the press release to describe the event, I see these possibilities:

  1. Malignant Hyperthermia. Malignant Hyperthermia (MH) is a disease in which a severe reaction occurs during general anesthesia, only among patients who are genetically susceptible. Symptoms include hypermetabolism, muscle rigidity, high fever, acidosis, sudden high blood potassium levels, and a risk of cardiac arrest. MH can only occur in patients who have the genetic predisposition to the disease, and who are then exposed to a potent anesthetic gas (e.g. sevoflurane, desflurane, or isoflurane), or the intravenous muscle relaxant succinylcholine. The treatment for MH involves emergency intravenous injection of the antidote dantrolene, immediate cooling of the patient, and immediate treatment for acidosis and elevated potassium concentration. The treatment for MH is usually effective if the diagnosis is made promptly. The quoted mortality rate for MH is now less than 5%. A potent anesthetic gas such as sevoflurane is commonly used in most pediatric anesthetics, and could have been used in Matidi’s case. Succinylcholine carries a Black Box Warning from the U.S. Food and Drug Administration regarding its use in pediatric patients, and it was unlikely to be used in this Matidi’s anesthetic. Even if Matidi had a previous surgery for his cleft palate, it is not unheard of for a patient to fail to develop MH on their first exposure to potent inhaled anesthetics, and yet develop MH on a later exposure.
  2. An occult muscular dystrophy. A patient who has an undiagnosed genetic muscular dystrophy can develop a sudden cardiac arrest after the administration of the muscle relaxant succinylcholine. Administration of succinylcholine to a patient with an occult muscular dystrophy can cause sudden cardiac arrhythmias, and for this reason succinylcholine carries a Black Box Warning from the U.S. Food and Drug Administration, restricting its use in pediatric patients to emergencies. Because of the Black Box Warning against using succinylcholine in pediatric anesthesia, it is unlikely succinylcholine was used in this patient’s anesthetic.
  3. The mass effect of the tumor in this patient’s face. If one can assume Matidi was born with this tumor, then the existence of this congenital mass lesion next to his airway and breathing passages is a genetic issue. From the photograph of Matidi, the tumor dominated his face. The tumor pushed his mouth to the right, and likely encroached on breathing anatomy. Once general anesthesia is induced, large tumors like this can compress the airway further. Every general anesthetic requires safe management of A-B-C, or Airway-Breathing-Cardiac, in that order. A child such as Matidi with markedly abnormal facial anatomy brings the risk of the loss of control of the airway at any point during the anesthesia or surgery. Loss of airway means there is no clear path for oxygen to traverse from the anesthesia machine through the head and neck to the lungs. Lack of oxygen to the lungs can lead to lack of oxygen to the brain and heart. Five minutes of oxygen depletion to the brain can cause anoxic brain damage. Oxygen depletion to the heart can cause cardiac arrest. Airway problems related to congenital diseases are discussed in the article Specific Genetic Diseases at Risk for Sedation/Anesthesia Complications, in the journal Anesthesia & Analgesia.

After scouring the world’s anesthesia literature and textbooks, I can find no other plausible “genetic reaction to anesthesia” to explain this patient’s death.

This patient’s care will be discussed in peer review and quality assurance committees at the hospital where the event occurred. There is always an autopsy on any unexpected death in an operating room, and more information may come from that. But whenever there is an adverse patient outcome, for medical-legal reasons, do not expect the healthcare professionals to reveal the specifics of what happened to the outside world.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

DOCTOR VITA AND THE BS IN HEALTHCARE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Last week Lawton Burns PhD and Mark Pauly PhD of the Wharton School of Business at the University of Pennsylvania published a landmark economic article entitled, “Detecting BS in Health Care.” Yes, you did not read that wrong—the academic paper used the abbreviation “BS” to describe the bull—- in the healthcare industry.

BS in Health Care

 

As a practicing physician, I find it to be a fascinating paper, and I recommend you click on the link and read it. The authors begin with a discussion of the art and value of BS detection. They mention that Ernest Hemingway was once asked, “Is there one quality needed to be a good writer, above all others?”

Hemingway replied, “Yes, a built-in, shock-proof, crap detector.”

The authors write, “While flat-out dishonesty for short term financial gains is an obvious answer, a more common explanation is the need to say something positive when there is nothing positive to say. . . . The incentives to generate BS are not likely to diminish—if anything, rising spending and stagnant health outcomes strengthen them—so it is all the more important to have an accurate and fast way to detect and deter BS in health care.”

The authors list their Top 10 Forms of BS in Health Care. The first four forms of BS weave a common theme:

  1. Top-down solutions: High-level executives and top management in the health care industry are supposed to engineer alternative payment models, but nothing has worked to date.
  2. One-size-fits-all, off-the-shelf: Leadership of industry and government assume one solution will work for multiple organizations, without customization.
  3. Silver-bullet prescriptions: A “silver bullet” is described as something that will cure all ills, and must be implemented because it been “decided that it is good for you,” Electronic health records (EHRs) are a prime example of a silver-bullet prescription. The federal government pushed the use of EHRs, claiming the systems would reduce costs and improve quality—but Burns and Pauly argue EHRs “eventually raised costs and only mildly touched a few quality dimensions.”
  4. Follow the guru: We must follow a visionary guru with a mystical revelation about what needs to be done. The authors describe how, in health care, Harvard professor Michael Porter and former CMS (Center of Medicare and Medicaid) administrator Don Berwick launched theories based on population health, and per-capita cost, to little success.

The current U.S. healthcare market is dominated by large corporations, led by businessmen who outline a yellow brick road for physicians to lead patients along. There is minimal effective policy-making from physicians. Healthcare stocks consistently grow in value, with little relationship to an improvement in clinical care, value, or cost. The government is involved as well, as in their mandate for Electronic Health Records (EHRs), a technology change that cost a lot of money, while forging a barrier between clinicians and the patients we are trying to interview, examine, and care for.

Where will the current trends take us? Will businessmen and/or the government prescribe health care? Will more and more computers and machines dominate health care?

Self-driving cars, Siri, Alexa, automated checkouts at Safeway, and IBM’s Watson are technologic realities. Will we someday see a self-driving physician with the voice of Siri and the brains of Watson?

Call that device “Doctor Vita.”

The saga of Doctor Vita arrives in 2019 from All Things That Matter Press.

 

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

 

 

 

 

 

IS SUBLINGUAL SUFENTANIL DANGEROUS?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Is sublingual sufentanil dangerous? The United States Food and Drug Administration (FDA) voted to approve the narcotic sufentanil for sublingual use in November of 2018. Sublingual sufentanil is 5-10 times more potent than fentanyl, and dissolves under the tongue in seconds.

saupload_12987447_a7_thumb1

In an era of opioid overdose crisis, we now have a new, even more potent pill form of opiate.

Opioid deaths 1999-2017Sublingual sufentanil is approved for use only in medical settings, for the treatment of moderate to severe acute pain. But it is also possible that sublingual sufentanil will become the most dangerous street opiate ever known. This column reviews the arrival of sublingual sufentanil, from the viewpoint of a practicing anesthesiology attending.

Raeford Brown, Jr., MD, chair of the Anesthetic and Analgesic Drug Products Advisory Committee, and professor of anesthesiology and pediatrics at the University of Kentucky, disagreed with the FDA approval for sublingual sufentanil, citing the drug’s risk for “diversion, abuse, and death.” He cited the possible harms of such a “dangerous” drug — estimated to be 500-600 times more potent than morphine — coming to market in a tablet form. He warned of the risks of diversion of sufentanil by anesthesiologists and other medical personnel. He was quoted, “Sufentanil is a very potent opioid that is in a preparation that will be easily divertible. In the IV formulation, it has been a drug of abuse for health care providers.”

I agree with Dr. Brown. Sublingual sufentanil raises dangerous concerns. Sublingual sufentanil has the potential become the hydrogen bomb of all opiates—the mother of all lethal street drugs.

I have extensive experience administering intravenous sufentanil to patients. Intravenous sufentanil was FDA-approved in 1984. Its original primary use was as an anesthetic for cardiac surgery. I practiced cardiac anesthesia from 1985 until 2000. In the 1980s, cardiac anesthesia was achieved by high dose narcotic techniques, specifically with high dose fentanyl (100 micrograms/kg) techniques. For a 70-kilogram patient, this required injecting 7000 micrograms of fentanyl, or 140 ml of fentanyl (nearly two and an half sixty-milliliter syringes full of fentanyl) at the time of anesthetic induction. When intravenous sufentanil was approved at the same 50 mcg/ml concentration as fentanyl, but with a potency of 10 X of fentanyl, the narcotic induction only required 14 ml of sufentanil total. I can still remember my wide-eyed professors saying, “With sufentanil, the entire cardiac anesthetic is here in one syringe.” The use of sufentanil for cardiac anesthesia faded as anesthesiologists began using lower doses of narcotic as part of early-extubation techniques in the late 1990s.

We also used intravenous sufentanil to supplement anesthesia for non-cardiac surgeries. The most common method was to dilute the sufentanil 10:1 with saline, to a concentration of 5 mcg/ml. At this concentration, sufentanil was indistinguishable from fentanyl at 50 mcg/ml. After several years it became apparent that there was no advantage of using sufentanil IV over fentanyl IV in non-cardiac anesthesia, and the administration of IV sufentanil dwindled. The intravenous sufentanil form of the drug was also approved for epidural anesthesia. Over time, the use of sufentanil for epidural anesthesia also decreased, also supplanted by fentanyl.

Just when it looked like sufentanil was a drug nobody really neededà enter AcelRx Pharmaceuticals, a San Francisco Bay Area company which manufactured and tested a sublingual sufentanil product designed to melt under a patient’s tongue. Pamela Palmer, the founder and Chief Medical Officer of AcelRx, received her MD and PhD at Stanford, and is an acquaintance of mine. Dr. Palmer is an anesthesiologist who is brilliant and well informed regarding the pharmacology of sufentanil and the use of sufentanil in anesthetic practice.

Because sufentanil is highly lipid (fat) soluble, it is quickly absorbed into the bloodstream through the mucosal lining of the mouth. AcelRx will market the drug under the name Dsuvia, in a sublingual sufentanil tablet system (SSTS) which consists of a single-dose applicator prefilled with a single 3-mm-diameter 30-mcg tablet, administered by a healthcare professional no more frequently than hourly.

sublingual sufentanil

A radio frequency identification (RFID) cartridge, requiring the patient’s thumbprint, helps reduce unauthorized dosing. The device is tethered to the patient’s bed to reduce risk of product loss. Each tablet is pre-loaded into a single-dose applicator within a pouch so it is suitable for field/trauma use. Both the fixed drug and dose and lockout time interval eliminate the end-user programming error risk associated with Patient Controlled Analgesia (PCA) intravenous narcotic pumps.

Studies documented the efficacy and safety of the SSTS in the treatment of postoperative pain in patients following open abdominal surgery compared with placebo.

SSTS was rated a success by significantly more patients when compared to intravenous PCA morphine. There was a faster onset of analgesia and both higher patient and nurse satisfaction scores with the SSTS as measured by validated questionnaires.

Dsuvia will be marketed as “postoperative, sublingual, patient controlled analgesia.” Once administered under the tongue, the sufentanil tablets typically dissolve within 5  minutes. The FDA approved the drug to be used in hospital settings only, for the treatment of moderate-to-severe acute pain, where a narcotic is needed and rapid onset is desired, but the route of administration does not require intravenous access. Typical settings would be the surgical wards after major orthopedic or general surgery procedures. The chief competition for Dsuvia will likely be Patient Controlled Analgesia (PCA) intravenous narcotic pumps, a commonly used analgesic method in which patients push a bedside button and self-administer intravenous narcotic (e.g. morphine, fentanyl, or Dilaudid) on demand through their IV line.

The most significant risk involving sublingual sufentanil is its potency, specifically its extreme potency as a respiratory depressant. The product description by AcelRx states that sufentanil has a “high therapeutic index” of 26,716. The Therapeutic Index is the ratio that compares the blood concentration at which a drug becomes toxic and the concentration at which the drug is effective. The larger the therapeutic index (TI), the safer the drug is. The TI affirms that sufentanil toxicity starts at a concentration of 26716 times its therapeutic concentration, but this ignores the risk of respiratory depression at much, much lower doses. A patient treated with an overdose of sufentanil will stop breathing at a dose only slightly greater, i.e. in the ballpark of only 2 – 4 times greater, than its therapeutic concentration. Like all opiates, sufentanil has side effects of respiratory depression, sedation, nausea and constipation. Respiratory depression is the reason why opiate overdose patients die. Opiate overdoses do not cause death because of an inherent “toxicity” of the drug concentration in the blood, but rather because of respiratory depression. People simply stop breathing.

Regarding sufentanil, the National Institute of Health website states: WARNINGS: Serious, life-threatening, or fatal respiratory depression has been reported with the use of opioids, even when used as recommended. Respiratory depression, if not immediately recognized and treated, may lead to respiratory arrest and death. Sufentanil Citrate injection should be administered only by persons specifically trained in the use of anesthetic drugs and the management of the respiratory effects of potent opioids, including respiration and cardiac resuscitation of patients in the age group being treated. Such training must include the establishment and maintenance of a patent airway and assisted ventilation. Adequate facilities should be available for postoperative monitoring and ventilation of patients administered anesthetic doses of Sufentanil Citrate Injection. It is essential that these facilities be fully equipped to handle all degrees of respiratory depression. Management of respiratory depression may include close observation, supportive measures, and use of opioid antagonists, depending on the patient’s clinical status.

There is also hope that sublingual sufentanil will have battlefield applications. A statement from FDA Commissioner Scott Gottlieg, MD on November 2, 2018 read: “(Sublingual sufentanil) has some unique features in that the drug is delivered in a stable form that makes it ideally suited for certain special circumstances where patients may not be able to swallow oral medication, and where access to intravenous pain relief is not possible. This includes potential uses on the battlefield. For this reason, the Department of Defense (DoD) worked closely with the sponsor on the development of this new medicine. This opioid formulation, along with Dsuvia’s unique delivery device, was a priority medical product for the Pentagon because it fills a specific and important, but limited, unmet medical need in treating our nation’s soldiers on the battlefield. The involvement and needs of the DoD in treating soldiers on the battlefield were discussed by the advisory committee . . . The FDA has made it a high priority to make sure our soldiers have access to treatments that meet the unique needs of the battlefield, including when intravenous administration is not possible for the treatment of acute pain related to battlefield wounds.”

In conclusion, will sublingual sufentanil be dangerous or not?

My assessment of sublingual sufentanil, based on the information above, is as follows:

  1. Sublingual sufentanil (SS) can be useful in hospitalized post-operative patients following major, painful surgeries such as orthopedic total joint replacements or intra-abdominal surgeries. SS could replace PCA intravenous morphine or fentanyl.
  2. The market share, or prevalence of SS use will largely depend on its cost versus intravenous PCA units. AcelRx will market the drug beginning in early 2019, at a wholesale price of $50 to $60 per dose.
  3. SS will not be frequently used in Post Anesthesia Care Units, Intensive Care Units, or the Emergency Department, because patients in these settings all have intravenous lines in place, and can receive traditional IV narcotics as needed. There is no need or demand for a sublingual narcotic product in these settings.
  4. If SS tablets are diverted or stolen and are taken outside of medical settings, they can cause death. Overdoses as low as two to four times a therapeutic dose could cause respiratory depression and death. If hospital personnel divert the drug for recreational use, these personnel will be at high risk for mortality.
  5. If SS ever reaches the streets as a recreational drug or heroin substitute, users will achieve opiate overdose and death at a very high rate. If anyone naively believes the drug will not reach the streets, consider that manufactured forms of all the other pill forms of opiates, i.e. Percocet, Vicodin, and Oxycodone, eventually reached the streets. What will prevent this new drug from doing the same?
  6. Efforts to educate street users regarding the dangers of this new drug will likely fail. There can be no safe use of SS outside a medical setting. People will likely overdose and die.
  7. Regarding battlefield use: In military settings where IVs are not common, the capacity to administer potent sublingual narcotic may become standard. But misuse and abuse in the military and on the battlefield are also possible. Tales of rampant drug abuse by soldiers in the Vietnam War are part of the lore of that conflict. Access to sublingual sufentanil in the military would need to be strictly confined and monitored.
  8. An added note: An intentional overdose with SS is probably an outstanding drug for physician-aided suicide.

I have no crystal ball, but the bottom line is this:

If sublingual sufentanil use is confined to acute care hospital settings, it will be useful and not dangerous. But if sublingual sufentanil reaches the streets as a drug of abuse, it will be lethal.

Time will tell which of these fates is the truth.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

FRONT OF NECK ACCESS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Can you perform an emergency surgical cricothyroidotomy? In the dreaded Can’t Intubate, Can’t Oxygenate (CICO) scenario, if your patient has no airway, you must immediately establish a front of neck access (FONA) to save your patient’s life.

SCALPEL, BOUGIE, TUBE APPROACH TO CRICOTHYROIDOTOMY

SCALPEL, BOUGIE, TUBE APPROACH TO CRICOTHYROIDOTOMY

This week I attended an outstanding Stanford Anesthesia Grand Rounds delivered by Drs. Jeremy Collins, Susan Galgay, and Tom Bradley. The lecture reviewed the literature regarding CICO events, and concluded that performing a surgical airway through the cricoid membrane is an essential skill for anesthesiologists.

Most anesthesia professionals have never cut into a patient’s neck, but we must own this skill if the necessity arises. I’ve done thousands of cases over 34 years. I have never performed a surgical cricothyroidotomy, but I may need to do one tomorrow. It’s essential expertise for myself and for every anesthesiologist.

As I’ve reviewed in previous columns, a lack of oxygen to the brain for five minutes can cause anoxic brain damage—a disaster all anesthesiology professionals must avoid. The specter that someday we will induce and paralyze a morbidly obese patient, and then be unable to intubate or oxygenate that patient, is in the back of the mind of every anesthesia professional. If and when this happens, we must be able to act without hesitation to oxygenate the patient via FONA.

CICO events are rare, but they do occur with a published incidence of 1 in 50,000 anesthetics, per the fourth national audit project in the United Kingdom (NAP4).  Approaches to FONA include either cannula techniques or surgical techniques, with significant differences.

Cannula Techniques:

These involve inserting a large bore IV catheter through the cricothyroid membrane. Because the lumen of a 14-gauge IV catheter is small, ventilation requires a high- pressure jet oxygen delivery system. In Duggan’s publication from 2016, the failure rate with cannula techniques was 42% in CICO emergencies. In addition, barotrauma occurred in 32% of CICO emergency procedures. Fifty-one percent of CICO emergency events managed with a FONA cannula had a complication. Several reports described trans-tracheal jet ventilation-related subcutaneous emphysema hampering subsequent attempts at surgical airway or tracheal intubation. Failure can also occur because of kinking, malposition, or displacement of the needle/cannula. The Stanford Anesthesia Grand Rounds concluded that these failure rates and complications with cannula FONA techniques were prohibitively high.

Surgical Techniques:

The cricothyroid membrane is divided by a surgical incision made with a wide scalpel (#10 scalpel). With the scalpel, bougie, tube (SBT) technique, a bougie is inserted into the trachea through the incision. A lubricated 6.0 mm cuffed endotracheal tube is advanced over the bougie into the trachea, and the bougie is removed.

There are contrasting difficult airway algorithms algorithms for different English-speaking countries around the globe. See this link for the algorithms from the United States, Australia, Canada, and United Kingdom. Each has unique recommendations for CICO emergencies.

The American Society of Anesthesiologists Difficult Airway Algorithm outlines an approach to airway management, but at the bottom right of the chart, the plan for the CICO situation is “Emergency Invasive Airway Access.” A footnote reads “invasive airway access includes surgical or percutaneous airway, jet ventilation, and retrograde intubation.” The algorithm gives no definitive choice of which technique to use. This is a shortcoming of the American algorithm. There are invasive airway options, and in an emergency there can be no wavering or doubts regarding what to do. Per the data above, percutaneous airway and jet ventilation carry high failure and complication rates. Per discussion at the Stanford Anesthesia Grand Rounds, retrograde intubation is too slow, too difficult, and should be eliminated from the recipe for emergency lifesaving treatment.

The Australian algorithm uses the Vortex approach to managing an unexpected difficult airway.

the vortex approach

THE VORTEX APPROACH

Three options (face mask, endotracheal intubation, and laryngeal mask airway) are all attempted, in any order, to establish a patent airway. If all three methods fail to establish a patent airway, this (not the occurrence of oxygen desaturation) is the trigger to establish an emergency surgical airway (ESA). ESA techniques include either cannula or scalpel cricothyroidotomy to provide a patent airway as rapidly as possible. Note that the Australian Vortex approach endorses either cannula or scalpel cricothyroidotomy, and recommends that anesthesiologists be familiar with both FONA techniques.

The conclusions reached in the Stanford Grand Rounds most closely adhered to the British algorithm, which advocates the SBT (scalpel, bougie, endotracheal tube) method to securing a surgical airway. The SBT method has been specifically endorsed in the United Kingdom Difficult Airway Society algorithm. What follows is the text from the United Kingdom Difficult Airway Society guideline for a Can’t Intubate, Can’t Oxygenate event:

 

The United Kingdom Difficult Airway Society guideline for Failed intubation, failed oxygenation in the paralyzed, anaesthetised patient:

Fig5-Failed-intubation-failed-oxygenation-in-the-paralysed-anaesthetized-patient

Author’s addendum: Many or most patients who suffer CICO events will be obese and have thick or short necks. The cricothyroid membrane may not be easily palpable. Per the text above, the United Kingdom Difficult Airway Society guidelines recommend you make an 8-10 cm vertical skin incision, caudad to cephalad, over the cricothyroid area. This type of surgical maneuver is not a routine part of anesthetic practice, and it will require both skill and courage to commit to the incision. The guidelines next ask you to use blunt dissection with the fingers of both hands to separate tissues until you can identify the larynx and palpate the cricothyroid membrane. Once the cricothyroid membrane is identified, the scalpel incision is made through the cricothyroid membrane. This technique will no doubt create bleeding in the anterior neck, and will not be easy to perform. Enlisting the surgeon’s help during the procedure is advisable. Remember that controlling bleeding is not the primary issue—the primary goal is to locate the cricothroid membrane deep to the adipose of the anterior neck.

When I was a resident I was trained to give cricothyroid injections of lidocaine or cocaine to anesthetize the lumen of the trachea prior to awake fiberoptic intubations. The anatomy of the cricothyroid membrane in most patients is easily palpable, and it can be penetrated with minimal effort or bleeding. In a morbidly obese patient, this approach will be more difficult.

 

How to train anesthesiologists to perform SBT cricothyroidotomy:

This was the subject of discussion at the end of Grand Rounds. Because of the extreme rarity of CICO events, skills will be absent, lost, or dormant for many practitioners. Practice on simulators or plastic models at 6 months intervals was recommended. Dr. Bradley explained that in one approach in Britain, a two-person team traveled from operating room to operating room to teach the SBT method. One member of the teaching team relieved the anesthesiologist from the operating room, and the second member then took the anesthesiologist a room to enjoy a pot of tea and to learn from a plastic training model of the cricothyroid membrane. The final proposals for education and re-education to retain skills at Stanford and throughout the world are challenges for the future. Note that surgeons have almost no education at cricothyroid approaches. Head and neck surgeons are trained in tracheostomy, a different procedure that likely will take too much time to perform when compared to a cricothyroidotomy. Training of surgical colleagues also needs to be addressed in the future.

 

What You Should Do Now:

  1. Familiarize yourself with the anatomy of the cricothyroid membrane on each of your patients.
  2. Have an SBT kit containing a #10 scalpel, a bougie, and a #6 cuffed endotracheal tube included with each difficult airway cart at each facility you anesthetize at.
  3. I now carry an SBT kit in my briefcase which I take with me every day at work. In the current model of private practice in California, where we work at multiple different freestanding surgery centers and surgeon offices, this is a reliable means to assure that I have FONA equipment with me wherever I anesthetize patients.
  4. Be prepared. Review and rehearse the anatomy and skills necessary to perform front of neck surgical cricothyroidotomy in seconds.
  5. Work to avoid CICO events. Evaluate each airway prior to surgery. If a significant concern exists regarding a difficult intubation, a difficult mask ventilation, or a difficult FONA, use your judgment and perform an awake intubation. Securing an airway prior to anesthesia induction is a reliable way to avoid CICO disasters.

 

Two important take-home messages from this column are:

  1. Learn the specific the SBT recipe for front of neck access.
  2. Don’t hesitate and waste seconds—it will take courage to grab that scalpel, but that’s your job and your duty to your patient.

 

For further discussion and advice on airway emergencies, see my columns on Avoiding Airway Lawsuits, Airway Disasters, and The Most Important Technical Skill For an Anesthesiologist.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

The anesthesiaconsultant.com, copyright 2010, Palo Alto, California

For questions, contact:  rjnov@yahoo.com

 

 

 

 

 

AUTISM AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Anesthetizing uncooperative patients is difficult. The combination of autism and anesthesia requires careful planning.

autism and anesthesia

Children or adults with psychological, developmental, or behavioral disorders such as autism may be combative or aggressive, and may require extra measures of preanesthetic sedation or restraint. The parents/guardians and the anesthesia team need to be actively involved with forming the preoperative plan for uncooperative patients.

The incidence of autism in the United States is high—the Autism and Developmental Disabilities Monitoring (ADDM) Network of the Center for Disease Control estimates about 1 in 59 children has autism spectrum disorder (ASD).

Characteristics of autism include developmental delays of behavioral and social skills, and an inability to communicate. The symptoms of ASD stretch across a broad range from mild to incapacitating.

It’s not infrequent that autistic patients need surgery and anesthesia. Patients with autism commonly need to be sedated for routine procedures that a normal child or adult would cooperate with. Dental cases are common, and are frequently referred to a hospital because the typical care systems at an outpatient surgery center or a dental office are inadequate to complete a successful anesthetic.

The most common anesthesia induction technique in children and toddlers is an inhalation induction with sevoflurane. The routine practice of performing an inhalational sevoflurane induction on a child with autism may be impossible.

The most common anesthesia induction technique in adults involves the intravenous injection of propofol. The routine practice of starting a preoperative IV to begin anesthesia care on an adolescent or adult with autism may also be impossible.

Let’s look at an example case of an uncooperative adolescent who is adult-sized and who requires an anesthetic:

A 16-year-old, 70-kilogram male with Autistic Spectrum Disorder is scheduled for dental surgery and teeth cleaning. He is verbal with his mother, but refuses to interact with the anesthesia or nursing personnel. He refuses to change into a hospital gown, or to remove his long-sleeved sweater. He refuses to drink or swallow any premedication, he refuses an IV, and he refuses inhalation induction. The mother, who is the patient’s legal guardian, consents to surgery and anesthesia, but she is unable to convince her son to cooperate with the medical team.

What do you do?

The surgical and anesthetic team spent significant time explaining, reassuring, and coddling the patient, to no avail. They told the mother she had the choice of going home without any surgical procedure or anesthesia at all. The mother was adamant that the procedure needed to be performed. To this end, all parties agreed to the following plan:

  1. Two hospital security guards were called to the bedside in the preoperative area.
  2. The two hospital guards and the mother donned white operating room coveralls.
  3. At the mother’s consent, the guards laid the patient down on the hospital gurney, held him there, and the surgical team and the guards pushed the gurney down the hallway to the operating room (a significant distance of approximately 100 yards).
  4. Upon arrival in the operating room, one of the security guards uncovered the sweater from the patient’s arm, and the anesthesiologist injected an intramuscular mixture of 2 mg/kg ketamine, 0.2 mg/kg midazolam, and .02 mg/kg atropine into the patient’s deltoid muscle. The patient protested, and the mother reassured him.
  5. The oximeter and routine monitors were placed.
  6. Once the patient became sedated (2-4 minutes later), the mother was escorted from the room and the anesthesiologist started an IV in the patient’s arm. The patient was then preoxygenated via mask in the standard fashion, propofol 1 mg/kg and rocuronium 0.5 mg/kg were injected IV, and the trachea was intubated.
  7. The surgery proceeded as scheduled, with sevoflurane as maintenance anesthesia.
  8. At the conclusion of surgery, the patient was extubated awake and taken to the Post Anesthesia Care Unit (PACU) in stable condition. The mother was reunited with the patient there. The patient was sedate, calm, comfortable, and tolerated the PACU care well.
  9. The patient was discharged home without complications after 90 minutes in the PACU. The mother was happy with the perioperative care.

Perhaps this practice of intramuscular induction of anesthesia sounds brutal to you.

The intramuscular (IM) ketamine/midazolam/atropine induction of anesthesia as described in the case study above is effective. In our practice, the recipe is the combination of 2 mg/kg of ketamine, 0.2 mg of midazolam, and .02 mg/kg of atropine.

The ketamine concentration is 100 mg/ml. The midazolam concentration is 5 mg/ml. The total volume of the intramuscular injection in our case study patient was 140 mg ketamine (1.4 ml), 14 gm midazolam (2.8 ml), and 1.4 mg atropine (1.4 ml), for a total injectate volume of 5.6 ml. More dilute concentrations of these three drugs will necessitate too large a volume for intramuscular injection. This IM induction technique is effective in safely inducing general anesthesia without an IV within 2-4 minutes, and has been described in a previous article on dental office anesthesia.

There are more gentle approaches to an uncooperative patient—approaches which this patient would not agree to. The literature lists these options for premedication or induction of anesthesia in uncooperative patients:

  1. Intranasal premedication sedation with either 0.5 mg/kg of midazolam, or 1 microgram/kg of dexmedetomidine were found to be equally effective in sedating 20 uncooperativechildren aged 2-6 years for dental treatment visits. 0.25 mg/kg of atropine, in combination with 0.5 mg/kg of midazolam, and 1-2
  2. Oral premedication sedation with 5 mg/kg oral midazolam. Oral sedation is considered as the oldest, easiest way of administrating sedative drugs to pediatric patients. Midazolam is a well-known sedative, and we use this often in our practice if the patient will accept it. The effect initiates within 20–30 minutes of oral administration.
  3. Oral premedication with dexmedetomidine 5 mcg/kg.
  4. Oral midazolam, ibuprofen, and 6 mg/kg of ketamine. Oral ketamine of  up to 8 mg/kg has shown to effective in improving compliance during induction of anesthesia. Compared with oral midazolam, oral ketamine causes less respiratory depression. Ketamine does cause nystagmus, increased salivation, hallucinations and emergence delirium. When used alone as a premedicant ketamine has not been found to be effective. There is no significant difference between oral ketamine and oral midazolam in the postoperative recovery or hospital discharge.

Uncooperative children or adults with ASD will each have individualized needs. Patients with significant ASD may have severe objections to the doctor-patient relationship, and it can take a prolonged time to gain their trust. It’s important to discuss the perioperative anesthetic issues and the preoperative plan with a parent or guardian well in advance of the surgical date if possible. The anesthesia team can determine the simplest means of preoperative sedation/anesthesia to complete the case successfully, and the family can give input regarding previous anesthesia successes or failures. It’s optimal if the family and the MDs can agree to an appropriate approach to the anesthetic, days prior to the actual surgery.

Parents often ask about the risk of general anesthesia to the brain of their child. At present there is no documented connection between exposures to general anesthesia and the development or worsening of autistic symptoms. In a study of a birth cohort of 114,435 children from Taiwan from 2001 to 2010, 5197 children under the age of 2 years were exposed to general anesthesia and surgery. The 1 : 4 matched control group comprised 20,788 children. The results showed that neither exposure to general anesthesia and surgery before the age of 2 years age, nor the number of exposures, were associated with the development of autistic disorder. 

Do autistic patients suffer more complications from anesthesia and surgery than non-autistic patients? In a review by Arnold published in Pediatric Anesthesia in 2015, other than a significant difference in the premedication type and route (per the discussion above), children with ASD had similar perioperative experiences as non‐ASD subjects.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

 

 

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

The anesthesiaconsultant.com, copyright 2010, Palo Alto, California

For questions, contact:  rjnov@yahoo.com

 

NERVE BLOCKS AND NERVE INJURY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Let’s discuss an elephant in the room of operating room anesthesia–the association between peripheral nerve blocks and nerve injury.

hqdefault

The use of peripheral nerve blocks has crescendoed in anesthesia practice, stimulated by the use of ultrasound-guided visualization of nerves. There are growing economic industries in ultrasound machines, ultrasound block needles, and in anesthesia personnel who bill for this additional optional procedure on ortho