DOCTOR VITA IS COMING

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

artificial_intelligence_ai_healthcare

My name is Rick Novak, and I’m a double-boarded anesthesiologist and internal medicine doctor and a writer of medical fiction. I’m here to talk about Doctor Vita, a vision of the future of Artificial Intelligence in Medicine.

I’m an Adjunct Clinical Professor of Anesthesiology, Perioperative and Pain Medicine at Stanford and the Deputy Chief of the department. I don’t tout myself as an expert in AI technology, but I am an expert in taking care of patients, which I’ve done in clinics, operating rooms, intensive care units, and emergency rooms at Stanford and in Silicon Valley for over 30 years.

AI is already prevalent in our daily life. Smartphones verbally direct us to our destination through mazes of highways and traffic. Self-driving cars are in advanced testing phases. The Amazon Echo brings us Alexa, an AI-powered personal assistant who follows verbal commands in our homes.Artificial intelligence in medicine (AIM) will grow in importance in the decades to come and will change anesthesia practice, surgical practice, perioperative medicine in clinics, and the interpretation of imaging. AI is already prevalent in our daily life. Smartphones verbally direct us to our destination through mazes of highways and traffic. Self-driving cars are in advanced testing phases. The Amazon Echo brings us Alexa, an AI-powered personal assistant who follows verbal commands in our homes. AIM advances are paralleling these inventions in three clinical arenas:

Surgical Robot

1. Operating rooms: Anesthesia robots fall into two groups: manual robots and pharmacological robots. Manual robots include the Kepler Intubation System intubating robot:

designed to utilized video laryngoscopy and a robotic arm to place an endotracheal tube, the use of the DaVinci surgical robot to perform regional anesthetic blockade, and the use of the Magellan robot to place peripheral nerve blocks.

Magellan robot for placing regional anesthetic blocks

Pharmacological robots include the McSleepy intravenous sedation machine, designed to administer propofol, narcotic, and muscle relaxant:

McSleepy anesthesia robot

and the iControl-RP machine, described in The Washington Post as a closed-loop system intravenous anesthetic delivery system which makes its own decisions regarding the IV administration of remifentanil and propofol. This device monitors the patient’s EEG level of consciousness via a BIS monitor device as well as traditional vital signs. One of the machine’s developers, Mark Ansermino MD stated, “We are convinced the machine can do better than human anesthesiologists.” The current example of surgical robot technology in the operating room is the DaVinci operating robot. This robot is not intended to have an independent existence, but rather enables the surgeon to see inside the body in three dimensions and to perform fine motor procedures at a higher level. The good news for procedural physicians is that it’s unlikely any AIM robot will be able to independently master manual skills such as complex airway management or surgical excision. No device on the horizon can be expected to replace anesthesiologists. Anesthetizing patients requires preoperative assessment of all medical problems from the history, physical examination, and laboratory evaluation; mask ventilation of an unconscious patient; placement of an airway tube; observation of all vital monitors during surgery; removal of the airway tube at the conclusion of most surgeries; and the diagnosis and treatment of any complication during or following the anesthetic.

IBM Watson AI Robot

2. Clinics: In a clinic setting a desired AIM application would be a computer to input information on a patient’s history, physical examination, and laboratory studies, and via deep learning establish a diagnosis with a high percentage of success. IBM’s Watson computer has been programmed with over 600,000 medical evidence reports, 1.5 million patient medical records, and two million pages of text from medical journals. Equipped with more information than any human physician could ever remember, Watson is projected to become a diagnostic machine superior to any doctor. AIM machines can input new patient information into a flowchart, also known as a branching tree. A flowchart will mimic the process a physician carries out when asking a patient a series of increasingly more specific questions. Once each diagnosis is established with a reasonable degree of medical certainty, an already-established algorithm for treatment of that diagnosis can be applied. Because anesthesiology involves preoperative clinic assessment and perioperative medicine, the role of AIM in clinics is relevant to our field.

Artificial Intelligence and X-ray Interpretation

3. Diagnosis of images: Applications of image analysis in medicine include machine learning for diagnosis in radiology, pathology, and dermatology. The evaluation of digital X-rays, MRIs, or CT scans requires the assessment of arrays of pixels. Future computer programs may be more accurate than human radiologists. The model for machine learning is similar to the process in which a human child learns–a child sees an animal and his parents tell him that animal is a dog. After repeated exposures the child learns what a dog looks like. Early on the child may be fooled into thinking that a wolf is a dog, but with increasing experience the child can discern with almost perfect accuracy what is or is not a dog. Deep learning is a radically different method of programming computers which requires a massive database entry, much like the array of dogs that a child sees in the example above, until a computer can learn the skill of pattern matching. An AIM computer which masters deep learning will probably not give yes or no answers, but rather a percentage likelihood of a diagnosis, i.e. a radiologic image has a greater than a 99% chance of being normal, or a skin lesion has a greater than 99% chance of being a malignant melanoma. In pathology, computerized digital diagnostic skills will be applied to microscopic diagnose. In dermatology, machine learning will be used to diagnosis skin cancers, based on large learned databases of digital photographs. Imaging advances will not directly affect anesthesiologists, but if you’re a physician who makes his or her living by interpreting digital images, you should have real concern about AIM taking your job in the future.

There’s currently a shortage of over seven million physicians, nurses and other health workers worldwide. Can AIM replace physicians? Contemplate the following . . . 

All medical knowledge is available on the Internet:

Most every medical diagnosis and treatment can be written as a decision tree algorithm:

Voice interaction software is excellent:

The physical exam is of less diagnostic importance than scans and lab tests which can be digitalized:

Computers are cheaper than the seven-year post-college education required to train a physician:

versus an inexpensive computer:

There is a need for cheaper, widespread healthcare, and the concept of an automated physician is no longer the domain of science fiction. Most sources project an AIM robot doctor will likely look like a tablet computer. For certain applications such as clinical diagnosis or new image retrieval, the AIM robot will have a camera, perhaps on a retractable arm so that the camera can approach various aspects of a patient’s anatomy as indicated. Individual patients will need to sign in to the computer software system via retinal scanners, fingerprint scanners, or face recognition programs, so that the computer can retrieve the individual patient’s EHR data from an Internet cloud. It’s possible individual patients will be issued a card, not unlike a debit or credit card, which includes a chip linking them to their EHR data.

What will be the economics of AI in medicine? Who will pay for it? America spends 17.8% of its Gross National Product on healthcare, and this number is projected to reach 20% by 2025. Entrepreneurs realize that healthcare is a multi-billion dollar industry, and the opportunity to earn those healthcare dollars is alluring.

It’s inevitable that AI will change current medical practice. Vita is the Latin word for “life.” I’ve coined the name “Doctor Vita” for the AI robot which will someday do many of the tasks currently managed by human physicians.

These machines will breathe new life into our present healthcare systems. In all likelihood these improvements will be more powerful and more wonderful than we could imagine. A bold prediction: AI will change medicine more than any development since the invention of anesthesia in 1849. Doctor Vita from All Things That Matter Press describes a fictional University of Silicon Valley Medical Center staffed by both AI doctors and human doctors. How physicians interact with these machines will be a leading question for our future. AI in medicine will arrive in decades to come. Michael Crichton wrote Jurassic Parkin 1990, 29 years ago, and we still do not see genetically recreated dinosaurs roaming the Earth. But we will see AI in medicine within 29 years. You can bet on it.

Here’s a dilemma: In 2018 and 2019 autopilots drove two Boeing 737 Max airplanes to crashes despite the best efforts of human pilots to correct their course. To date there have been 3 deaths of drivers in self-driving Tesla automobiles. What will happen when AI intersects with medicine and we have machines directing medical care? In the spirit of Jules Verne, this century’s trip around the world, to the center of the earth, to the moon, or beneath the ocean’s surface is the coming of Artificial Intelligence in Medicine.

For the bibliography click here.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

DOCTOR BY DAY, SCI-FI WRITER BY NIGHT

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

This week the Palo Alto (California) Weekly ran a feature story on Rick Novak and Doctor Vita

Doctor by day, sci-fi novelist by night

Longtime Atherton resident spotlights AI and medicine in books

Dr. Rick Novak poses for a portrait at Stanford Hospital in Palo Alto on May 23. Photo by Magali Gauthier/The Almanac

Between his time in the operating room, teaching, and raising his three sons, Atherton resident Dr. Rick Novak has found time to write two novels.

Novak, 65, an anesthesiologist at the Waverley Surgery Center in Palo Alto, recently published his latest, “Doctor Vita,” a story about an artificial intelligence (AI) physician module that goes awry.

It’s a science fiction novel that explores how technological breakthroughs like artificial intelligence and robots will affect medical care — and already have.

The Almanac, an Embarcadero Media publication which serves Menlo Park, Atherton, Woodside, and Portola Valley California, featured a story “Fiction or the Future?” on Rick Novak and Doctor Vita the same week.

This image has an empty alt attribute; its file name is img_7298.jpg

GRADY HARP REVIEWS DOCTOR VITA. “A SPLENDID AND TIMELY NOVEL”

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

This image has an empty alt attribute; its file name is 41-ohrtMGeL._US230_.jpg

Grady Harp, Amazon Hall of Fame Top 100 Reviewer

April 20, 2019

Once again Rick Novak serves up a virulent novel that addresses an ongoing change in medicine that worries most of us – the growing dependence on robotics in surgery and the dehumanization of medicine: doctor patient interaction is altered by EMR and IT reporting of visits to insurance companies and the warmth of communication suffers. Rick takes this information to create a story about the extremes of AI in the form of a glowing globe that is Dr Vita and the struggle computer scientist/anesthesiologist Dr Lucas assumes as he tries to save medicine from the extremes of the ‘new age’ called FutureCare. As expected, Rick’s recreation of the tension in the OR and in interaction of the physicians is on target: his own experiences enhance the veracity of the story’s atmosphere.

Rick Novak writes so extremely well that likely has answered the plea of his readers to continue this `hobby’. He is becoming one of the next great American physician authors – think William Carlos Williams, Theodore Isaac Rubin, Oliver Wolf Sacks, Richard Selzer, and also the Brits Oliver Wendell Holmes et al. Medicine and writing can and do mix well in hands as gifted as Rick Novak. Highly Recommended. Grady Harp, April 19

This image has an empty alt attribute; its file name is fullsizeoutput_c952.jpeg

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

THE FIRST CHAPTER OF DOCTOR VITA BY RICK NOVAK

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

robotic-procedures

The first chapter of Doctor Vita by Rick Novak opens with a scene unlike any you’ve ever read before.

Chapter 1    THE BRICKLAYER

Alec Lucas’s first contact with FutureCare came in operating room #19 at the University of Silicon Valley Medical Center, where his patient Elizabeth Anderson blinked into the twin suns of the surgical lights hanging from the ceiling. A clear plastic oxygen mask covered Elizabeth’s nose and mouth, her cheeks were pale and tear-stained, and a strand of gray hair protruded from a blue paper bonnet. Her hand trembled as she reached up to remove the mask.

“I’m scared,” she said.

“I’m not,” said Dr. Lucas, who was her anesthesiologist. A green paper mask covered his face, but his pale blue eyes sparkled at her. He hummed to himself as he injected a dose of midazolam into Elizabeth’s IV to relax her.

“Am I crazy to go through this?” she said. “A 78-year-old lady with cancer?”

“We’re hoping your cancer can be cured with surgery,” Alec said. “Right now you’re doing great. Everything is perfect. Have a wonderful dream.” Elizabeth had cancer of the stomach, and presented today for robot-assisted laparoscopic surgery to remove half her stomach. It was a huge surgery—a risky surgery. Alec wondered why they were doing this operation on this lady. He questioned the aggressive strategy for a woman this old, but his job was to anesthetize, not to philosophize.

He’d seen presurgery anxiety like hers hundreds of times. The best way to cure her fears was to get her off to sleep. He injected doses of propofol and rocuronium into her intravenous line. The drugs flowed into Elizabeth’s arm, and within ten seconds her eyes closed. He inserted the lighted blade of a laryngoscope into her mouth, and visualized the white and shining upside-down “V” of her vocal cords, hovering in a sea of pink tissue. He slid a hollow plastic tube between the cords and into the blackness of the trachea beyond. Then he activated the ventilator, which blew a mixture of oxygen and sevoflurane through the tube into her lungs.

“I haven’t worked with you before, Dr. Lucas,” said the circulating nurse, who stood at the patient’s side. “My name is Maggie.”

“Of course you’ve never worked with me,” he said. “I told the nursing supervisor I never wanted to work with Maggie.” Then he winked at her and said, “We haven’t worked together because today is my first day on staff here. I’ve been at the University of Chicago since my first day of medical school. After fifteen years of shoveling snow, it was time to give California a try.”

Alec looked up as the surgeon, Xavier Templeton, entered the room. A tall scrawny man, Templeton had pale hairless matchstick arms that looked better hidden within a surgical gown. His bushy eyebrows met in the midline, and his left eye squeezed in an involuntary tic. Templeton’s hands wouldn’t touch Elizabeth Anderson’s skin or stomach today. His hands would control two levers on a console worthy of a spacecraft, and each move he made would be translated into the movement of a five-armed machine named the Michelangelo III, also known as The Bricklayer.

The five slender mechanical arms of The Bricklayer, dull gunmetal gray in color, dangled like the legs of a giant spider above Elizabeth Anderson’s abdomen. Each arm was draped in clear plastic to keep The Bricklayer sterile when it entered her body through tiny incisions.

Alec accepted his role of goaltender at the Pearly Gates. His assignment was to keep Elizabeth Anderson asleep and alive, while Templeton and The Bricklayer resected her tumor.

Twenty minutes into the surgery, Xavier Templeton sat on a chair in the corner of the room with his back to the operating table, and peered into a binocular stereo viewer. His hands maneuvered two levers on the console before him. On the operating table, the five robot arms reached into the abdomen though five one-centimeter incisions. One of the arms held a camera on a thin metal rod, movable at the surgeon’s control. A seventh-year resident worked as a surgical assistant, and attached appropriate operating instruments to the other 18-inch-long robot arms.

The two surgeons murmured to each other in quiet voices. Alec watched the surgery on a large flat screen video monitor that hung above him. He saw pink tissues, robot fingers moving, and a lot of irrigating and blunt dissection. The surgery was going well, and Alec made only minor adjustments in his drug doses and equipment as needed.

Then one thing changed.

One of the robot fingers on the video screen convulsed in staccato side-to-side slicing movements of its razor-sharp tip. A clear plastic suction tube exiting from the patient’s abdomen lurched and became an artery of bright red blood. The scarlet tube emptied into a bottle two feet in front of Alec. In sixty seconds the three-liter bottle was full of blood. Fifty-eight seconds prior to that, Alec was on his feet and both hands were moving. A flip of a switch sent a stream of fluid through the biggest IV into the patient. He turned off all the anesthesia gases and intravenous anesthetic medications.

“Big time bleeding, Dr. Templeton,” Alec shouted to the surgeon.

As fast as he could infuse fluid into two IVs, Alec could not keep up with the blood loss draining into the suction tube. The blood pressure went from normal to zero, and a cacophony of alarms sounded from the anesthesia monitoring system.

Templeton descended from his perch on the far side of the room, and put on a sterile gown and gloves. He took a scalpel from the scrub tech, and in one long stroke made an incision down the midline of the abdomen from the lower end of the breastbone to the pubic bone. With two additional long swipes, the left and right sides of Elizabeth Anderson parted. A red sea rose between them. The surgical resident and the scrub tech held suction catheters in the abdomen, but the stream of blood bubbled upward past the catheters. Templeton cursed and reached his right hand deep to the posterior surface of the abdominal cavity, feeling for the blood vessel on the left side of the spinal column. He found it, and squeezed the empty and pulseless aorta.

Alec looked at the monitors. The blood pressure was zero, and the electrocardiogram showed the heart was whipping along at a rate of 170 beats per minute. His patient had one foot in the grave. “Have you got control up there?” he screamed at Templeton.

“God damn it! I’m squeezing the aorta between my fingers,” Templeton answered. “As soon as I can see, I’ll put a clamp on the vessel. The bleeding is everywhere. I can’t see a damn thing.” Templeton’s face, mask, hat, and gown were drenched with the blood of Elizabeth Anderson. His unibrow was a red and black dotted line.

“Fire up the Maytag,” Alec said to Maggie. “Call the blood bank and activate the massive transfusion protocol.” Alec bent over the Maytag, a rapid blood infusion device with a bowl the size of a small washing machine. He turned the Maytag to its top flow rate. The machine hummed and spun, and the basin of IV fluid emptied into Elizabeth Anderson through a hose as wide as a small hot dog.

Despite the infusion of fluid, her blood pressure peaked at a dismal 65/40. “Have you found the hole yet?” he said to Templeton.

“Torn aorta. There are multiple holes—the aorta’s leaking like a sprinkler hose,” Templeton said without looking up. His left eye was blinking and squeezing repeatedly as he worked. “It’s terrible. The inferior vena cava is shredded and the blood from the lower half of her body is pouring out into her abdomen. The blood is everywhere.” Blink, squeeze. “Her vessels are falling apart like tissue paper.”

An orderly ran into the operating room carrying a red plastic beer cooler. Alec grabbed the cooler and popped off the top. Inside were six units of packed red blood cells, six units of fresh frozen plasma, and six units of platelets from the blood bank. “Check all the units and let’s get them flowing,” he said to Maggie.

Maggie picked up each bag and double-checked the patient’s name and the unit numbers with a second nurse, and then she handed the entire cooler to Alec. He drained each of the units of blood products into the basin of the Maytag, and the bowl hummed and pumped the blood into Elizabeth Anderson. The blood pressure began to climb, but one look at the crimson suction tubes exiting the patient’s stomach told Alec they were still in trouble. The bleeding wasn’t slowing. Blood was exiting faster than he could pump it in.

“We need a second cooler of blood products stat!” he said. Maggie picked up a telephone and relayed the order to the blood bank.

Alec looked at the surgical field, and the patient’s blood was everywhere—on Templeton’s face, hands, gown, on the surgical drapes and on the floor. It was everywhere but where it needed to be—inside her blood vessels. Templeton’s resident was jamming a suction catheter into the abdomen next to Templeton’s fingers, trying to salvage as much blood as he could.

“Damn it,” Templeton said. “She’s still bleeding, and now she’s bleeding pink piss water. I can see through her blood, it’s so dilute. How much fluid have you given her?”

“Six units of blood, six units of plasma, six units of platelets, and eight liters of saline.”

Alec glanced at the monitors and saw that her blood pressure had plateaued at a near-lethal level of 40/15.

“Her blood isn’t clotting anymore,” Templeton said. “The blood’s oozing and leaking everywhere I place a suture.”

Alec palpated her neck, and there was no pulse. “She has no blood pressure and no pulse,” he said. “We need to start CPR.”

Templeton’s resident placed the palms of his hands on Elizabeth Anderson’s breastbone and began chest compressions. The patient’s heart rate of 180 beats per minute slowed to 40 beats per minute, with premature beats and pauses between them. After twenty seconds of a slow irregular rhythm, her heartbeat tracing faded into the quivering line diagnostic of ventricular fibrillation.

Alec injected 1 milligram of epinephrine, and screamed, “Bring in the defibrillator.”

A second nurse pushed the defibrillator unit up to the operating room table. Templeton charged the paddles, applied them to the patient’s chest, and pushed the buttons. Elizabeth Anderson’s body leapt into the air as the shock of electrical energy depolarized every muscle of her body. All eyes turned to the ECG rhythm, and it was worse than ever.

Flat line.

“Damn it. Give me the scalpel back,” Templeton said. He carved a long incision between the ribs on the left side of Elizabeth Anderson’s chest, and inserted his hand into her thorax.

“I have her heart in my hand and I’m giving her direct cardiac massage,” he said. Alec looked at the monitors, and the direct squeezing of the heart was doing nothing. The blood pressure was still zero, and now blood was oozing from the skin around her IV sites, as well as from the surgical wounds in her abdomen.

Elizabeth Anderson’s heart was empty. Her blood vessels were empty. Her blood pressure had been near-zero for twenty-five minutes.

“What do you think, sir, should we call it?” Templeton’s resident said.

Templeton pulled his hand out of Elizabeth Anderson’s chest, and looked at the clock. “I pronounce her dead, as of 8:48 a.m. Damn, damn, damn it!”

Alec reached over and turned off the ventilator. The mechanical breathing ceased, and there was nothing left to do. He looked down at Elizabeth Anderson’s bloated face. Two strips of clear plastic tape held her eyes fastened shut, and her cheeks were as white as the bed sheet she rested on. A length of pink tape held the breathing tube fixed to her upper lip, and blood oozed from her nose and from the membranes between her teeth. This lady walked into the University of Silicon Valley Medical Center today hoping for a surgical miracle, and instead she was going to the morgue looking like this.

Xavier Templeton peeled his gloves off. “Goddamn it! The fricking robot went berserk. Sliced into the artery like a goddamned hedge trimmer. Now I have to tell the family she’s dead. Goddamn damn it!” He scowled in Alec’s direction. “Are you coming with me, Dr. Lucas?”

Alec nodded a yes. He looked at the gloomy outline of The Bricklayer’s arms, and then back at Templeton. Templeton was a fool to blame the medical device for his own ineptitude. The machine could do no wrong on its own.

This was the surgeon’s fault. Alec had heard it all before. Accept compliments and deflect all blame—it was an adage as old as the profession of surgery.

Templeton commanded The Bricklayer. And The Bricklayer was no better than the human hands that led it.

fullsizeoutput_c952

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

DOCTOR VITA AND THE BS IN HEALTHCARE

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

Last week Lawton Burns PhD and Mark Pauly PhD of the Wharton School of Business at the University of Pennsylvania published a landmark economic article entitled, “Detecting BS in Health Care.” Yes, you did not read that wrong—the academic paper used the abbreviation “BS” to describe the bull—- in the healthcare industry.

BS in Health Care

 

As a practicing physician, I find it to be a fascinating paper, and I recommend you click on the link and read it. The authors begin with a discussion of the art and value of BS detection. They mention that Ernest Hemingway was once asked, “Is there one quality needed to be a good writer, above all others?”

Hemingway replied, “Yes, a built-in, shock-proof, crap detector.”

The authors write, “While flat-out dishonesty for short term financial gains is an obvious answer, a more common explanation is the need to say something positive when there is nothing positive to say. . . . The incentives to generate BS are not likely to diminish—if anything, rising spending and stagnant health outcomes strengthen them—so it is all the more important to have an accurate and fast way to detect and deter BS in health care.”

The authors list their Top 10 Forms of BS in Health Care. The first four forms of BS weave a common theme:

  1. Top-down solutions: High-level executives and top management in the health care industry are supposed to engineer alternative payment models, but nothing has worked to date.
  2. One-size-fits-all, off-the-shelf: Leadership of industry and government assume one solution will work for multiple organizations, without customization.
  3. Silver-bullet prescriptions: A “silver bullet” is described as something that will cure all ills, and must be implemented because it been “decided that it is good for you,” Electronic health records (EHRs) are a prime example of a silver-bullet prescription. The federal government pushed the use of EHRs, claiming the systems would reduce costs and improve quality—but Burns and Pauly argue EHRs “eventually raised costs and only mildly touched a few quality dimensions.”
  4. Follow the guru: We must follow a visionary guru with a mystical revelation about what needs to be done. The authors describe how, in health care, Harvard professor Michael Porter and former CMS (Center of Medicare and Medicaid) administrator Don Berwick launched theories based on population health, and per-capita cost, to little success.

The current U.S. healthcare market is dominated by large corporations, led by businessmen who outline a yellow brick road for physicians to lead patients along. There is minimal effective policy-making from physicians. Healthcare stocks consistently grow in value, with little relationship to an improvement in clinical care, value, or cost. The government is involved as well, as in their mandate for Electronic Health Records (EHRs), a technology change that cost a lot of money, while forging a barrier between clinicians and the patients we are trying to interview, examine, and care for.

Where will the current trends take us? Will businessmen and/or the government prescribe health care? Will more and more computers and machines dominate health care?

Self-driving cars, Siri, Alexa, automated checkouts at Safeway, and IBM’s Watson are technologic realities. Will we someday see a self-driving physician with the voice of Siri and the brains of Watson?

Call that device “Doctor Vita.”

The saga of Doctor Vita arrives in 2019 from All Things That Matter Press.

 

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

 

 

 

 

 

Coming in 2019, from All Things That Matter Press: DOCTOR VITA, Rick Novak’s second novel

the anesthesia consultant

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Latest posts by the anesthesia consultant (see all)

ai-medical-1-orig

 

How do you imagine the future of medical care? Cherubic young doctors holding your hand as you tell them what ails you? Genetic advances or nanotechnology gobbling up cancerous cells and banishing heart disease? Rick Novak describes a flawed future Eden where the only doctor you’ll ever need is Doctor Vita, the world’s first artificial intelligence physician, endowed with unlimited knowledge, a capacity for machine learning, a tireless work ethic, and compassionate empathy.

artificial-intelligence-in-medicine

In this science fiction saga of man versus machine, Doctor Vita blends science, suspense, untimely deaths, and ethical dilemma as the technological revolution crashes full speed into your healthcare.

robo_aberta

Set on the stage of the University of Silicon Valley Medical Center, Doctor Vita is the 1984 of the medical world– a prescient tale of Orwellian medical advances.

 

%d bloggers like this: