THE ANESTHESIOLOGIST AND THE NFL

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com

 

intubation1

 

The National Football League (NFL) of American football is a multibillion-dollar industry which dominates the sports airwaves and press headlines from the first preseason game each August until the Super Bowl each February. Do you know the intersection between an anesthesiologist and the NFL? On January 3rd, 2023, Buffalo Bills safety Damar Hamlin 24 suffered a cardiac arrest mid-game when he collapsed after a helmet to his sternum tackle against the Cincinnati Bengals. Hamlin received CPR on the field, and his heartbeat was restored before he was taken to a Cincinnati hospital. Was there an anesthesiologist involved in Damar Hamlin’s resuscitation? Almost certainly.

At each and every NFL game there must be one Airway Management Physician on the sideline. This Airway Management Physician is most commonly an anesthesiologist or an emergency medicine physician. My anesthesia company had the contract for the San Francisco 49ers Airway Management Physician during the 2005-2006 season, and I worked in this role. It was a fascinating job, and in this column I’ll fill you in on the experience.

Why must every NFL game have an Airway Management Physician on the field? Football is a violent sport played by young men of unprecedented speed and size. When these men collide there is always the risk of injury. The NFL Physicians Society (NFLPS) mandates a 27-person game-day medical staff.

nflhealthcarechart

Each sideline includes 2 orthopedists, 2 primary care physicians, 4 athletic trainers, 1 unaffiliated neurotrauma consultant, and 1 chiropractor. In addition, the Stadium Medical Team includes 1 dentist, 1 ophthalmologist, 1 Airway Management Physician, 2 Emergency Medical Technicians, 2 independent athletic trainers, 1 radiology technician, and 1 visiting team medical liaison.

During the game, common football injuries to the knee, ankle, foot, shoulder, elbow, or hand are matters for the team orthopedic specialists, the athletic trainers, and perhaps the chiropractor. Injuries to the head activate a concussion protocol in which the neurological examination is carried out with the aid of the neurotrauma consultant.

The Airway Management Physician is present in case of a severe medical complication. This would include a cardiac arrest, a respiratory arrest, a cervical spine injury, or an airway injury which impairs breathing. In these situations the acute medical management must follow the standard sequence of Airway, Breathing, and Circulation. The player’s airway must be open and secured prior to any effective breathing or cardiac care. If the player’s airway is not open, the Airway Management Physician is responsible for placing a breathing tube through the player’s mouth into his windpipe so oxygen can be effectively ventilated in and out of the lungs. The absence of oxygen to a patient’s brain for 3-5 minutes can cause permanent brain damage.

The NFL game day Airway Management Physician will be an experienced anesthesiologist or emergency room doctor, because these are the two specialties which deal with the placement of urgent breathing tubes in hospital operating rooms, emergency rooms, or intensive care units.

The urgent placement of an airway tube is called a Rapid Sequence Intubation, or RSI. Anesthesiologists routinely use RSI technique to place a breathing tube into a patient’s windpipe prior to emergency surgery. Emergency surgery patients are always classified as “full stomach” patients, meaning that they have not fasted for the required 8 hours prior to elective surgery. Patients who have full stomachs are at risk for vomiting their stomach contents into their lungs. This can be a lethal complication. In my 30+-year career as an anesthesia attending, I’ve placed thousands of RSI breathing tubes prior to surgeries. Emergency room physicians place RSI breathing tubes for various causes including trauma, cardiac arrests, or respiratory arrests.

To perform a RSI, the anesthesiologist or emergency room doctor will administer a hypnotic drug (such as propofol or ketamine) if the patient is conscious, followed by a paralyzing drug (such as succinylcholine or rocuronium). At the same time, a medical colleague (a surgeon or a nurse) will press down on the cricoid cartilage at the anterior aspect of the patient’s voice box. This is called a Sellick maneuver or cricoid pressure, and this serves to compress cricoid cartilage (which circles the windpipe) downward against the esophagus to reduce the chance of stomach contents regurgitating into the mouth and/or lungs.

Next the anesthesiologist or emergency room doctor inserts a lighted instrument called a laryngoscope into the patient’s mouth, to identify and visualize the opening to the trachea or windpipe. The physician then inserts a hollow plastic breathing tube called an endotracheal tube (ET tube) into the windpipe. The ET tube has an inflatable balloon near its tip. Once the ET tube is in place, the physician inflates the balloon to secure a tight fit within the windpipe. Oxygen can then be ventilated in and out of the tube via a breathing bag.

A RSI is a stressful acute medical procedure in which there is little room or time for error. If the physician has difficulty inserting the breathing tube and the patient has no oxygen entry, the patient can suffer anoxic brain damage within 3-5 minutes. In a hospital setting, even when the physician has all the necessary equipment at his or her fingertips, a RSI can be a harrowing experience. Trying to execute a RSI on the 50-yard-line of a football field, on a 300-pound athlete with a thick neck and who is wearing bulky shoulder pads and perhaps a football helmet, under national television audience scrutiny, would be stressful to the extreme.

No NFL player to date has ever had a cardiac or respiratory arrest on the football field during a game. On August 20th, 2005, San Francisco 49ers offensive lineman Thomas Herrion collapsed and died the locker room after a preseason game in Denver. Per a personal account from a physician present in the locker room at the time, the team had gathered around and closed their eyes to say the Lord’s Prayer, and during that prayer they heard a loud thump. They opened their eyes to see Herrion lying on the ground unconscious and seizing. No anesthesiologist or emergency room physician was present. The physicians who were present attempted to revive Herrion. He was transported to St. Anthony’s Central Hospital where he was pronounced dead.

Per coroner Amy Martin, a forensic pathologist in Denver, Herrion weighed 335 pounds and was 6 feet 3 inches tall. His autopsy was positive for significant blockage of the right coronary artery, and his cause of death was listed as heart disease. His blood tests were negative for any steroids or performance-enhancing drugs. He entered the game for about 20 plays near the end of the game, and he appeared to be in normal physical condition prior to entering the locker room.

In the weeks following Herrion’s death, my anesthesia company was hired to be the Airway Management Physicians for the remainder of that 49ers season. I was the Airway Management Physician for the September 25, 2005 game between the 49ers and the Dallas Cowboys at Candlestick Park in San Francisco. Prior to the game we dressed in team medical polo shirts in the team locker room with the other members of the medical team. Some physicians were engaged in pregame consultations with the trainers regarding players with injuries or ailments. Before the game I joined a group of physicians who walked to the opposing sideline to introduce ourselves to members of the Cowboys medical team. Just prior to kickoff, when the 49ers ran out of their locker room onto the field, we physicians walked just behind them. The soundtrack to our stadium entrance was the same roaring ovation that the sellout crowd gave their football heroes—it was an unforgettable experience.

I was given a small, 10 X 4 X 4-inch pouch labeled “RSI equipment.” Inside were the necessary items: the laryngoscope, the syringes, and the drugs necessary for a routine Rapid Sequence Intubation. I must confess that for multiple reasons I was praying I would not intubating a 335-pound lineman with the contents of that pouch on that day. Along with the other members of the medical team, I was instructed to remain between the 30-yard-line and the goal line on either end of the field, and not to enter the team bench area between the 30-yard-lines. I was given a red hat to wear so I could be easily identified in an emergency situation. I remained in the immediate vicinity of the other team doctors so I was ready for a team approach should an emergency occur. I watched the game vigilantly so I would be ready should an emergency occur.

There were no cardiac arrests or fractured cervical spines, and my services were not required on that Sunday. Following that season the 49ers contracted with the full-time faculty of Stanford Medical Center to be their Airway Management Physicians, and I never had the opportunity to reprise the experience of that one 49ers-Dallas game.

I was left with several lasting impressions regarding the NFL anesthesiologist experience:

  1. The sheer size of the linemen makes their airways potentially difficult to manage. I performed anesthetics on multiple San Francisco 49ers players for orthopedic surgeries over 15 years time. Their cardiovascular fitness was never in question, but their bulk was striking. A Body Mass Index (BMI) table states that a 335 pound, 6 foot 3 inch patient has a BMI=41. A BMI over 40 is defined as Morbid Obesity, and this is always a significant anesthesia concern. Morbid Obesity carries a risk classification of American Society of Anesthesiologists Class 3, which is defined as “a patient with a severe medical disease which is currently stable.” A professional athlete is more healthy than an inactive couch potato fan who watches the NFL on television, but nonetheless anesthetizing gigantic men requires skill and entails risk.
  2. A second lasting impression is that the RSI pouch I was given in 2005 would be woefully inadequate in 2017. An essential tool to intubate a 300-pound giant wearing football gear is a portable video laryngoscope, such as the McGrath 5: hqdefaultThis is a handheld tool with a camera on one end and a video screen on the other. The video laryngoscope allows the physician to see around the curves of a large man’s tongue and jaw, and to visualize the opening to the windpipe without moving or extending the cervical spine (which in some football injuries must be suspected of having an unstable fracture). I’m certain that modern day RSI equipment at NFL games includes not only a portable videoscope but also a larger array of breathing tubes and airway management tools such as you’d find in a difficult airway cart in an operating room or an emergency room. The American Society of Anesthesiologists Difficult Airway Algorithm references the optimal approach to any airway difficulty, and an airway emergency on an NFL playing field would be best managed per this Algorithm.
  3. My third profound recollection is how memorable it was to be on the sideline for an NFL game, and how memorable it was to witness the spectacle up close. My own football skills never advanced past 3-on-3 touch football, but I’m a fan, and I’ll always remember my adventure as a member of the medical team for America’s number one sports attraction.

As of January 4th, 2023, our thoughts and prayers are with Damar Hamlin and his family, with the hopes that the NFL’s preparation for acute cardiac arrest injuries proves successful in his case.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

SUCCINYLCHOLINE: VITAL DRUG OR OBSOLETE DINOSAUR?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com

Succinylcholine: vital drug or dinosaur? Succinylcholine (sux) has the wonderful advantage of rendering a patient paralyzed in less than a minute, and the discouraging disadvantage of a long list of side effects that make the drug problematic.

succinylcholine_chloride_10_med-21

A vial of succinylcholine

I would never begin an anesthetic without succinylcholine being immediately available. No other muscle relaxant supplies as rapid an onset of action and as short a duration of action. An intravenous dose of 1 mg/kg of succinylcholine brings complete paralysis of the neuromuscular junction at 60 seconds, and recovery to 90% of muscle strength in 9 – 13 minutes. (Miller’s Anesthesia, 7th Edition, 2009, Chapter 29, Pharmacology of Muscle Relaxants and Their Antagonists). If a patient has an acute airway disaster on induction such as laryngospasm or pulmonary aspiration, no drug enables emergency endotracheal intubation as quickly as succinylcholine. That said, I never use succinylcholine unless I have to. The drug has too many side effects and rocuronium is often a better choice. For an elective anesthetic on a patient who has fasted and has an empty stomach, one almost never needs to use succinylcholine. If you do use sux, you are exposing your patient to the following side effects:

1. Myalgias. Your patient complains to you the following day, “Doc, I feel like I was run over by a truck.” Because the majority of anesthetics are currently done on outpatients, and because you do not personally interview these patients the following day, you won’t be aware of the degree of muscle pain you’ve induced by using the depolarizing relaxant succinylcholine. Published data quantitates the incidence of post-succinylcholine myalgia as varying from 0.2 % to 89% (Brodsky JB, Anesthesiology 1979; 51:259-61), but my clinical impression is that the number is closer to 89% than it is to 0.2%. Myalgias aren’t life-threatening, but if you ever converse with your patient one day after succinylcholine and they complain of severe muscle aches, you’ll wish you’d chosen another muscle relaxant if possible.
2. Risk of cardiac arrest in children. Succinylcholine carries a black box warning for use in children. Rare hyperkalemia and ventricular arrhythmias followed by cardiac arrest may occur in apparently healthy children who have an occult muscular dystrophy. The black box warning on succinylcholine recommends to “reserve use in children for emergency intubation or need to immediately secure the airway.”
3. Hyperkalemia, with an average increase of 0.5 mEq in potassium concentration after intravenous succinylcholine injection.
4. Cardiac arrest in patients with a history of severe trauma, neurologic disease or burns. There’s a risk of cardiac arrest with succinylcholine use in patients with severe burns, major trauma, stroke, prolonged immobility, multiple sclerosis, or Guillian-Barré syndrome, due to an up-regulation of acetylcholine. The increase in serum potassium normally seen with succinylcholine can be greatly increased in these populations, leading to ventricular arrhythmia and cardiac arrest. There is typically no risk using succinylcholine in the first 24 hours after the acute injury.
5. Cardiac arrhythmias. Both tachy and bradycardias can be seen following the injection of succinylcholine.
6. Increase in intraocular pressure, a hazard when the eye is open or traumatized.
7. Increase in intragastric pressure, a hazard if gastric motility is abnormal or the stomach is full.
8. Increase in intracranial pressure, a hazard with head injuries or intracerebral bleeds or tumors.
9. Malignant Hyperthermia (MH) risk. The incidence of MH is low. A Danish study reported one case per 4500 anesthetics when triggering agents are in use (Ording H, Dan Med Bull, 43:111-125), but succinylcholine is the only injectable drug which is a trigger for MH, and this is a disincentive to use the drug routinely.
10. Prolonged phase II blockade. Patients who have genetically abnormal plasma butyrylcholinesterase activity have the risk of a prolonged phase II succinylcholine block lasting up to six hours instead of the expected 9 – 13 minutes. If you’ve ever had to stay in the operating room or post-anesthesia recovery room for hours with a ventilated patient after their surgery ended because your patient incurred prolonged blockade from succinylcholine, you won’t forget it, and you’ll hope it never happens again.

What does a practicing anesthesiologist use instead of succinylcholine? Rocuronium.

A 0.6 mg/kg intubating dose of the non-depolarizing relaxant rocuronium has an onset time to maximum block of 1.7 minutes and a duration of 36 minutes. The onset time can be shortened by increasing the dose to a 1.2 mg/kg, a dose which has an onset time to maximum block of 0.9 minutes and a duration of 73 minutes. These durations can be shortened by reversing the rocuronium blockade as soon as one twitch is measured with a neuromuscular blockade monitor. Thus by using a larger dose of rocuronium, practitioners can have an onset of acceptable intubation conditions at 0.9 X 60 seconds = 54 seconds, compared to the 30 seconds noted with succinylcholine, without any of the 10 above-listed succinylcholine side effects. The duration of rocuronium when reversed by neostigmine/glycopyrrolate can be as short as 20 – 25 minutes, a time short enough to accommodate most brief surgical procedures.

Now that sugammadex is commercially available, we can reverse rocuronium blockade in seconds, making rocuronium shorter in duration than succinylcholine.

Here is a list of surgical cases once thought to be indications for using succinylcholine, which I would argue are now better served by using a dose of rocuronium followed by early reversal with sugammadex:

1) Brief procedures requiring intubation, such as bronchoscopy or tonsillectomy.
2) Procedures which require intubation plus intraoperative nerve monitoring, such as middle ear surgery.
3) Procedures requiring intubation of obese and morbidly obese patients who appear to have no risk factors for mask ventilation.
4) Procedures requiring full stomach precautions and cricoid pressure, in which the patient’s oxygenation status can tolerate 54 seconds of apnea prior to intubation. This includes emergency surgery and trauma patients. Miller’s Anesthesia (Chapter 72, Anesthesia for Trauma) discusses the induction of anesthesia and endotracheal intubation for emergency patients who are not NPO and may have full stomachs. Either succinylcholine or rocuronium can be used, with succinylcholine having the advantage of a quicker onset and the 1.2 mg/kg of rocuronium having the advantage of lacking the 10 side effects listed above. The fact that succinylcholine takes 9 – 13 minutes to wear off makes it riskier than rocuronium, which can be reversed in seconds by sugammadex. Waiting for 9 minutes for a return to spontaneous respirations after succinycholine would be associated with severe hypoxia.

On the other hand, succinylcholine is the sole recommended muscle relaxant for:

1) Cesarean sections. Miller’s Anesthesia (Chapter 69, Anesthesia for Obstetrics) still recommends thiopental and succinylcholine for Cesarean sections that require general anesthesia, and I would be loath to disagree with our specialty’s Bible.
2) Electroconvulsive therapy (ECT) for depression. Miller’s Anesthesia (Chapter 79, Anesthesia at Remote Locations) recommends partial muscle relaxation during ECT, and recommends small doses of succinylcholine (0.5 mg/kg) to reduce the peripheral manifestations of the seizure and to prevent musculoskeletal trauma to the patient.
3) Urgent intubation or re-intubation in a patient when every second counts, e.g. a patient who is already hypoxic. A subset of this indication is the patient who is being mask-induced and becomes hypoxic and requires intramuscular succinylcholine injection.
4) Laryngospasm either during mask induction or post-extubation, in which the patient requires urgent paralysis to relax the vocal cords.

In conclusion, most indications for muscle relaxation are better handled by using the non-depolarizing drug rocuronium rather than succinylcholine. However, because of the four recommended uses for succinylcholine listed in the previous paragraph, none of us would ever practice anesthesia without a vial of succinylcholine in our drawer for immediate availability.

I try very, very hard to minimize my use of succinylcholine, and so should you. But to answer our original question… succinylcholine is still a vital drug and not a dinosaur at all.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited