INEXPERIENCED DOCTORS, OVERCONFIDENT DOCTORS, AND YOU

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

THE JULY EFFECT AND THE NOVEMBER EFFECT: In American teaching hospitals, newly minted doctors begin internships each July. The term “July Effect” was coined to describe this shift change in academic hospitals each July, when the arrival of inexperienced doctors may increase the risks of medical care. In the United Kingdom, newly minted doctors begin their internships each August. In Britain, August has been referred to as the “Killing Season,” because of a perceived increased risk of medical complications, morbidity, and mortality with new doctors during their first month on duty.

In American teaching hospitals, newly minted doctors begin internships each July. The term “July Effect” was coined to describe this shift change in academic hospitals each July, when the arrival of inexperienced doctors may increase the risks of medical care. In the United Kingdom, newly minted doctors begin their internships each August. In Britain, August has been referred to as the “Killing Season,” because of a perceived increased risk of medical complications, morbidity, and mortality with new doctors during their first month on duty.

Phillips found medication errors increased 10% during the month of July at American teaching hospitals, but not at neighboring community hospitals (1). In England, an Imperial College London study of records for 300,000 patients at 170 hospitals from 2000 and 2008 found death rates were 6% higher on the first Wednesday in August than on the previous Wednesday (2).

Multiple other studies have shown no change in mortality in American teaching hospitals in July, but the July Effect has real elements. There’s no way the competence of an academic hospital’s physician staff on July 1st can compare with that same hospital’s staff on June 30th. In the specialty of internal medicine, a residency is three years long (the first year of residency is also referred to as an internship). Each July 1st, third-year residents graduate and new medical school graduates replace one-third of the internal medicine team.

Imagine if a corporation like Google, Apple, Facebook, or General Electric dismissed one-third of their workforce once a year. There ‘s no way a company could be as productive after the change.

An anesthesia residency is three years long, preceded by one year of internship. One year after medical school, the same graduate who just completed twelve months of internship now reaches perhaps an even more difficult transition—the first months of anesthesia residency. Instead of writing histories, examining patients, making diagnoses, and prescribing medications as interns and internal medicine doctors do, anesthesia residents are rendering their patients unconscious, applying acute pharmacology, and inserting tubes and needles into patients in operating rooms at all hours of the day and night.

On July 1st of the first day of my anesthesia residency I reported at 0630 hours to the San Jose, California county hospital where I was assigned. I walked into the operating room and stared at the collection of anesthesia apparatus with complete bewilderment. I had no idea how the patient would even be connected to the anesthesia machine. As it turned out, the hoses that exited the machine weren’t installed yet, because I’d arrived before the anesthesia technicians who stocked the operating rooms. When it was time to begin the first anesthetic, the attending faculty anesthesiologist said to me, “I don’t think the operating room is a good place to learn in the beginning.” He injected sodium pentothal into the patient’s IV, placed the breathing tube into the patient’s windpipe, and hooked the patient up to the anesthesia machine. After ten minutes, he left to pursue other duties. I was alone, under-informed, and full of dread. I was on call that same night, and spent twenty-four hours in the hospital enduring case after case until six the next morning. When I left the hospital I had some rudimentary knowledge of how an anesthetic was done, but I’d failed to successfully place a breathing tube into any patient’s windpipe myself—a faculty member had to do every procedure for me. At the conclusion of the last anesthetic, I turned off the isoflurane (the predominant gas anesthetic at the time), switched off the ventilator, and waited, wondering why the patient wasn’t waking up. Many days later I learned that the isoflurane had no way to escape the patient’s lungs or brain unless I kept the ventilator on and continued ventilation of the patient’s lungs.

Anesthesia education today has improved since the 1980’s when I was a first-year resident, but the same themes persist. First-month trainees are very inexperienced. A supervising attending must teach them, mentor them, and lecture them—case by case—until each resident learns the basic skills.

Every month during anesthesia residency, the calendar turns to a new page and a new set of challenges. New rotations include specialty services in obstetrical anesthesia, pediatric anesthesia, trauma anesthesia, cardiac anesthesia, or regional block anesthesia. The most complex cases are saved for the second and third years of residency, but first-year residents will rotate through perhaps 80% of the array of cases during their first twelve months. During the earliest months of training, first-year anesthesia residents gain skills in the basic tasks of placing breathing tubes, intravenous lines, spinal blocks, epidural blocks, and arterial lines. They begin to feel confidence, and the anxiety of July fades.

It’s best if the jitters never fade away completely.

In my fifth year as an anesthesiologist, I was an attending at Stanford University, and I greeted one of my senior colleagues outside the locker room one morning. I asked him how he was doing, and he said, “I’m OK except for the customary pre-anesthesia anxiety.”

“What do you mean?” I said.

“Every morning I have to cope with the reality of what I do. I’m taking patients’ lives into my hands, and I can’t screw up.”

Think about that. Those workers at Google, Apple, Facebook, or General Electric have work pressures, but none of them has anxiety that they could harm a patient’s life forever.

Beyond the July Effect is the “November Effect.” The November Effect is the time when a physician feels confidence—even cockiness—and senses that they are well trained, experienced, in control, and can handle almost anything. The path to the November Effect is circuitous and the timing is variable. When I was an anesthesia resident, several of my colleagues never got there. One colleague succumbed to the stress of late night emergency anesthesia induction. He described to me the ordeal of trying to place a breathing tube urgently into a surgical patient who had a belly full of pizza and beer. I still remember the anesthesiologist’s face as he told the story. His eyes bugged out, his cheeks were pale, and he said, “I underestimated this specialty. I can’t do this for a whole career.” He quit. A second colleague had a near-disaster during the induction of anesthesia for an emergency Cesarean section. His anesthesia machine had no oxygen flow, so he blew into the mother’s breathing tube with his own mouth to keep the patient oxygenated. The patient and her baby survived, but his assessment was, “I can’t do this as a career. I need something less stressful.” He quit, too.

In November of my second year as an anesthesia resident I had 16 months of anesthesia training under my belt. I’d gained the swagger that comes with accomplishment, and lost some of the respect for the dangers of my specialty. I was on call in the hospital for obstetrics one night, and I tried to handle an emergency Cesarean section surgery at 1 a.m. by myself before my anesthesia faculty member arrived to assist me. I’ve chronicled the tale in a previous column (http://theanesthesiaconsultant.com/2012/07/15/an-anesthesia-anecdote-an-inept-anesthesia-provider-can-kill-a-patient-in-less-than-two-minutes). I was unable to place the patient’s breathing tube, she ran out of oxygen, and I thought I’d killed both her and her baby. My attending arrived in the nick of time, entered the operating room donned in his street clothes, and saved the day for all of us.

It was November, not July. I didn’t think I was a novice, but I was. It takes years, maybe a lifetime, to become an expert at anesthesia. Per Malcolm Gladwell’s book Outliers it takes 10,000 hours to become an expert at anything. For the specialty of anesthesia, even if one works 60 hours a week—which translates to about 3000 hours a year—it will take more than three years time to become an expert.

Even after those 10,000 hours, every patient presents a unique opportunity for events to stray from routine. Any case could go awry—there could be an unanticipated allergic reaction, an unexpected surgical bleed, an airway emergency or a mistaken diagnosis. Safe anesthesia practice demands a respectful level of anxiety at all times. Like a Boy Scout, an anesthesiologist needs to be prepared at all times.

Physician overconfidence is a current area of study. Meyer looked at 118 physicians who were each given 4 cases to diagnose (3). Two cases were easy and two were difficult, and the physicians were also asked how confident they were that they’d made the correct diagnosis. The physicians got 55% of the diagnoses correct for the two easier cases, and only 5% of the diagnoses correct for the more difficult cases. On a scale of 0-10, physicians rated their confidence as 7.2 on average for the easier cases, but as 6.4 on average for the more difficult cases. Physicians still had a very high level of confidence, even though their diagnostic accuracy dropped to a mere 5%. This was a striking statistic. Even physicians who are fully trained can be overconfident and can make misdiagnoses. Further data regarding physician overconfidence and how to correct it are welcomed.

An anesthesiologist’s work requires rapid, complex decisions that can be very susceptible to decision errors. Anesthesiologists work in a complex environment in the operating room, a setting where there is little room for mistakes. In acute care medicine, be it in the operating room, the emergency room, a battlefield, or an intensive care unit, the correct management of Airway-Breathing-Circulation is imperative to keep patients alive and well. Errors, be they caused by inexperience or overconfidence, can result in dire complications.

What does this mean for you?

If you’re a patient be wary of inexperienced doctors at a teaching hospital, especially in July and August. You might bring a friend or family member as a patient advocate to assure that more senior and experienced attending physicians are involved in your case. If you’re a patient and dealing with a confident doctor, be aware that confidence is not always well founded. Be skeptical of overconfidence and ask questions.

If you’re an anesthesiologist, look inward and assess whether you’re inexperienced or whether you tend toward overconfidence. Know yourself and better yourself. If you are inexperienced, then gain experience. If you tend to be overconfident, then humble yourself before the practice of medicine humbles you.

References:

(1) Phillips DP et al, A July Spike in Fatal Medication Errors: A Possible Effect of New Medical Residents; J Gen Intern Med, May 2010;25(8): 774–779.

(2) Will patients really die this week because of new NHS hospital doctors? The Guardian. Retrieved 28 September 2013.

(3) Meyer ND et al, Physician’s Diagnostic Accuracy, Confidence, and Resource Requests, JAMA Intern Med. 2013;173(21):152-58.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

IS ANESTHESIA AN ART OR A SCIENCE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Is the practice of anesthesia an art or a science? Is the practice of medicine an art or a science?Over one hundred years ago the father of modern medicine, Dr. William Osler of Johns Hopkins Medical Center, made the following statements: “Medicine is a science of uncertainty and an art of probability,” and “The practice of medicine is an art, based on science.”

 

In my career I’ve practiced three specialties at Stanford: internal medicine, emergency medicine, and anesthesiology. My career has bridged clinics, operating rooms, intensive care units, emergency rooms, and helicopter trauma medicine. I’ve practiced in four different decades.

With all respect to Dr. Osler’s legacy, what I’m witnessing in the clinical arena today tells me 21st century medical practice will be very much about science and very little about art.

A Merriam-Webster dictionary definition of science reads “knowledge about or study of the natural world based on facts learned through experiments and observation.”

An Oxford English dictionary definition of art reads “the various branches of creative activity, such as painting, music, literature, and dance.”

Which of these definitions best fits your medical practice?

To me, the answer is clearly “science.”

I searched through all the secondary definitions of “art” in multiple dictionaries, and found very few definitions of “art” that apply to the practice of medicine. The closest fits were: art is a skill or special ability e.g. a skill at doing a specified thing, typically one acquired through practice, from the Oxford English Dictionary; or art is skill acquired by experience, study, or observation e.g. the art of making friends, from the Merriam-Webster dictionary.

Medical school training consists of four years of intensive study of anatomy, physiology, biochemistry, pharmacology, microbiology, pathology, diseases, and the treatment for diseases. Core classes require extensive memorization and comprehension of complex scientific facts. In the last two years of medical school, clinical classes require the student to apply this complex science while evaluating individual human patients. New skills acquired at this clinical stage are those of interviewing, history taking, physical examination, interpretation of medical test results, differential diagnosis, and application of appropriate therapies. Mastering the doctor-patient interaction requires an education in empathy, effective listening, respect, and conversation about complex medical topics using parlance non-medical laypersons can comprehend.

Creative activities such as painting, music, literature, and dance are absent from the preceding paragraph. There is an “art” to making the correct diagnosis, and there is an “art” to applying empathy, effective listening, respect, and conversing about complex medical topics in language non-medical laypersons can comprehend. In this context, “art” connotes those secondary definitions, as in “a skill at doing a specified thing, typically one acquired through practice.” A talented doctor with years of experience is a skilled artist of medical practice, just as World Series hero Madison Baumgartner is a skilled artist of pitching baseballs. A student entering a career in medicine in the 21st century must prepare herself or himself for the scientific rigors of the job. The opportunity to create is largely absent.

Painters, musicians, authors, and dancers create original art, some of it fantastic and some mundane. In medicine this type of creativity is rare, but it does exist. The medical laboratory researchers who cured smallpox and polio changed the world by creating their discoveries. The medical researchers seeking cures for Alzheimer’s disease, Ebola, or HIV are in a constant quest for the discovery of original ideas. Physician authors such as the Bay Area’s Abraham Verghese (Cutting for Stone) and Khaled Hosseini, (The Kite Runner) wrote outstanding literary works and are very creative. Many physicians express creative skills in their hobbies as musicians, artists, sculptors, actors, dancers, and writers. These physicians earn their living with their primary jobs in medicine, and expend their creative energies in these secondary outlets in their spare time.

A generation ago the ideal physician may have been depicted in the persona of Dr. Marcus Welby, a fictional television doctor. Dr. Welby was the Atticus Finch of medicine, a kind, smiling, gray-haired physician who spent each week’s sixty-minute show working on healing and treating one patient’s problems. His heroic skills were wisdom, intelligence, empathy, and a steadfast dedication to that one patient for the entire TV show each week. Although he was portrayed as a savvy, highly-schooled professional, Dr. Welby thrived by an almost god-like ability to feel his way through a difficult case and create a workable diagnosis and solution. In Dr. Welby’s office practice each patient posed a dilemma he had to solve during an hour-long television episode. In today’s office practice each patient’s complaints must be addressed in a twenty-minute period of time, after which the physician must enter all the information into a cumbersome version of a computerized Electronic Medical Record (EMR) before meeting the next patient for the next twenty-minute encounter.

In the 21st century operating room practice of anesthesiology, we typically have ten minutes to talk to a patient prior to rendering them unconscious. After anesthetic induction the patient is changed into a sleeping human who carries objective values for blood pressure, heart rate, oxygen saturation, respiratory rate, temperature, and exhaled gas concentrations. The practice of anesthesiology becomes very much like a physiology experiment with the twin goals for the patient of a) guaranteeing sleep, while b) striving to maintain perfect vital signs. Where is the art? Is there art in varying techniques to accomplish these goals? Is it an “art” to anesthetize shoulder arthroscopy patient #1 with propofol and sevoflurane, and then to anesthetize shoulder arthroscopy patient #2 with propofol and an interscalene block? Rather than “art,” I’d call this using clinical judgment based on experience and scientific information.

Let me point out several current trends which are moving physician jobs further away from any creativity:

1) The organization of medicine into large corporate practices, with the variability of practice minimized. I recently attended a clinical lecture Stanford Medical Center in which the topic was “Variation is the Enemy of Good.”

2) The goal of organizing patient management into detailed and specific algorithms for physicians to follow, to insure they’re all treating the same medical problems the same way. In the Forbes article Medicine Is An Art, Not A Science: Medical Myth Or Reality?(July 12, 2014), author Robert Pearl MD, the CEO of the Permanente Medical Group, describes the value of protocols for the operating room, for treatment of stroke, and for prevention of heart attack, and concludes “We can predict that doctors who today refuse to follow the national recommendations for treating patients with strokes, heart attacks and a variety of other medical problems will be hard to convert. But we must change their behavior. The health of their patients and our nation depends on it.” Examples of such protocols in anesthesia practice are algorithms introduced for the management of total knee and hip replacement anesthesia, using a combination of neuroaxial block, regional nerve block such as adductor canal block, plus multimodal pain medication regimens (Gandhi and Viscusi, Multimodal Pain Management Techniques in Hip and Knee Arthroplasty, The New York School of Regional Anesthesia (www.nysora.com) Volume 13, J u l y 2009, pages 1-10).

3) A move to a “shift work” mentality in modern medical practice. A generation ago an MD would follow up on his patients until all the work was done for a given day, in addition to being night on-call for patients of his partners or colleagues once a week. In the past I worked for the largest HMO in California. The HMO culture promoted a 40-hour-per-week shift work mentality for physicians. When three p.m. arrived, many doctors signed off to the next doctor coming on duty to take over their job.

4) The promotion of non-physicians into the workforce to perform roles previously handled by MDs. Due to an inadequate supply of primary care doctors, the future of clinic medicine in large corporate medical practices will likely be legions of nurse practitioners and/or physician assistants supplying much of primary care.

5) Pursuit of artificial intelligence in medicine (AIM) as a goal. A recent Wall Street Journal article, IBM Crafts a Role for Artificial Intelligence in Medicine: Deal for Merge Healthcare is step toward training IBM’s Watson software to identify cancer, heart disease (August 11, 2015) described a significant advance in AIM technology. It’s not hard to imagine artificial intelligence computers making diagnoses and treatment decisions in the future.

Are these trends bad? Time will tell. The trends are driven by economics, and don’t expect to see them reverse. Variability will decrease and so will the feeling that medicine is an art.

Let’s hope future generations of physicians will still quote Osler’s claim that “the practice of medicine is an art, based on science.” May empathy, effective listening, respect, and conversation always be critical skills envied and mastered by all physicians.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

AIRWAY LAWSUITS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

At weddings you’ll often hear a Bible verse that reads, “And now these three remain: faith, hope and love. But the greatest of these is love.” (1 Corinthians 13:13) A parallel verse in the bible of acute care medicine would read, “Emergencies are managed by airway, breathing, and circulation. But the greatest of these is airway.” The objective of this column is to help you avoid airway lawsuits.

 

Every health care professional learns the mantra of airway-breathing-circulation. Anesthesiologists are the undisputed champions of airway management. This column is to alert you that avoiding even one airway disaster during your career is vital.

Following my first deposition in a medical-legal case years ago, I was descending in the elevator and a man in a suit asked me what I was doing in the building that day. I told him I’d just testified as an expert witness. He asked me what my specialty was, and I told him I was an anesthesiologist. The whistled through his teeth and smirked. “Anesthesia,” he said, “Huge settlements!”

I’ve consulted on many medical malpractice cases which involved death or brain damage, and airway mishaps were the most common etiology. It’s possible for death or brain damage to occur secondary to cardiac problems (e.g. shock due to heart attacks or hypovolemia), or breathing problems (e.g. acute bronchospasm or a tension pneumothorax), but most deaths or brain damage involved airway problems. Included are failed intubations of the trachea, cannot-intubate-cannot-ventilate situations, botched tracheostomies, inadvertent or premature extubations, aspiration of gastric contents into unprotected airways, or airways lost during sedation by non-anesthesia professionals.

Google the keywords “anesthesia malpractice settlement,” and you’ll find multiple high-profile anesthesia closed claims, most of them related to airway disasters. Examples from such a Google search include:

  1. The Chicago Daily Law Bulletin featured a multimillion-dollar verdict secured by the family of a woman who died after being improperly anesthetized for hip surgery. The anesthesiologist settled prior to trial, resulting in the family being awarded a total of $11.475 million for medical negligence. The 61-year-old mother and wife was hospitalized in Chicago for elective hip replacement surgery.  Because of a prior bad experience with the insertion of a breathing tube for general anesthesia, she requested a spinal anesthetic. Her anesthesiologist had trouble inserting a needle for the spinal anesthesia, so he went ahead with general anesthesia. The anesthesiologist was then unable, after several attempts, to insert the breathing tube. He planned to breathe for her through a mask and let her wake up to breathe on her own.  A second anesthesiologist came into the room and decided to attempt the intubation. He tried but was also unsuccessful. Finally, a third anesthesiologist came into the operating room and tried inserting the breathing tube several times. He too was unsuccessful. All of the attempts at inserting the tube caused the tissues in her airway to swell shut, blocking off oxygen and causing cardiac arrest. She suffered severe brain damage and died.
  2. $20 Million Verdict Reached in Medical Malpractice Lawsuit Against Anesthesiologist. A jury returned a $20 million verdict in an anesthesia medical malpractice lawsuit filed by the family of a woman who died during surgery when bile entered her lungs. The wrongful death lawsuit alleged that the anesthetists failed to identify that the victim had risk factors for breathing fluid into her lungs, despite the information being available in her medical record. The victim was preparing to receive exploratory surgery to determine the cause of severe stomach pains when she received the anesthesia. Once anesthetized, she began breathing bile into her lungs. She then later died. The jury awarded $20 million in favor of the plaintiff.
  3. A $35 million medical malpractice settlement was matched by only one other as the largest settlement for a malpractice case in Illinois, and the most ever paid by the County of Cook for a settlement of a personal injury case. The client, a 28-year-old woman, suffered severe brain damage from the deprivation of oxygen resulting from the failure of an anesthesiologist to properly secure an intubation tube. The client, immediately following the occurrence, was in a persistent vegetative state from which the likelihood of recovery was virtually nil. Miraculously, she regained much of her cognitive functioning, although still suffering from significant physiological deficits requiring attendant care for the rest of her life.
  4. Anesthesia Death Results in $2 Million Settlement: 36-Year-Old Man Dies From Anesthesia Mishap Following Elective Hernia Repair Surgery. The plaintiff’s decedent was a 36-year-old man who died secondary to respiratory complications following an elective hernia repair. During the pre-operative anesthesia evaluation, the defendant noted the patient had never been intubated and had required a tracheostomy for a previous surgery. The defendant decided to administer general endotracheal anesthesia with rapid sequence induction. The surgery itself was without incident. Following extubation, the patient began to have difficulty breathing. The patient desaturated. The surgeon was called back to the OR to perform  a tracheostomy, however, there was no improvement in the patient’s oxygenation and he continued to have asystole. Subsequently, he went into respiratory arrest and coded. The code and CPR were unsuccessful, and the patient was pronounced dead.

Per Miller’s Anesthesia, failure to secure a patent airway can result in hypoxic brain injury or death in only a few minutes. Analysis of the American Society of Anesthesiologists (ASA) Closed Claims Project database shows that the development of an airway emergency increases the odds of death or brain damage by 15-fold. Although the proportion of claims attributable to airway-related complications has decreased over the past thirty years since the adoption of pulse oximetry, end-tidal-CO2 monitoring, and the ASA Difficult Airway Algorithm, airway complications are still the second-most common cause of malpractice claims. (Miller’s Anesthesia, Chapter 55, Management of the Adult Airway, 2014).

In 2005, in the ASA-published Management of the Difficult Airway: A Closed Claims Analysis (Petersen GN, et al, Anesthesiology 2005; 103:33–9), the authors examined 179 claims for difficult airway management between 1985 and 1999. The timing of the difficult airway claims was: 67% upon induction, 15% during surgery, 12% at extubation, and 5% during recovery. Death or brain damage during induction of anesthesia decreased 35% in 1993–1999 compared with 1985–1992, but death or brain damage from difficult airway management during the maintenance, emergence, and recovery periods did not decrease during this second period. There is no denominator to compare with the numerator of the number of closed claims, so the prevalence of airway disasters was unknown.

Awake intubation is touted as the best strategy for elective management of the difficult airway for surgical patients. Fiberoptic scope intubation of the trachea in an awake, spontaneously ventilating patient is the gold standard for the management of the difficult airway. (Miller’s Anesthesia, Chapter 55, Management of the Adult Airway, 2014). Awake intubation is a useful tool to avert airway disaster on the oral anesthesiology board examination. Dr. Michael Champeau, one of my partners, has been an American Board of Anesthesiology Senior Examiner for over two decades. He tells me that oral board examinees choose awake intubation for nearly every difficult airway. This is wise–it’s hard to harm a patient who is awake and breathing on their own. Is the same strategy as easily implemented outside of the examination room? In actual clinical practice, an awake intubation may be a tougher sell. Awake intubations are time-consuming, require patience and understanding from the surgical team, and can be unpleasant to a patient who will be conscious until the endotracheal tube reaches the trachea–an event which can cause marked coughing, gagging, hypertension and tachycardia in an under-anesthetized person. As anesthesia providers, we perform hundreds of asleep intubations per year, and only a very small number of awake intubations. Inertia exists pushing anesthesia providers to go ahead and inject the propofol on most patients, rather than to take the time to topically anesthetize the airway and perform an awake intubation. But if you’ve ever lost the airway on induction and wound up with a “cannot intubate-cannot ventilate” patient, you’ll understand the wisdom in opting for an awake intubation on a difficult airway patient.

I refer you to Chapter 55 of Miller’s Anesthesia for a detailed treatise on the assessment and management of airways, which is beyond the scope of this column. In addition to the reading of Chapter 55, I offer the following clinical pearls based on my 30 years of practice and my experience at reviewing malpractice cases involving airway tragedies:

  1. Become skilled at assessing each patient’s airway prior to anesthesia induction. Pertinent information may be in the old chart or the patient’s oral history as well as in the physical examination. Red flags include: previous reports of difficulty passing a breathing tube, a previous tracheostomy scar, morbid obesity, a full beard, a receding mandible, inability to fully open the mouth, rigidity of the cervical spine, airway tumors or masses, or congenital airway deformities.
  2. Learn the ASA Difficult Algorithm and be prepared to follow it. (asahq.org/…/ASAHQ/…/standards-guidelines/practice-guidelines-for- management-of-the-difficult-airway.pdf‎).
  3. Become skilled with all critical airway skills, particularly mask ventilation, standard laryngoscopy, video laryngoscopy, placement of a laryngeal mask airway (LMA), fiberoptic intubation through an LMA, and awake fiberoptic laryngoscopy.
  4. Read the airway strategy recommended in the Appendix to Richard Jaffe’s Anesthesiologist’s Manual of Surgical Procedures, an approach which utilizes a cascade of the three critical skills of (A)standard laryngoscopy, (B)video laryngoscopy, and (C)fiberoptic intubation through an LMA. For a concise summary of this approach read my column Avoiding Airway Disasters in Anesthesia (http://theanesthesiaconsultant.com/2014/03/14/avoiding-airway-disasters-in-anesthesia).
  5. If you seriously ponder whether awake intubation is indicated, you probably should perform one. You don’t want to wind up with a hypoxic patient, anesthetized and paralyzed, who you can neither intubate nor ventilate.
  6. If you’re concerned about a difficult intubation or a difficult mask ventilation, get help before you begin the case. Enlist a second anesthesia provider to assist you with the induction/intubation.
  7. Take great care when you remove an airway tube on any patient with a difficult airway. Don’t extubate until vital signs are normal, the patient is awake, the patient opens their eyes, and the patient is demonstrating effective spontaneous respirations. An airway that was routine at the beginning of a surgery may be compromised at the end of surgery, due to head and neck edema, airway bleeding, or swollen airway structures, e.g. due to a long anesthetic with a prolonged time in Trendelenburg position.
  8. If you’re a non-anesthesia professional administering conscious sedation, never administer a general anesthetic sedative such as propofol. A combination of narcotic and benzodiazepines can be easily reversed by the antagonists naloxone and flumazenil if oversedation occurs. There is no reversal for propofol. Airway compromise from oversedation due to propofol must be managed by mask ventilation by an airway expert.

In its 1999 report, To Err Is Human:  Building a Safer Health System, the Institute of Medicine recognized anesthesiology as the only medical profession to reduce medical errors and increase patient safety. With the pulse oximeter, end-tidal-CO2 monitor, a myriad of airway devices, and the Difficult Airway Algorithm, the practice of anesthesia in the twenty-first century is safer than ever before. Let’s keep it that way.

Faith, hope, and love. The greatest of these is love.

Airway, breathing, and circulation. The greatest of these is airway. Your patient’s airway.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE PERIOPERATIVE SURGICAL HOME HAS EXISTED FOR YEARS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

The American Society of Anesthesiologists is supporting an expansion of the role of anesthesiologists in the delivery of perioperative care in hospitals. This proposed model is called the Perioperative Surgical Home. The American Society of Anesthesiologists defines the Perioperative Surgical Home as “a patient centered, innovative model of delivering health care during the entire patient surgical/procedural experience; from the time of the decision for surgery until the patient has recovered and returned to the care of his or her Patient Centered Medical Home or primary care provider.”

 

It’s a sound idea, and it resembles a model that’s existed for decades outside the hospital. In an outpatient surgery center the Perioperative Surgical Home concept is carried out by an anesthesiologist who is the Medical Director. I can speak to this, as I’ve been the Medical Director at a busy surgery center only minutes from Stanford University in downtown Palo Alto, for the past 12 years.

A surgery center Medical Director is responsible for:

  • All preoperative matters, including preoperative medical assessment of patients, scheduling of block times, surgical cases, anesthesia assignments, and creation of protocols,
  • All intraoperative matters, including quality issues, efficiency and turnover of cases, and the economics of running a profitable set of operating rooms, and
  • All postoperative matters, including overseeing Post Anesthesia Care Unit (PACU) nursing care, post anesthesia medical decisions, and supervision of post-discharge follow up with patients.

All medical problems including complications, hospital transfers, and patient complaints, are routed through the anesthesiologist Medical Director.

A key difference between a surgery center and a hospital is scale. A busy hospital has dozens of operating rooms, hundreds of surgeries per day, and hundreds of inpatient beds. No one Medical Director can oversee all of this every day—it takes a team. At Stanford University Medical Center the anesthesia department is known as the Department of Anesthesia, Perioperative and Pain Medicine. The word “Perioperative” is appropriate, because anesthesia practice involves medical care before, during, and after surgery. A team of anesthesiologists is uniquely qualified to oversee preoperative assessment, intraoperative management, and post-operative pain control and medical care in the hospital setting, just as the solitary Medical Director does in a surgery center setting.

A second key difference between a surgery center and a hospital is that medical care is more complex in a hospital. Patients are sicker, invasive surgeries disturb physiology to a greater degree, and patients stay overnight after surgery, often with significant pain control or intensive care requirements. Again, a team of physicians from a Department of Anesthesia, Perioperative and Pain Medicine is best suited to supervise management of these problems.

The greatest hurdle to instituting the Perioperative Surgical Home model is pre-existing economic reality. In a hospital, other departments such as surgery, internal medicine, radiology, cardiology, pulmonology, and nursing are intimately involved in the perioperative management of surgery patients. Each of these departments has staff, a budget, income, and incentives related to maintaining their current role. Surgeons intake patients through their preoperative clinics, and may regard themselves as captains of the ship for all medical care on their own patients. Internal medicine doctors are called on for preoperative medical clearance on patients, and thus compete with anesthesia preoperative clinics. The internal medicine department includes hospitalists, inpatient doctors who may be involved in the post-operative management of inpatients. Invasive radiologists perform multiple non-invasive surgical procedures. Like their surgical colleagues, they may see themselves as decision makers for all medical care on their own patients. Cardiologists manage coronary care units and intensive care units in some hospitals, and may feel threatened by anesthesiologists intent on taking over their territory. Pulmonologists manage coronary care units and intensive care units in some hospitals, and may feel threatened by anesthesiologists intent on taking over their territory. Nurses are involved in all phases of perioperative care. If the chain of command among physicians changes, nurses must be willing partners of and participants with such change.

Why has the anesthesiology leadership role of a Medical Director evolved naturally at surgery centers while the Perioperative Surgical Home idea has to be sold to hospitals? At surgery centers the competing financial incentives of surgeons, internal medicine doctors, radiologists, pulmonologists, cardiologists, and nurses are minimal. In a freestanding surgery center, surgeons want to be able to depart for their offices following procedures, and welcome the skills that anesthesiologists bring to managing any medical complications that arise. Internal medicine doctors have no significant on-site role in surgery centers, although they are helpful office consultants for the anesthesiologist/Medical Director in assembling preoperative clearance for outpatients. Radiologists have no significant on-site role at most surgery centers—if they do perform invasive radiology procedures on outpatients, they too welcome the skills that anesthesiologists bring to managing medical complications that arise. Because there are no intensive care units at a surgery center, there is no role for pulmonary or cardiology specialists. Nursing leadership at a surgery center works hand-in-hand with the Medical Director to assure optimal nursing care of all patients.

Hospital administrators anticipate penetration of the Accountable Care Organization (ACO) model for payment of medical care by insurers. In the ACO model, a medical center receives a predetermined bundled payment for each surgical procedure. The hospital and all specialties caring for that patient negotiate what percentage of that ACO payment each will receive. A Perioperative Surgical Home may or may not simplify this task. You can bet anesthesiologists see the Perioperative Surgical Home as a means to increase their piece of the pie. Ideally the Perioperative Surgical Home will be a means to streamline medical care, decrease costs, and increase profit for the hospital and all departments. Anesthesiologists are rightly concerned that if they don’t take the lead in this process, some other specialty will.

Establishing the Perioperative Surgical Home is an excellent opportunity for anesthesiologists to facilitate patient care in multiple aspects of hospital medicine. To make this dream a reality across multiple medical centers, anesthesiology leadership must demonstrate excellent public relations skills to convince administrators and chairpeople of the multiple other specialties. I expect data on outcomes improvement or cost-control to be slow and inadequate to proactively provoke this change. It will take significant lobbying, convincing, and promoting. Change will require a leap of faith for a hospital, and such change will only be accomplished by anesthesia leadership that captures the confidence of the hospital CEO and the chairs of multiple other departments.

I’m impressed by the adoption of the Perioperative Surgical Home at the University of California at Irvine. I’ve listened to Zev Kain, MD, Professor and Chairman of the Department of Anesthesia and Perioperative Medicine lecture, and I’ve met him personally. He’s the prototype of the charismatic, intelligent, and convincing physician needed to convince others that the Perioperative Surgical Home is the model of the future.(http://www.anesthesiology.uci.edu/clinical_surgicalhome.shtml)

I expect the transition to the Perioperative Surgical Home to occur more easily in university or HMO hospitals than in community hospitals. It will be easier for academic or HMO chairmen to assign new roles to salaried physicians than it will be for community hospitals to control the behavior of multiple private physicians.

Anesthesiologists were leaders in improving perioperative safety by the discovery and adoption of pulse oximetry and end-tidal carbon dioxide monitoring. Can anesthesiologists lead the way again by championing the adoption of Perioperative Surgical Home on a wide scale? Time will tell. Is the Perioperative Surgical Home an optimal way to take care of surgical patients before, during, and after surgeries? I believe it is, just as the Medical Director is a successful model of how an anesthesiologist can optimally lead an outpatient surgery center. Those lobbying for the Perioperative Surgical Home would be wise to examine the successful role of anesthesiologist Medical Directors who’ve led outpatient surgery centers for years. The stakes are high. As intraoperative care becomes safer and the role of nurse anesthesia in the United States threatens to expand, it’s imperative that physician anesthesiologists assert their expertise outside the operating room.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW LONG WILL IT TAKE ME TO WAKE UP FROM GENERAL ANESTHESIA?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

One of the most frequent questions I hear from patients before surgery is, “How long will it take me to wake up from general anesthesia?”

 

The answer is, “It depends.”

Your wake up from general anesthesia depends on:

  1. What drugs the anesthesia provider uses
  2. How long your surgery lasts
  3. How healthy, how old, and how slender you are
  4. What type of surgery you are having
  5. The skill level of your anesthesia provider

In best circumstances you’ll be awake and talking within 5 to 10 minutes from the time your anesthesia provider turns off the anesthetic. Let’s look at each of the five factors above regarding your wake up from general anesthesia depends on:.

  1. YOUR WAKE UP FROM ANESTHESIA DEPENDS ON WHAT DRUGS THE ANESTHETIST USES. The effects of modern anesthetic drugs wear off fast.
  • The most common intravenous anesthetic hypnotic drug is propofol. Propofol levels in your blood drop quickly after administration of the drug is terminated, resulting in rapid awakening.
  • The most common inhaled anesthetic drugs are sevoflurane, desflurane, and nitrous oxide. Each of these gases are exhaled from the body quickly after their administration is terminated, resulting in rapid awakening.
  • The most commonly used intravenous narcotic is fentanyl. Fentanyl levels in your blood drop quickly after administration of the drug is terminated, resulting in rapid awakening.
  • The most commonly used intravenous anti-anxiety drug is midazolam (Versed). Midazolam levels in your blood drop quickly after administration of the drug is terminated, resulting in rapid awakening.
  1. YOUR WAKE UP FROM ANESTHESIA DEPENDS ON HOW LONG YOUR SURGERY LASTS
  • The shorter your surgery lasts, the less injectable and inhaled drugs you will receive.
  • Lower doses and shorter exposure times to anesthetic drugs lead to a faster wake up time.
  1. YOUR WAKE UP FROM ANESTHESIA DEPENDS ON HOW HEALTHY, HOW OLD, AND HOW SLENDER YOU ARE
  • Healthy patients with fit hearts, lungs, and brains wake up sooner
  • Young patients wake up quicker than geriatric patients
  • Slender patients wake up quicker than very obese patients
  1. YOUR WAKE UP FROM ANESTHESIA DEPENDS ON WHAT TYPE OF SURGERY YOU ARE HAVING
  • A minor surgery with minimal post-operative pain, such a hammertoe repair or a tendon repair on your thumb, will lead to a faster wake up.
  • A complex surgery such as an open-heart procedure or a liver transplant will lead to a slower wake up.
  1. YOUR WAKE UP FROM ANESTHESIA DEPENDS ON THE SKILL LEVEL OF YOUR ANESTHETIST
  • Like any profession, the longer the duration of time a practitioner has rehearsed his or her art, the better they will perform. An experienced pilot is likely to perform smoother landings of his aircraft than a novice. An experienced anesthesiologist is likely to wake up his or her patients more quickly than a novice.
  • There are multiple possible recipes or techniques for an anesthetic plan for any given surgery. An advantageous recipe may include local anesthesia into the surgical site or a regional anesthetic block to minimize post-operative pain, rather than administering higher doses of intravenous narcotics or sedatives which can prolong wake up times. Experienced anesthesia providers develop reliable time-tested recipes for rapid wake ups.
  • Although I can’t site any data, I believe the additional training and experience of a board-certified anesthesiologist physician is an advantage over the training and experience of a certified nurse anesthetist.

YOUR WAKE UP FROM ANESTHESIA: EXAMPLE TIMELINE FOR A MORNING SURGERY

Let’s say you’re scheduled to have your gall bladder removed at 7:30 a.m. tomorrow morning. This would be a typical timeline for your day:

6:00            You arrive at the operating room suite. You check in with front desk and nursing staff.

7:00             You meet your anesthesiologist or nurse anesthetist. Your anesthesia provider reviews your chart, examines your airway, heart, and lungs, and explains the anesthetic plan and options to you. After you consent, he or she starts an intravenous line in your arm.

7:15             Your anesthesia provider administers intravenous midazolam (Versed) into your IV, and you become more relaxed and sedated within one minute. Your anesthesia provider wheels your gurney into the operating room, and you move yourself from the gurney to the operating room table. Because of the amnestic effect of the midazolam, you probably will not remember any of this.

7:30             Your anesthesia provider induces general anesthesia by injecting intravenous propofol and fentanyl, places a breathing tube into your windpipe, and administers inhaled sevoflurane and intravenous propofol to keep you asleep.

7:40            Your anesthesia provider, your surgeon, and the nurse move your body into optimal position on the operating room table. The nurse preps your skin with antiseptic, and the scrub tech frames your abdomen with sterile paper drapes. The surgeons wash their hands and don sterile gowns and gloves. The nurses prepare the video equipment so the surgeon can see inside your abdomen with a laparoscope during surgery.

8:00            The surgery begins.

8:45             The surgery ends. Your anesthesia provider turns off the anesthetics sevoflurane and propofol.

8:55             You open your eyes, and your anesthesia provider removes the breathing tube from your windpipe.

9:05             Your anesthesia provider transports you to the Post Anesthesia Care Unit (PACU) on the original gurney you started on.

9:10            Your anesthesia provider explains your history to the PACU nurse, who will care for you for the next hour or two. The anesthesia provider then returns to the pre-operative area to meet their next patient. Your anesthesia provider is still responsible for your orders and your medical care until you leave the PACU. He or she is available on cell phone or beeper at all times. No family members are allowed in the PACU.

10:40            You are discharged from the PACU to your inpatient room, or to home if you are fit enough to leave the hospital or surgery center.

YOUR WAKE UP FROM ANESTHESIA . . . TO REVIEW:

  1. Even though the surgery only lasted 45 minutes, you were in the operating room for one hour and 35 minutes.
  2. It took you 10 minutes to awaken, from 8:45 to 8:55.
  3. Even though you were awake and talking at 8:55, you were unlikely to remember anything from that time.
  4. You probably had no memory of the time from the midazolam administration at 7:15 until after you’d reached in the PACU, when your consciousness level returned toward normal.

I refer you to a related column AN ANESTHESIA PATIENT QUESTION: WHY DID IT TAKE ME SO LONG TO WAKE UP AFTER ANESTHESIA?”

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

HOW TO PREPARE TO SAFELY INDUCE GENERAL ANESTHESIA IN TWO MINUTES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

How do you prepare to induce general anesthesia in two minutes? You’re called to induce anesthesia for a patient being rushed to the operating room for emergency surgery. You arrive at the operating room only minutes before the patient is scheduled to arrive. I recommend you use the mnemonic M-A-I-D-S as a checklist to prepare yourself and your equipment.

 

 

M stands for MACHINE and MONITORS. Check out your anesthesia machine first. Determine the oxygen sources are intact, and that the circle system is airtight when the pop-off valve is closed and your thumb occludes the patient end of the circle. Make sure the anesthesia vaporizer liquid anesthetic level is adequate. Check out your routine monitors next. Determine that the oximeter, end-tidal gas monitor, blood pressure cuff, and EKG monitors are turned on and ready.

A stands for AIRWAY equipment. Make sure an appropriate-sized anesthesia mask is attached to the circle system. Determine that your laryngoscope light is in working order. Prepare an appropriate sized endotracheal tube with a stylet inside. Have appropriate-sized oral airways and a laryngeal mask airway (LMA) available in case the airway is difficult. Make sure you have a stethoscope so you can examine the patient’s heart and lungs.

I stands for IV. Have an IV line prepared, and have the equipment to start an IV ready if the patient presents without an intravenous line acceptable for induction of anesthesia.

D stands for DRUGS. At the minimum you’ll need an induction agent (e.g. propofol or etomidate) and a muscle relaxant (succinylcholine or rocuronium), each loaded into a syringe. You’ll need narcotics and perhaps a dose of midazolam as well. Cardiovascular drugs to raise or lower blood pressure will be available in your drug drawer or Pyxis machine.

S stands for SUCTION. Never start an anesthetic without a working suction catheter at hand. You must be ready to suction vomit or blood out of the airway acutely if the need arises.

For pediatric patients the M-A-I-D-S mnemonic is followed, but in addition the size of your anesthesia equipment must be tailored to the age of the patient. Let’s say your patient is 4 years old. For M=MACHINE, you may need a smaller volume ventilation bag and hoses. For M=MONITORS, you’ll need a smaller blood pressure cuff, a smaller oximeter probe, and a precordial stethoscope if you use one. For A=AIRWAY, you’ll need smaller endotracheal tubes and airways. For I=IV, you’ll need smaller IV catheters and IV bags.

As a last-second check before a pediatric anesthetic, I recommend you pull out each drawer on your anesthesia machine, and then on your anesthesia cart, one at a time. Scan the contents of each drawer to ascertain whether you need any of the equipment there before you begin your anesthetic.

If you have any suspicion that the patient’s airway is going to be difficult, I recommend you ask to have a video laryngoscope and a fiberoptic laryngoscope brought into the operating room.

Once the patient arrives, utilize time to assess the situation as any doctor does. Take a quick history and perform a pertinent exam of the vital signs, airway, heart, lungs, and also a brief neuro check. Assist in positioning the patient on the operating room table, supervise the placement of routine monitors, and begin preoxygenating the patient. Induce anesthesia when you are ready.

Never be coerced to rush an anesthesia induction if your anesthesia setup or the patient’s physiology are not optimized. And always utilize the mnemonic M-A-I-D-S as an anesthesia checklist to confirm that your equipment is ready.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

Learn more about Rick Novak’s fiction writing at rick novak.com by clicking on the picture below:

DSC04882_edited

THE EBOLA VIRUS, ANESTHESIA, AND SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

A patient infected with the Ebola virus is admitted to your hospital’s intensive care unit. You are called to intubate the Ebola patient for respiratory failure. What do you do?

ebola medical ICU team

Discussion: The first patients infected with Ebola virus entered the United States in 2014. American physicians are inexperienced with caring for patients with this disease. Because of physicians’ commitments to care for the sick and injured, individual doctors will have an obligation to provide urgent medical care during disasters. This will include Ebola patients.

The American Society of Anesthesiologists (ASA) published Recommendations From the ASA Ebola Workgroup on October 24, 2014.

Select information in my column today is abstracted, copied, and summarized from this detailed publication. Let’s begin by reviewing some facts about the disease.

Ebola is an enveloped, single-stranded RNA virus, one of several hemorrhagic viral families first identified in a 1976 outbreak near the Ebola River in the Democratic Republic of the Congo.

Transmission of Ebola is via direct contact, droplet contact, or possibly contact with short-range aerosols. The virus is carried in the blood and body fluids of an infected patient (i.e. urine, feces, saliva, vomit, breast milk, sweat, and semen). Risky exposures include exposure of your broken skin or mucous membranes to a percutaneous contaminated sharps injury, to contaminated fomites (a fomite is an inanimate object or substance, such as clothing, furniture, or soap, that is capable of transmitting infectious organisms from one individual to another), or to infected animals.

The case definition for Ebola includes fever, an epidemiologic risk factor including travel to West Africa (or exposure to someone who has recently traveled there), and one or more of these symptoms: severe headache, muscle pain, vomiting, diarrhea, stomach pain, unexplained bleeding or bruising (appearing anywhere from 2 to 21 days after exposure), a maculopapular rash, disseminated intravascular coagulation, or multi-organ failure.

Although coughing and sneezing are not common symptoms of Ebola, if a symptomatic patient with Ebola coughs or sneezes on someone and saliva or mucus come into contact with that person’s eyes, nose or mouth, these fluids may transmit the disease. Ebola can survive outside the body on dry surfaces such as doorknobs and countertops for several hours. Virus in body fluids (such as blood) can survive up to several days at room temperature.

The treatment for Ebola is symptomatic management of volume status using blood bank products as indicated, and management of electrolytes, oxygenation, and hemodynamics.

Healthcare professionals must wear protective outfits when treating Ebola patients. Routine Personal Protective Equipment (PPE) must include the following (when properly garbed, there should be no exposed skin):

  1. Surgical hood to ensure complete coverage of head and neck,
  2. Single-use face shield (goggles are no longer recommended due to issues with fogging and difficulty cleaning),
  3. N95 mask,
  4. An impermeable gown (with sleeves) that extends at least to mid-calf or coverall without a one-piece integrated hood (consideration should be given to wearing a protective coverall layer under the impermeable gown, which allows for layered protection and progressively less contaminated layers when doffing),
  5. Double gloves (i.e., disposable nitrile gloves with a cuff that extends beyond the cuff of the gown), the cuff of the first pair is worn under the gown and the second cuff should be over the gown, impermeable shoe covers that go to at least mid-calf or leg covers (there must be overlap of the impermeable layers),
  6. Impermeable and washable shoes,
  7. An apron that is waterproof and covers the torso to the level of the mid-calf should be used if Ebola patients have vomiting or diarrhea.

Enhanced Precaution PPE is advised for aerosol generating procedures such as intubation, extubation, bronchoscopy, airway suction, and surgery. This is the recommended level of PPE for anesthesiologists. Enhanced Precaution PPE includes:

  1. Personal Air-Purifying Respirator (PAPR) with full face piece mask,
  2. A disposable hood that extends to the shoulders and is compatible with the selected PAPR,
  3. A coverall without one-piece hood,
  4. Triple gloves (i.e., disposable nitrile with a cuff that extends beyond the cuff of the gown), the cuff of the first pair is worn under the gown and the second cuff should be over the gown and taped, and a third pair of disposable extended cuff nitrile gloves,
  5. Impermeable and washable shoes,
  6. Impermeable shoe covers, and
  7. Duct tape over all seams.

PPE donning (i.e. dressing in PPE outfit) must be performed in the proper order and monitored by a trained observer using a donning checklist. There should be separate designated areas for storage and donning of PPE (an adjacent patient care area), one-way movement to the patient’s room, and an exit to a separate room or anteroom for doffing procedures and disposal.

Doffing (i.e. PPE removal) is a high-risk process that requires a structured procedure, a trained observer (also in PPE), and a designated removal area. Doffing needs to be a slow and deliberate process and must be performed in the correct sequence using a doffing checklist.

Let’s return to our original question. What about that stat intubation you were called to perform in the ICU?

Stat intubations are not to be attempted on Ebola patients by anesthesiologists until the physician has properly donned the Enhanced Precaution PPE outfit. This necessitates significant time. Full Enhanced Precaution PPE precautions are mandated regardless of an emergency status or acute deterioration in patient status. Fiberoptic bronchoscopes are not recommended as aerosolization will occur and adequate cleaning is difficult. All equipment brought into the patient’s room must remain there and will be unusable for an indefinite period of time. Due to the extended time necessary to properly don and doff Enhanced Precaution PPE, an intubation of an Ebola patient could potentially take ninety minutes or longer when accounting for proper donning and doffing procedures.

What about performing surgery and anesthesia on Ebola patients? Patients with severe active disease would not likely tolerate an operation due to the severity of their disease. Any decision to operate should weigh all risks and benefits, specifically the risk of death from the current severity of the Ebola disease, the risk of death from their surgical disease, and the risk of exposure to the operating room team against the likelihood of potential benefit of emergency surgery.

Every effort should be given to keeping the patient in their own isolation room, and moving surgical and anesthetic equipment to the bedside. If possible, all procedures should be performed in the patient’s room.  Every effort should be given to keeping the patient in their own isolation room and moving surgical and anesthetic equipment to the bedside.

If it’s not feasible to perform the procedure or surgery in the intensive care unit room, an operating room should be designated for the patient. Preferably, this operating room should be away from traffic flow, have an anteroom, and not be connected to a clean core.

Transportation to and from the operating room hallways near the designated operating room should be blocked off.  Adjacent operating rooms will be closed. Traffic flow must be limited to only essential personnel involved with the case. PPE must be donned prior to entering the patient’s room.

Recovery from anesthesia will occur in the operating room or the patient’s hospital room, and not in the Post Anesthesia Care Unit (PACU).

These are the recommendations regarding operating room anesthesia set-up:

  1. Drawers of the anesthesia machine should be emptied except for the bare minimum of supplies.
  2. All additional items from atop the machine removed.
  3. The drawers should not be accessed unless absolutely necessary.
  4. All paperwork/laminated protocols and non-essential items must be removed from the machine.
  5. The anesthesia cart should be removed from the room and will not be directly accessible once the patient enters.
  6. An isolation cart (stainless steel or other easily cleanable table) should be stocked with all anticipated medications, emergency medications, syringes, needles, I.V. fluids (multiple), I.V. supplies, arterial line supplies, tubing, suction catheters, NG tubes, endotracheal tubes of appropriate size, additional ECG electrodes, gauze, chlorhexidine or alcohol pads, saline flushes, an extra BP cuff, a sharps container, additional gloves, and any additional equipment and supplies which the anesthesia attending for the cases requests.

Once the patient enters the operating room, absolutely no entry or exit from the operating room will occur without following PPE protocols. As such, bathroom and personal needs should be attended to prior to transporting the patient.

These are recommendations from The American Society of Anesthesiologists Ebola Workgroup. American physicians hope the number of Ebola cases in the United States will approach zero. As anesthesiologists we hope we’ll never be called to intubate or perform anesthesia on a patient infected with Ebola, but we understand our commitment to care for the sick and injured, and we understand that we have an obligation to provide urgent medical care during disasters.

Every hospital in America is in the process of understanding and implementing the above procedures regarding the isolation and protection of healthcare providers from the Ebola virus. If an Ebola patient is admitted to your hospital, I refer you to the Association for Biosafety and Biosecurity.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WHAT ONE QUESTION SHOULD YOU ASK TO DETERMINE IF A PATIENT IS ACUTELY ILL?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

What one question should you ask to determine whether a patient has a serious medical problem? What one question must you ask to determine whether urgent intervention is required?

Imagine this scenario: You’re an anesthesiologist giving anesthesia care in the operating room to your second patient of the day. The Post Anesthesia Care Unit (PACU) nurse calls you regarding your first patient who is in the PACU following appendectomy. The nurse says, “Your patient Mr. Jones is still nauseated and very sleepy. I’ve medicated him with ondansetron and metoclopramide as ordered, but he’s still nauseated and sleepy.”

That one question would be: “What are his vital signs?”(This is a bit of a trick question, since you are asking not one question, but four or five. It’s as if you’re down to your last request from the Genie from Aladdin’s lamp, and you’re wishing for more wishes. As Robin Williams’ Genie character said in Disney’s Aladdin, “Three wishes, to be exact. And ixnay on the wishing for more wishes. That’s all. Three. Uno, dos, tres. No substitutions, exchanges or refunds.” )

The traditional four vital signs are the blood pressure, heart rate, respiratory rate, and temperature. For anesthesiologists, surgeons, emergency room physicians, and ICU doctors, the fifth vital sign is the oxygen saturation or O2 sat. Some publications tout the pain score (on a 1-10 scale) as a fifth vital sign. While I subscribe to the pain score’s importance, it’s of less value in most acute care situations than the O2 saturation.

Let’s return to the patient scenario. You ask the nurse, “What are the patient’s vital signs?”

The nurse answers, “His heart rate is 48, his blood pressure is 88/55, his O2 sat is 100, and his respiratory rate is 16.”

You answer, “His heart rate is too low and so is his blood pressure. Let’s give him 0.5 mg atropine IV now.”

Five minutes later the nurse calls back. The heart rate increased to 72 and the blood pressure is 110/77. The patient’s symptoms resolved as the vital signs normalized.

Let’s look at a second scenario. You drop off a 48-year-old hysterectomy patient in the PACU. The patient is awake, and her initial vital signs are BP 120/64, pulse 100, respirations 18, and O2 saturation 99%. You return to the operating room to initiate care for your next patient for a laparoscopy. Thirty minutes later, the PACU nurse calls you to report your first patient has increasing abdominal discomfort. Her repeat vital signs are: BP 110/80, pulse 130, respirations 26, and O2 saturation 99%. You’re concerned an intra-abdominal complication is brewing. Five minutes later, the nurse reports a third set of vitals. The patient’s heart rate continues to rise to 140. Her blood pressure is now 82/40, her respirations are 30, and her skin has become cold and moist to the touch. She’s unable to speak coherently and is losing consciousness. You can not leave the patient you are anesthetizing, but you call a fellow anesthesiologist to evaluate the patient in person, and prepare her for emergent re-operation.

The patient’s initial vital signs were stable, but the downward trend of her vital signs were a harbinger of the serious complication. Eventually the symptoms of abdominal pain and decreasing consciousness appeared, and confirmed the diagnosis of intra-abdominal hemorrhage and impending shock. The increased heart rate, decreased blood pressure, and increased respiratory rate were red flags early on.

Abnormal vital signs can indicate that a patient is acutely ill. Equally important to the value of each vital sign is the temporal trend in the vital signs. A vital sign trend increasing or decreasing from the normal range can validate that the patient is becoming acutely ill.

You may be thinking, why is Dr. Novak telling me vital signs are important? Everybody know vital signs are, well … vital.

My message to you is to seek out the vital signs, all of them, as essential clues in all patients.

As anesthesiologists, we spend our entire intraoperative clinical career staring at a patient’s vital signs on a video screen. When the blood pressure goes up, we act. When the blood pressure goes down, we act. When the heart rate goes up, we act, and when the heart rate goes down, we act. When oxygen saturation trends downward, we act. Because most intraoperative patients are unconscious, the patient’s verbal history—the traditional clues regarding acute illness—are unavailable. We can not ask our patient questions to determine whether vital sign changes are associated with symptoms of chest pain, shortness of breath, or neurologic deficits. We’re accustomed to treating patients by normalizing their vital signs.

Other healthcare providers lack this perspective. Nurses and non-acute-care physicians such as family practitioners and internists can fill a patient’s history chock full of other details so thick that the vital signs are buried. The five or six vital sign numbers are often obscured in pages of text. Most physician and nursing notes in an electronic medical record (EMR) are lengthy, and are many are copied and pasted from previous encounters. Each patient interview is a quiz bowl of medical history answers. The five or six vital sign numbers are a needle in the haystack of a modern medical history. The EMR in a clinic or a hospital can serve to worsen this plight, as vital signs are recorded by nurses and entered into nursing documents on the computer, and treating physicians may have to dig to find the correct page that lists vital signs. One possible benefit of an EMR is a proposed safety system that requires, for any abnormal vital sign entered into the computer, the nurse to document they have verbally informed a physician of that abnormal value. This system would assure that abnormal values are never ignored, and that an MD will assess whether further diagnostic or therapeutic steps need to be taken.

Ferret out the vital signs. In my career as a clinical anesthesiologist and anesthesia expert witness, I can’t recall one significant complication that wasn’t foretold by an increased or decreased heart rate, blood pressure, respiratory rate, or temperature, a decreased O2 saturation, or an increased pain score.

Keep your eye on the vitals, and keep your patients out of trouble.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SHOULD PHYSICIANS BE TESTED FOR DRUGS AND ALCOHOL?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An 60-year-old man has a heart attack in the middle of an emergency abdominal surgery at 11:00 pm and dies two hours later. Should the anesthesiologist submit to a drug test to seek out alcohol or drug ingestion that could have made her performance impaired?

Discussion: In the 2012 movie Flight, Denzel Washington stars as a commercial airline pilot addicted to alcohol and cocaine, who crashes his airplane while he is intoxicated. Analogies between aviation and anesthesia are commonplace. Both involve takeoffs, landings, and varying cruising times between the two. Both are generally quite safe, but on occasion disastrous accidents occur.

Pilots are required to submit to random drug testing and to testing following accidents. The Federal Aviation Administration (FAA) mandated drug and alcohol testing of safety-sensitive aviation employees in the Omnibus Transportation Employees Testing Act of 1991 to help protect the public and keep the skies safe.

Proposition 46 was a 2014 California legal initiative that proposed similar random drug testing of physicians and drug testing following critical sentinel events. Prop 46 was on the ballot for the November 2014 general election, and was soundly defeated. This proposition was noteworthy for bundling the drug-testing proposal with an additional proposal that would increase the maximum pain and suffering malpractice reward from $250,000 per case to $1,100,000 per case. Prop 46 was funded and supported by trial lawyers who sought to raise the ceiling on pain and suffering awards they could win in medical malpractice suits in California.

This malpractice award increase proposed by trial lawyers was viewed as a money grab, and was unpopular with voters. Because of concerns with increasing malpractice costs and health care costs, Prop 46 was defeated.

But what if Prop 46 had solely been about drug-testing physicians? Would it have a better chance of passing? I have no crystal ball, but my guess is that yes, it would have had a better chance of passing. According to the September 13, 2014 edition of the Los Angeles Times, the component of Prop 46 that required random drug and alcohol testing of doctors was popular among those surveyed: 68% of likely voters were in favor of it, while 25% were opposed.

In the August 1, 2014 issue of the New York Times, Adam Nagourney wrote “At a time when random drug testing is part of the job for pilots, train operators, police officers and firefighters—to name a few—one high-profile line of work has managed to remain exempt: doctors. That may be about to change. California would become the first state to require doctors to submit to random drug and alcohol tests under a measure to appear on the ballot this November. The proposal, which drew approval in early focus groups, was inserted as a sweetener in a broad initiative pushed by trial lawyers that also includes an unrelated measure to raise the state’s financial cap on medical malpractice awards for the first time since 1975, to $1.1 million from $250,000.”

The same New York Times article states, “Backers of Proposition 46 have begun putting out a steady stream of news releases about cases involving doctors with a history of drug and alcohol abuse…. ‘It’s crucial: I can’t believe we haven’t done this already,’ said Arthur L. Caplan, a medical ethicist at New York University. ‘But the idea that we wouldn’t be screening our surgeon, our anesthesiologist or our oncologist when we are going to screen our bus drivers and our airline pilots strikes me as ethically indefensible.’” In the same article, Daniel R. Levinson, the inspector general for the Department of Health and Human Services, opines that there should be random drug testing across the medical profession, given the access in hospitals to controlled substances. “I don’t think that a carve-out when it comes to the medical field is sensible public policy,” he said. “No one should be above suspicion or below suspicion. I think we all need to play by similar rules.”

In a recent commentary published in the Journal of the American Medical Association (JAMA), Dr. Julius Pham of Johns Hopkins wrote, “Patients and their family members have a right to be protected from impaired physicians…. Why is there such a difference among high-risk industries, which all pledge to keep the public safe? First, medicine is underregulated compared with other industries. The fiduciary patient-physician relationship is generally considered to be governed by the profession, not to be tampered with by regulatory bodies. While some state and individual health system regulations exist, they tend to be weak. Second, self-monitoring is the essence of medical professionalism. Peer review is the accepted modality to identify physicians with impaired performance. Most states now have a designated physician health program to detect and assist potentially impaired physicians before those physicians cause patients harm. However, these programs vary in their mandate, authority, reporting requirements, and activities. For instance, California has the largest number of US physicians, but its physician health program was recently discontinued. In states without proactive programs, it seems, by default, that patient harm has to occur before a review process occurs. In many cases, an overwhelming amount of data (i.e., harmed patients) must be available before a hospital or state initiates an investigation.”

Dr. Pham goes on to say, “What might a model of physician impairment regulation look like? First, mandatory physical examination, drug testing, or both may be considered before a medical staff appointment. This already occurs in some hospitals and has been successful in other industries. Second, a program of random alcohol-drug testing could be implemented. Random testing is required for most federal employees and has been successfully implemented in several medical settings. Random testing in the military has resulted in a decrease in illicit drug use. Third, a policy for routine drug-alcohol testing could be initiated for all physicians involved with a sentinel event leading to patient death. Fourth, a national hospital regulatory/accrediting body could establish these standards to maintain consistency across states.”

It’s estimated that approximately 10% to 15% of all healthcare professionals misuse drugs or alcohol at some time during their career. Although rates of substance abuse and dependence are no different than those in the general population, the stakes are higher because healthcare professionals are caregivers responsible for the general health and well-being of our population. It’s known that specialties such as anesthesiology, emergency medicine, and psychiatry have higher rates of drug abuse, possible due to the stress level associated with these specialties, the baseline personalities of these healthcare providers, and easy access to drugs in these specialties.

As physicians, do we have any compelling arguments to deflect the notion of MD’s being drug tested? Physicians decry the intrusion into their privacy. There is the ethical question whether the risk of patient injury by the 10% of physicians who use drugs and/or alcohol merits that the other 90% of physicians should be subjected to drug testing. There is also the specter of false-positive tests, which could wreak havoc with a doctor’s reputation. The details of any proposed drug and alcohol screening programs will be crucial, and any screening program will require careful consideration of a physician’s rights and privacy.

Two prominent hospitals—Massachusetts General Hospital in Boston and the Cleveland Clinic in Ohio—implemented random urine drug testing in their anesthesia residency teaching departments. A 2005 survey by the Cleveland Clinic estimated that 80 percent of anesthesiology residency training programs reported problems with drug-impaired doctors, and an additional 19 percent reported a death from overdose. “The problem is that we are exposed to, and we have the use of, very highly addictive and potent medications,” said Dr. Michael G. Fitzsimons, administrator for the substance abuse program of the department of anesthesia and critical care at Massachusetts General Hospital in Boston. Dr. Gregory B. Collins, section head of the Alcohol and Drug Recovery Center, at the Cleveland Clinic Foundation, said, “The first thing you often realize in these cases, it’s a kid dead in the bathroom with a needle in his arm.” Dr. Arnold Berry, an anesthesiologist and a member of the Committee on Occupational Health of the American Society of Anesthesiologists, said estimates of anesthesiologists who are addicted to medication range from only 1 to 2 percent. “The most recent study in training programs suggests the (addiction) rate has stayed the same for 20 years,” he said. Dr. Berry said the American Society of Anesthesiologists (ASA) has decided to use other tactics to stave off addiction, rather than recommending urine testing. The ASA is implemented a “wellness initiative” to help anesthesiologists deal with stressors in their lives.

While doctors and organized medicine may delay the notion of drug testing for themselves, public opinion and lawmakers may lead the way toward making physicians “pee in the cup.” Citizens don’t want their airline pilots, firemen, and police officers under the influence of alcohol or drugs, and patients don’t want their doctors under the influence of alcohol or drugs either.

Our patients always come first. It will be an arduous task for MD’s to forever oppose a mandate for clean and sober physicians. Hugh Laurie was a fascinating character as the opiate-popping junkie doctor in “House,” but what patient wants the TV persona of Dr. Gregory House at their bedside?

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HERBAL MEDICINES, SURGERY, AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An otherwise healthy 50-year-old female patient takes three herb pills daily: gingko, kava, and ginseng. What do you do when this patient needs elective surgery for an ACL reconstruction two days from now? Do you cancel surgery and stop the herbal medicines, or should you proceed?

My goal is to give you practical advice on how to proceed in the real world of anesthesia and surgical practice. We all know herbal medicines are out there. Do they matter? What is the evidence that herbal medicines affect surgical outcomes in an adverse way?

Many commonly used herbal medicines have side effects that affect drug metabolism, bleeding, and the central nervous system. In 2002 35% of Americans used complementary alternative medicine (CAM) therapies, and visits to CAM practitioners exceeded those to American primary care physicians (Tindle et al: Trends in use of complementary and alternative medicine by US adults: 1997-2002. Altern Ther Health Med 2005; 11:42). CAM practitioners include homeopathic medicine, meditation, art, music, or dance therapy, herbal medicines, dietary supplements, chiropractic manipulation, osteopathic medicine, massage, and acupuncture.

The finest review of herbal medicines and anesthesia is Chapter 33 in Miller’s Anesthesia, 7th Edition, 2009, authored by Ang-Lee, Yuan, and Moss. The authors write, “Many patients fail to volunteer information regarding herb and alternative medicine pills unless they are specifically asked about herbal medication use. Scientific knowledge in this area is still incomplete. There are no randomized, controlled trials that have evaluated the effects of prior herbal medicine use on the period immediately before, during and after surgery.” They go on to say, “preoperative use of herbal medicines has been associated with adverse perioperative events,” and “Because herbal medicines are classified as dietary supplements, they are not subject to preclinical animal studies, premarketing controlled clinical trials, or postmarketing surveillance. Under current law, the burden is shifted to the U.S. Food and Drug Administration (FDA) to prove products unsafe before they can be withdrawn from the market.”

The authors reviewed nine herbal medicines that have the greatest impact on perioperative patient care: echinacea, ephedra, garlic, Ginkgo biloba, ginseng, kava, saw palmetto, St. John’s wort, and valerian. These nine pills represent 50% of the herbal medicines sold in the United States.

The same authors published a paper entitled “Herbal Medicines and Perioperative Care.” (JAMA 2001; 286:208). The following table is reproduced from that journal article, and describes relevant effects, perioperative concerns, and recommendations for eight of the most common herbal medicines:

Echinacea
Boosts immunity. Allergic reactions, impairs immune suppressive drugs, can cause 
immune suppression when taken long-term, could impair wound 
healing. Discontinue as far in advance as possible, especially for transplant patients or those with liver dysfunction.

Ephedra (ma huang) Increases heart rate, increases blood pressure. Risk of heart attack, arrhythmias, stroke, interaction with other drugs, kidney stones. Discontinue at least 24 hours before surgery.

Garlic (ajo)
Prevents clotting. Risk of bleeding, especially when combined with other drugs that inhibit clotting. Discontinue at least 7 days before surgery.

Ginko (duck foot, maidenhair, silver apricot). Prevents clotting. Risk of bleeding, especially when combined with other drugs that inhibit clotting. Discontinue at least 36 hours before surgery.

Ginseng
Lowers blood glucose, inhibits clotting. Lowers blood-sugar levels. Increases risk of bleeding. Interferes with warfarin (an anti-clotting drug). Discontinue at least seven days before surgery.

Kava (kawa, awa, intoxicating pepper). Sedates, decreases anxiety. May increase sedative effects of anesthesia. Risks of addiction, tolerance and withdrawal unknown. Discontinue at least 24 hours before surgery.

St. John’s wort (amber, goatweed, Hypericum, klamatheweed). Inhibits re-uptake of neuro-transmitters (similar to Prozac). Alters metabolisms of other drugs such as cyclosporin (for transplant patients), warfarin, steroids, protease inhibitors (vs HIV). May interfere with many other drug.s Discontinue at least five days before surgery.

Valerian
Sedates Could increase effects of sedatives. Long-term use could increase the amount of anesthesia needed. Withdrawal symptoms resemble Valium addiction If possible, taper dose weeks before surgery. If not, continue use until surgery. Treat withdrawal symptoms with benzodiazepines.

In their chapter in Miller’s Anesthesia, Ang-Lee, Yuan, and Moss recommend that, “In general, herbal medicines should be discontinued preoperatively. When pharmacokinetic data for the active constituents in an herbal medication are available, the timeframe for preoperative discontinuation can be tailored. For other herbal medicines, 2 weeks is recommended. However, in clinical practice because many patients require nonelective surgery, are not evaluated until the day of surgery, or are noncompliant with instructions to discontinue herbal medications preoperatively, they may take herbal medicines until the day of surgery. In this situation, anesthesia can usually proceed safely at the discretion of the anesthesiologist, who should be familiar with commonly used herbal medicines to avoid or recognize and treat complications that may arise.”

The American Society of Anesthesiologists have no official standards or guidelines on the preoperative use of herbal medications. Public and professional educational information released by the American Society of Anesthesiologists suggest that herbals be discontinued at least 2 to 3 weeks before surgery.

To return to our original question, what do you do when your otherwise healthy 50-year-old female patient has been taking gingko, kava, and ginseng up to two days prior to her ACL reconstruction surgery? Gingko can cause increased bleeding, kava can cause increased sedation, and ginseng can cause decreased blood sugars and increased bleeding. You discuss the predicament with the patient’s surgeon. He’s not concerned that a possible increased risk of bleeding will affect this knee surgery. You decide the increased level of sedation and the possible decreased blood sugar risks are not prohibitive. (If you were worried, you could cut back slightly on the amount of central nervous system depressant drugs you utilize, and also run a 5% dextrose solution in the patient’s IV.)

An alternative choice would be to cancel the surgery for 2 weeks while the patient remains herb-free. The surgeon asks you, “Is there any data that postponing the surgery for two weeks will decrease the complication rate?”

You answer honestly and say, “There is no data. The American Society of Anesthesiologists suggests that herbals be discontinued at least 2 to 3 weeks before surgery.”

The surgeon says, “I want to do the case tomorrow. There’s no data compelling me to delay for two weeks. I accept whatever increased bleeding risk there may be. I’ve never had a patient have a bleeding complication from a knee surgery.”

You proceed with the surgery the next day. The patient does well, and has no complications.

Surveys estimate that:
a) 22% to 32% of patients undergoing surgery use herbal medications (Tsen LC, et al: Alternative medicine use in presurgical patients. Anesthesiology 2000; 93:148);
b) 90% of anesthesiologists do not routinely ask about herbal medicine use (McKenzie AG: Current management of patients taking herbal medicines: A survey of anaesthetic practice in the UK. Eur J Anaesthesiol 2005; 22:597); and
c) more than 70% of patients are not forthcoming about their herbal medicine use during routine preoperative assessment (Kaye AD, et al: Herbal medications: Current trends in anesthesiology practice—a hospital survey. J Clin Anesth 2000; 12:468).

The frequent use of herbal medicines in perioperative patients is real. How big a problem is it? Nobody knows. How frequently does one of your patients have an unexpected problem of increased bleeding, increased sedation, decreased blood sugar, unexpected cardiac arrhythmia or angina, or decreased immune function?

For an ACL reconstruction in a healthy patient, gingko, kava, and ginseng may pose little risk. For a craniotomy on a 70-year-old with coronary artery disease and diabetes, gingko, kava, and ginseng bay pose an increased risk, and warrant postponing the surgery for 2 weeks after holding the herbal medicines.

My advice is to take a careful history of herb medicine use from your patients, know (or look it up if you don’t remember) the potential side effects of each herbal medicine, and then on a case-by-case basis decide if it really matters if the surgery should be cancelled for 2 weeks.

That’s what doctors do. That’s what anesthesia consultants do.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SUCCINYLCHOLINE: VITAL DRUG OR OBSOLETE DINOSAUR?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Succinylcholine: vital drug or dinosaur? Succinylcholine (sux) has the wonderful advantage of rendering a patient paralyzed in less than a minute, and the discouraging disadvantage of a long list of side effects that make the drug problematic.

succinylcholine_chloride_10_med-21

A vial of succinylcholine

I would never begin an anesthetic without succinylcholine being immediately available. No other muscle relaxant supplies as rapid an onset of action and as short a duration of action. An intravenous dose of 1 mg/kg of succinylcholine brings complete paralysis of the neuromuscular junction at 60 seconds, and recovery to 90% of muscle strength in 9 – 13 minutes. (Miller’s Anesthesia, 7th Edition, 2009, Chapter 29, Pharmacology of Muscle Relaxants and Their Antagonists). If a patient has an acute airway disaster on induction such as laryngospasm or pulmonary aspiration, no drug enables emergency endotracheal intubation as quickly as succinylcholine. That said, I never use succinylcholine unless I have to. The drug has too many side effects and rocuronium is often a better choice. For an elective anesthetic on a patient who has fasted and has an empty stomach, one almost never needs to use succinylcholine. If you do use sux, you are exposing your patient to the following side effects:

1. Myalgias. Your patient complains to you the following day, “Doc, I feel like I was run over by a truck.” Because the majority of anesthetics are currently done on outpatients, and because you do not personally interview these patients the following day, you won’t be aware of the degree of muscle pain you’ve induced by using the depolarizing relaxant succinylcholine. Published data quantitates the incidence of post-succinylcholine myalgia as varying from 0.2 % to 89% (Brodsky JB, Anesthesiology 1979; 51:259-61), but my clinical impression is that the number is closer to 89% than it is to 0.2%. Myalgias aren’t life-threatening, but if you ever converse with your patient one day after succinylcholine and they complain of severe muscle aches, you’ll wish you’d chosen another muscle relaxant if possible.
2. Risk of cardiac arrest in children. Succinylcholine carries a black box warning for use in children. Rare hyperkalemia and ventricular arrhythmias followed by cardiac arrest may occur in apparently healthy children who have an occult muscular dystrophy. The black box warning on succinylcholine recommends to “reserve use in children for emergency intubation or need to immediately secure the airway.”
3. Hyperkalemia, with an average increase of 0.5 mEq in potassium concentration after intravenous succinylcholine injection.
4. Cardiac arrest in patients with a history of severe trauma, neurologic disease or burns. There’s a risk of cardiac arrest with succinylcholine use in patients with severe burns, major trauma, stroke, prolonged immobility, multiple sclerosis, or Guillian-Barré syndrome, due to an up-regulation of acetylcholine. The increase in serum potassium normally seen with succinylcholine can be greatly increased in these populations, leading to ventricular arrhythmia and cardiac arrest. There is typically no risk using succinylcholine in the first 24 hours after the acute injury.
5. Cardiac arrhythmias. Both tachy and bradycardias can be seen following the injection of succinylcholine.
6. Increase in intraocular pressure, a hazard when the eye is open or traumatized.
7. Increase in intragastric pressure, a hazard if gastric motility is abnormal or the stomach is full.
8. Increase in intracranial pressure, a hazard with head injuries or intracerebral bleeds or tumors.
9. Malignant Hyperthermia (MH) risk. The incidence of MH is low. A Danish study reported one case per 4500 anesthetics when triggering agents are in use (Ording H, Dan Med Bull, 43:111-125), but succinylcholine is the only injectable drug which is a trigger for MH, and this is a disincentive to use the drug routinely.
10. Prolonged phase II blockade. Patients who have genetically abnormal plasma butyrylcholinesterase activity have the risk of a prolonged phase II succinylcholine block lasting up to six hours instead of the expected 9 – 13 minutes. If you’ve ever had to stay in the operating room or post-anesthesia recovery room for hours with a ventilated patient after their surgery ended because your patient incurred prolonged blockade from succinylcholine, you won’t forget it, and you’ll hope it never happens again.

What does a practicing anesthesiologist use instead of succinylcholine? Rocuronium.

A 0.6 mg/kg intubating dose of the non-depolarizing relaxant rocuronium has an onset time to maximum block of 1.7 minutes and a duration of 36 minutes. The onset time can be shortened by increasing the dose to a 1.2 mg/kg, a dose which has an onset time to maximum block of 0.9 minutes and a duration of 73 minutes. These durations can be shortened by reversing the rocuronium blockade as soon as one twitch is measured with a neuromuscular blockade monitor. Thus by using a larger dose of rocuronium, practitioners can have an onset of acceptable intubation conditions at 0.9 X 60 seconds = 54 seconds, compared to the 30 seconds noted with succinylcholine, without any of the 10 above-listed succinylcholine side effects. The duration of rocuronium when reversed by neostigmine/glycopyrrolate can be as short as 20 – 25 minutes, a time short enough to accommodate most brief surgical procedures.

Now that sugammadex is commercially available, we can reverse rocuronium blockade in seconds, making rocuronium shorter in duration than succinylcholine.

Here is a list of surgical cases once thought to be indications for using succinylcholine, which I would argue are now better served by using a dose of rocuronium followed by early reversal with sugammadex:

1) Brief procedures requiring intubation, such as bronchoscopy or tonsillectomy.
2) Procedures which require intubation plus intraoperative nerve monitoring, such as middle ear surgery.
3) Procedures requiring intubation of obese and morbidly obese patients who appear to have no risk factors for mask ventilation.
4) Procedures requiring full stomach precautions and cricoid pressure, in which the patient’s oxygenation status can tolerate 54 seconds of apnea prior to intubation. This includes emergency surgery and trauma patients. Miller’s Anesthesia (Chapter 72, Anesthesia for Trauma) discusses the induction of anesthesia and endotracheal intubation for emergency patients who are not NPO and may have full stomachs. Either succinylcholine or rocuronium can be used, with succinylcholine having the advantage of a quicker onset and the 1.2 mg/kg of rocuronium having the advantage of lacking the 10 side effects listed above. The fact that succinylcholine takes 9 – 13 minutes to wear off makes it riskier than rocuronium, which can be reversed in seconds by sugammadex. Waiting for 9 minutes for a return to spontaneous respirations after succinycholine would be associated with severe hypoxia.

On the other hand, succinylcholine is the sole recommended muscle relaxant for:

1) Cesarean sections. Miller’s Anesthesia (Chapter 69, Anesthesia for Obstetrics) still recommends thiopental and succinylcholine for Cesarean sections that require general anesthesia, and I would be loath to disagree with our specialty’s Bible.
2) Electroconvulsive therapy (ECT) for depression. Miller’s Anesthesia (Chapter 79, Anesthesia at Remote Locations) recommends partial muscle relaxation during ECT, and recommends small doses of succinylcholine (0.5 mg/kg) to reduce the peripheral manifestations of the seizure and to prevent musculoskeletal trauma to the patient.
3) Urgent intubation or re-intubation in a patient when every second counts, e.g. a patient who is already hypoxic. A subset of this indication is the patient who is being mask-induced and becomes hypoxic and requires intramuscular succinylcholine injection.
4) Laryngospasm either during mask induction or post-extubation, in which the patient requires urgent paralysis to relax the vocal cords.

In conclusion, most indications for muscle relaxation are better handled by using the non-depolarizing drug rocuronium rather than succinylcholine. However, because of the four recommended uses for succinylcholine listed in the previous paragraph, none of us would ever practice anesthesia without a vial of succinylcholine in our drawer for immediate availability.

I try very, very hard to minimize my use of succinylcholine, and so should you. But to answer our original question… succinylcholine is still a vital drug and not a dinosaur at all.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO SCREEN OUTPATIENTS PRIOR TO SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Screening prior to outpatient surgery is important. Over 70% of elective surgeries in the United States are ambulatory or outpatient surgeries, in which the patient goes home the same day as the procedure. There are increasing numbers of surgical patients who are elderly, obese, have sleep apnea, or who have multiple medical problems. How do we decide which 70% of surgical candidates are appropriate for outpatient surgery, and which are not?

Since 2002 I’ve been the Medical Director at a busy Ambulatory Surgery Center (ASC) in Palo Alto, California. ASC Medical Directors are perioperative physicians, responsible for the preoperative, intraoperative, and postoperative management of ambulatory surgery patients. Our surgery center is freestanding, distanced one mile from Stanford University Hospital. The hospital-based technologies of laboratory testing, a blood bank, an ICU, arterial blood gas measurement, and full radiology diagnostics are not available on site. It’s important that patient selection for a freestanding surgery center is precise and safe.

The topic of Ambulatory Anesthesia is well reviewed in the textbook Miller’s Anesthesia, 7th Edition, 2009, Chapter 78, Ambulatory (Outpatient) Anesthesia. With the information in this chapter as a foundation, the following 7 points are guidelines I recommend in the preoperative consultation and selection of appropriate outpatient surgery patients:

  1. The most important factor in deciding if a surgical case is appropriate is not how many medical problems the patient has, but rather the magnitude of the surgical procedure. A patient may have morbid obesity, sleep apnea, and a past history of congestive heart failure, but still safely undergo a non-invasive procedure such as a hammertoe repair. Conversely, if the patient is healthy, but the scheduled surgery is an invasive procedure such as resection of a mass in the liver, that surgery needs to be done in a hospital.
  2. Because of #1, an ASC will schedule noninvasive procedures such as arthroscopies, head and neck procedures, eye surgeries, minor gynecology and general surgery procedures, gastroenterology endoscopies, plastic surgeries, and dental surgeries. What all these scheduled procedures have in common is that the surgeries (a) will not disrupt the patient’s airway, breathing, or cardiac physiology in a major way, and (b) will not cause excessive pain requires inpatient intravenous narcotics.
  3. One must screen patients preoperatively to identify individuals who have serious medical problems. Our facility uses a comprehensive preoperative telephone interview performed by a medical assistant, two days prior to surgery. The interview documents age, height, weight, Body Mass Index, complete review of systems, list of allergies, and prescription drug history. All information is entered in the patient’s medical record at that time.
  4. Each surgeon’s office assists in the preoperative screening. For all patients who have (a) age over 65, (b) obstructive sleep apnea, (c) cardiac disease or arrhythmia history, (d) significant lung disease, (e) shortness of breath or chest pain, (f) renal failure or hepatic failure, (g) insulin dependent diabetes, or (h) significant neurological abnormality, the surgery office is required to obtain medical clearance from the patient’s Primary Care Provider (PCP).    This PCP clearance note concludes with two questions: 1) Does the patient require any further diagnostic testing prior to the scheduled surgery? And 2) Does the patient require any further therapeutic measures prior to the scheduled surgery?
  5. For each patient identified with significant medical problems, the Medical Director must review the chart and the Primary Care Provider note, and confirm that the patient is an appropriate candidate for the outpatient surgery. The Medical Director may telephone the patient for a more detailed history if indicated. On rare occasions, the Medical Director may arrange to meet and examine the patient prior to the surgical date.
  6. Medical judgment is required, as some ASA III patients with significant comorbidities are candidates for trivial outpatient procedures such as gastroenterology endoscopy or removal of a neuroma from a finger, but are inappropriate candidates for a shoulder arthroscopy or any procedure that requires general endotracheal anesthesia.
  7. What about laboratory testing? Per Miller’s Anesthesia, 7th Edition, 2009, Chapter 78, few preoperative lab tests are indicated prior to most ambulatory surgery. We require a recent ECG for patients with a history of hypertension, cardiac disease, or for any patient over 65 years in age. If this ECG is not included with the Primary Care Provider consultation note, we perform the ECG on site in the preoperative area of our ASC, at no charge to the patient. All diabetic patients have a fasting glucose test done prior to surgery. No electrolytes, hematocrit, renal function tests, or hepatic tests are required on any patient unless that patient’s history indicates a specific reason to mandate those tests.

Utilizing this system, cancellations on the day of surgery are infrequent—well below 1% of the scheduled procedures. The expense of and inconvenience of an Anesthesia Preoperative Clinic are eliminated.

What sort of cases are not approved? Here are examples from my practice regarding patients/procedures who are/are not appropriate for surgery at a freestanding ambulatory surgery center:

  1. A 45-year-old patient with moderately severe obstructive sleep apnea (OSA) is scheduled for a UPPP (uvulopalatalpharyngoplasty). DECISION: NOT APPROPRIATE. Reference: American Society of Anesthesiologist Practice Guidelines of the Perioperative Management of Patients with OSA (https://www.asahq.org/coveo.aspx?q=osa). For airway and palate surgery on an OSA patient, the patient is best observed in a medical facility post-surgery. For any surgery this painful in an OSA patient, the patient will require significant narcotics, which place him at risk for apnea and airway obstruction post-surgery.
  2. A morbidly obese male (Body Mass Index = 40) is scheduled for a shoulder arthroscopy and rotator cuff repair. DECISION: NOT APPROPRIATE. Obesity is not an automatic exclusion criterion for outpatient surgery. Whether to cancel the case or not depends on the nature of the surgery. A shoulder repair often requires significant postoperative narcotics. The intersection of morbid obesity and a painful surgery means it’s best to do the case in a hospital. One could argue that this patient could be done with an interscalene block for postoperative analgesia and then discharged home, but I don’t support this decision. If the block is difficult or ineffective, the anesthesiologist has a morbidly obese patient requiring significant doses of narcotics, and who is scheduled to be discharged home. If this surgery had been a knee arthroscopy and medial meniscectomy it could be an appropriate outpatient surgery, because meniscectomy patients have minimal pain postoperatively.
  3. An 18-year-old male with a positive family history of Malignant Hyperthermia is scheduled for a tympanoplasty. DECISION: APPROPRIATE. A trigger-free general total-intravenous anesthetic with propofol and remifenantil can be given just as safely in an ASC as in a hospital.
  4. A 50-year-old 70-kilogram male with a known difficult airway (ankylosing spondylitis) is scheduled for endoscopic sinus surgery. DECISION: NOT APPROPRIATE. In our ASC, for safety reasons, we have advanced airway equipment including a video laryngoscope and a fiberoptic laryngoscope. Despite our equipment, a patient with a known difficult airway is best scheduled for surgery in a hospital setting.
  5. An 80-year-old woman with shortness of breath on exertion is scheduled for a bunionectomy. DECISION: NOT APPROPRIATE. Although foot surgery is not a major invasive procedure, any patient with shortness of breath is inappropriate for ASC surgery. The nature of the dyspnea needs to be determined and remedied prior to surgery or anesthesia of any sort.
  6. A 6-year-old female born without an ear is scheduled for a 6-hour ear graft and reconstruction. DECISION: APPROPRIATE. With modern general anesthetic techniques utilizing sevoflurane and propofol, patients awake promptly. Even after long anesthetics, if the surgery is not painful, patients are usually discharged in stable condition within 60 minutes.

There are infinite combinations of patient comorbidities and types of surgeries. The decision regarding which scheduled procedures are appropriate and which are not is both an art and a science. The role of an anesthesiologist/Medical Director as the perioperative physician making these decisions is invaluable.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

10 WAYS PRIVATE PRACTICE ANESTHESIA DIFFERS FROM ACADEMIC ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Academic and private practice anesthesia differ. I’m fortunate to be a member of the clinical faculty in the Department of Anesthesia, Perioperative and Pain Medicine at Stanford University. Stanford is a unique academic hospital, staffed by both academic and private practice physicians. From 2001 until 2015, I served as the Deputy Chief of Anesthesia at Stanford, an elected officer who leads the private practice/community section of the anesthesia department.


IMG_0825

Stanford anesthesia residents frequently question me about how the world of private practice differs from academia. I began my writing career by penning a series of Stanford Deputy Chief Columns. These columns originated as a forum to educate residents using specific cases and situations I found unique to private practice.

Although some anesthesia residents continue in academic medicine, most pursue careers in community or private practice. In 2009, the Anesthesia Quality Institute published Anesthesia in the United States 2009, a report that summarized data on our profession. There were 41,693 anesthesiologists in America at that time, and the demographics of practice type were: academic/teaching medical center 43%, community hospital 35%, city/county hospital 11%, and ambulatory surgery center 6%. Per this data, the majority of American anesthesiologists practice outside of teaching hospitals.

How does community anesthesia differ from academic anesthesia? I’m uniquely qualified to answer this question. I’ve worked at Stanford University Hospital for 34 years, including 5 years of residency training and one year as an Emergency Room faculty member, but my last 25 years at Stanford have been in private practice with the Associated Anesthesiologists Medical Group.

Here’s my list of the 10 major adjustments residents face transitioning from academic anesthesia to private practice/community anesthesia:

  1. You’ll work alone. In academic medicine, faculty members supervise residents. In private practice, you’re on your own. This is particularly true in the middle of the night or when you are working in a small freestanding surgery center where you are the only anesthesia professional. In these settings, you have little or no backup if clinical circumstances become dire. An additional example is the performance of pediatric inhalation inductions. During residency training, a faculty member starts the IV while the resident manages the airway. In private practice you’ll do both tasks yourself. I’d advise you to adopt a senior member of your new anesthesia group as a mentor, and to question him or her in an ongoing nature regarding the nuances of your new practice. (Note that certain private practices, especially in the Midwest or Southeastern U.S., utilize Anesthesia Care Teams, where anesthesiology attendings supervise nurse anesthetists, but this model is less common in California).
  2. Income: your income will be linked to your production. The good news is that you’ll earn more money that you did as a resident. Your income will be linked to the amount of cases you do. You’ll earn more in a twelve-hour day than you do in a four-hour day, so you have an incentive to do extra cases. A job where newly hired physicians have equitable access to workload is desirable.
  3. Income: your income will be linked to the insurance coverage of your patients. Privately insured patients pay more than Medicare and Medicaid patients. You may earn more working a four-hour day for insured patients than you earn working twelve hours working for the government plans of Medicare and Medicaid. It’s too early to know how much Obamacare and the Affordable Care Act will alter physician salaries. A job with a low percentage of Medicare and Medicaid work is desirable.
  4. Vacations. You’ll have access to more vacation time than you did in academic training. Most jobs allow a flexible amount of weeks away from clinical practice, but you will earn zero money during those weeks. It will be your choice: maximize free time or maximize income.
  5. Recipes. You’ll tend to use consistent anesthesia “recipes,” rather than trying to make every anesthetic unique, interesting or educational, as you may have done in an academic setting. Community practice demands high quality care with efficient inductions and wakeups, and rapid turnovers between cases. Once you discover your best method to do a particular case, you’ll stick to that method.
  6. Continuing Medical Education (CME). In an academic setting, educational conferences are frequent and accessible. After your training is finished, you’ll need to find your own CME. In California the requirement is 50 hours of CME every 2 years. Your options will include conventions, weekend meetings, and self-study at home programs. Many physicians find at-home programs require less investment in time, travel, and tuition than finding out-of-town lectures to attend.
  7. Malpractice insurance. You’ll pay your own malpractice insurance. As a result, you’ll be intensely interested in avoiding malpractice claims and adverse patient outcomes. You’ll become well versed in the standards of care in your anesthesia community.
  8. No teaching. No one will expect you to teach during community practice. You may choose to lecture nurses or your fellow medical staff, but it’s not required.
  9. No writing. No one will expect you to write or publish scholarly articles. You may choose to do so, but you will be in the minority.
  10. 10.  Respect. You’ll experience a higher level of respect from nurses and staff at community hospitals and surgery centers than you receive during residency. Nurses and staff accept that you are fully trained and experienced, and treat you as such. Free food at lunch and breakfast is common. Some hospitals have comfortable physician lounges where medical staff members gather. Teams of physicians work together at the same community hospitals for decades, and form strong relationships with the nurses, techs, and their fellow medical staff. It feels terrific to collaborate with the same professionals week after week.

Academic training is an essential building block in every physician’s career. If and when you choose to venture beyond academia into community anesthesia, this column gives you some idea what to expect. I recommend you find a mentor to help you adjust to the challenges of your new practice setting, and I wish you good luck with the transition.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

OBAMACARE AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Key questions in our specialty in 2014 related to Obamacare and anesthesia. This article was originally published in 2014, when Barack Obama was the President of the United States. A key question in our specialty at that time was “How will ObamaCare affect anesthesiology?” The following essay represents my thoughts as of 2014, prior to the Trump presidency.

I don’t have a crystal ball, but based on what I’ve read, what I’ve observed, and what I’m hearing from other physicians, these are my predictions on how ObamaCare will change anesthesia practice in the United States:

  1. There will be more patients waiting for surgery. Millions of new patients will have ObamaCare cards and coverage. A flawed premise of ObamaCare is that a system can cover more patients and yet spend less money.
  2. Reimbursement rates will be lower. How many anesthesiologists will sign up for Medicaid or Medicare-equivalent rates to care for patients? Large organizations such as university hospitals, Kaiser, Sutter, and other HMO-types will likely sign up for the best rate they can negotiate. As a result, their physicians will have increased patient numbers and lower reimbursement for their time. The insurance plans that patients purchase will have higher deductibles, and most patients will have to pay more out of pocket for their surgery and anesthesia. This will lead to patients delaying surgery, and shopping around to find the best value for their healthcare dollar.
  3. Less old anesthesiologists. Older anesthesiologists will retire early rather than work for markedly reduced pay.
  4. Less young anesthesiologists. The pipeline of new, young anesthesiologists will slow. Young men and women are unlikely to sign up for 4 years of medical school,  4 – 6 years of residency and fellowship, and an average of $150,000 of student debt if their income incentives are severely cut by ObamaCare.
  5. More certified nurse anesthetists (CRNAs). It seems apparent that ObamaCare is interested in employing cheaper providers of medical services. CRNAs will command lower salaries than anesthesiologists. The premise to be tested is whether CRNAs can provide the same care for less money. Expect to see wider use of anesthesia care teams and of independent CRNA practice. Expect the overall quality of anesthesia care to change as more CRNAs and less M.D.’s are employed.
  6. A two-tiered system. Anesthesiologists who have a choice will not sign up for reduced ObamaCare rates of reimbursement. Surgeons who have a choice will not sign up for reduced ObamaCare reimbursement. Expect a second tier of private pay medical care to exist, where patients will choose non-ObamaCare M.D.’s of their choice, and will pay these physicians whatever the physicians charge. This tier will provide higher service and shorter waiting times before surgery is performed. This tier will likely be populated by some of the finest surgeons–surgeons are unwilling to work for decreased wages. A subset of anesthesiologists will work in this upper tier of medical care, and these anesthesiologists will earn higher wages as a result.
  7. Will the Accountable Care Organization (ACO) model stumble as the Health Maintenance Organization (HMO) model did in the 1990’s? ObamaCare provides for the existence of ACO’s, which are hospital-physician entities designed to provide comprehensive health care to patients in return for bundled payments. In this model the surgeon, the anesthesiologist, and the hospital (i.e. nurses, pharmacy, and the medical device industry) will divide up the bundled surgical payment. In this model it’s essential that an anesthesiologist leader has a strong presence at the negotiating table. A worrisome issue with the ACO model, as it was with the HMO model, is the flow of money. Physicians will no longer be working for their patients, but will be working for the ACO. The  primary incentive will be to be paid by the ACO, rather than to provide the best care possible.
  8. Anesthesia leadership skills will change. The physician leader of each anesthesia group must be a powerful and effective politician and economic strategist. These traits are not taught during anesthesia residency, and these traits have nothing to do with being an outstanding clinician.
  9. What about the Perioperative Surgical Home (PSH)? The American Society of Anesthesiologists is proposing the model of the PSH, in which anesthesiologists will assume leadership roles managing patient care in the preoperative, intraoperative, and postoperative arenas. This is a desirable goal for our specialty. No physician is better equipped than an anesthesiologist to supervise patients safely through the perioperative period with the highest standards of quality and cost-control. The Perioperative Surgical Home is designed to work with the model of the Accountable Care Organization. How these systems of the Perioperative Surgical Home and the Accountable Care Organization will evolve remains to be seen. It will be the role for individual anesthesia physician leaders in each hospital to seize the new opportunities.  Rank and file anesthesiologists will likely follow their leadership.

10. Consolidation of anesthesia groups. Small anesthesia groups will likely merge into bigger groups in an effort dominate a clinical census, and therefore to negotiate higher reimbursement rates. In November, 2013, the 100-physician Medical Anesthesia Consultants Medical Group, Inc, of San Ramon, California was acquired by Sheridan Healthcare Inc, a 2,500-physician services company based in Florida. Per Sheridan’s CEO, John Carlyle, the acquisition “provides a platform that will accelerate our expansion in the California marketplace.” This was the largest merger in Northern California anesthesia history.

11. Requirement of more anesthesia clinical metrics. Government and insurance payors will require more metrics to document that the provided clinical care was excellence. A typical required metric may be a high percentage of patients who received preoperative antibiotics prior to incision, or a low percentage of patients free from postoperative nausea and vomiting. Each anesthesia groups will need to establish computerized data-capturing systems to present this information to payors. The effort to tabulate these metrics will be another incentive for anesthesia groups to merge into larger clinical entities.

In summary:  More patients, more cases, less money, more bureaucracy, less money, more CRNA providers, and less money. These are the challenges ObamaCare presents to anesthesiologists. Stay tuned. Legions of patients with ObamaCare cards will be knocking on hospital doors. The government is expecting enough anesthesiologists to sign up for ObamaCare contracts to make the new system successful. It’s impossible to tell what behaviors ObamaCare will incentivize. Each anesthesiologist has the benefit of 25+ years of education, and each anesthesiologist will make intelligent choices regarding their career and their time.

Bob Dylan once sang, “I ain’t gonna work on Maggie’s Farm no more.”

Time will tell if ObamaCare is Maggie’s Farm for physicians.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW DOES A HEROIN OVERDOSE KILL? AN ANESTHESIOLOGIST’S VIEW

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT


On February 2, 2014, Academy Award-winning actor Phillip Seymour Hoffmann was found dead with a needle in his arm and syringes and packets of heroin in his room. How does a heroin overdose kill a person?

 phillip seymour hoffman heroin overdose

Anesthesiologists are uniquely qualified to answer this question. Anesthesiologists administer intravenous narcotics every day, because narcotics are important pain-relieving drugs in anesthetic care. If an anesthesiologist is attending to you while narcotics are injected into your bloodstream, you are safe. If an addicts chooses to inject narcotics into his or her bloodstream while they are alone in their apartment, they can die.

Heroin (diacetylmorphine or morphine diacetate) is in the same category of drugs as morphine, Demerol, and fentanyl. Heroin is prescribed as a controlled drug in the United Kingdom for use as a potent analgesic or pain reliever, but the drug is not approved for any medical use in the United States.

Within minutes, injected heroin crosses from the bloodstream to the brain. Once inside the brain, heroin is metabolized to the active drug 6-monoacetylmorphine (6-MAM), and then to morphine. Each of these chemicals binds to opioid receptors in the brain, which results in heroin’s euphoric, pain relieving, and anxiety-relieving effects. The duration of a single dose of heroin is 3-4 hours.

In addition to sensations of euphoria, calmness, sleepiness, pain relief, and blunting of anxiety, narcotics cause significant decrease in both the rate of breathing and the depth of each breath. This respiratory depression can be lethal, especially at higher doses.

In all acute care medicine, whether in the operating room, the intensive care unit, the emergency room, or the battlefield, physicians follow the mantra of “Airway-Breathing-Circulation.” A doctor’s first priority to keep the upper airway open, using a variety of techniques including jaw thrusts, extending the neck, inserting an oral airway, or placement of a breathing tube.  A doctor’s second priority is to assure that breathing, or ventilation, is ongoing. The doctor may assist breathing by delivering breaths of oxygen into the patient’s lungs via a ventilation bag (e.g. an Ambu bag). A doctor’s third priority is to assure that adequate circulation, or heart function, is ongoing.

If a large dose of narcotic is administered, breathing may cease or become so obstructed by the tongue and soft palate that no air moves in and out through the lungs. If an addict injects heroin while alone in their home, and they lose consciousness, their airway may become obstructed and breathing may cease. Oxygen levels to the brain and heart will plummet. After only minutes of inadequate oxygen, their heart will arrest and the addict will die.

Simultaneous usage of additional central nervous system depressant drugs, such as alcohol, benzodiazepines (Xanax, Valium, Librium, Ativan), or narcotic pills (oxycodone, Vicodin, Percocet) along with heroin can intensify the respiratory depression, and place the addict at even higher risk of ineffective breathing and resultant cardiac arrest.

Tolerance to heroin develops quickly, and users require more of the drug to achieve the same effects. This prompts addicts to inject increasing doses to achieve the desired “high,” with the attendant risk that each increased dose will be excessive, and lead to airway obstruction, inadequate breathing, and cardiac arrest.

Intravenous heroin usage carries additional risks, including viral infection (hepatitis or AIDS) from contaminated needles, bacterial infection of the heart valves (bacterial endocarditis), reactions to contaminants (e.g. starch, talc, or other drugs) in the heroin preparation, localized infections (abscesses) at the site of injection, and powerful withdrawal symptoms on cessation of heroin use.

But cardiac arrest from respiratory depression looms as the most frequent cause of sudden death in heroin addicts.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE TOP 11 DISCOVERIES IN THE HISTORY OF ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Important advances in the history of anesthesia changed the specialty forever. Humans have inhabited the Earth for 200,000 years, yet the discovery of surgical anesthesia was a recent development in 1846. For thousands of years most surgical procedures were accompanied by severe pain. The only strategies available to blunt pain were to give patients alcohol or opium until they were stuporous.

In the 21st Century, modern anesthesiologists utilize dozens of medications and apply sophisticated high-tech medical equipment. How did our specialty advance from prescribing patients two shots of whiskey to administering modern anesthetics?

In chronologic order, my choices for the 11 most important advances in the history of anesthesia follow below. I’ve included comments to expound on the impact of each discovery.

image069

1846. THE DISCOVERY OF ETHER AS A GENERAL ANESTHETIC. The first public demonstration of general anesthesia occurred at Harvard’s Massachusetts General Hospital in Boston, Massachusetts. Dr. William Morton, a local dentist, utilized inhaled ether to anesthetize patient Edward Abott.  Dr. John Warren then painlessly removed a tumor from Abbott’s neck.  Comment: This was the landmark discovery. From this point forward, painless surgery became possible.

1885. THE DISCOVERY OF INJECTABLE COCAINE AND LOCAL ANESTHESIA.  Cocaine was the first local anesthetic. Dr. William Halsted of Johns Hopkins University in Baltimore first injected 4% cocaine into a patient’s forearm and concluded that cocaine blocked sensation, as the arm was numb below but not above the point of injection. The first spinal anesthetic was performed in 1885 when Dr. Leonard Corning of Germany injected cocaine between the vertebrae of a 45-year-old man and caused numbness of the patient’s legs and lower abdomen. Comment: The discovery of local anesthesia gave doctors the power to block pain in specific locations. Improved local anesthetics procaine (Novocain) and lidocaine were later discovered in 1905 and 1948, respectively.

depositphotos_107354984-stock-photo-iron-vintage-glass-syringe-with

1896. THE DISCOVERY OF THE HYPODERMIC NEEDLE, THE SYRINGE, AND THE INJECTION OF MORPHINE. Alexander Wood of Scotland invented a hollow needle that fit on the end of a piston-style syringe, and used the syringe and needle combination to successfully treat pain by injections of morphine. Comment: The majority of anesthetic drugs today are injected intravenously. Such injections would be impossible without the invention of the syringe.

1905. DISCOVERY OF THE MEASUREMENT OF BLOOD PRESSURE BY BLOOD PRESSURE CUFF. Dr. Nikolai Korotkov of Russia described the sounds produced during auscultation with a stethoscope over a distal portion of an artery as a blood pressure cuff was deflated. These Korotkoff sounds resulted in an accurate determination of systolic and diastolic blood pressure. Comment: Anesthesiologists monitor patients repeatedly during every surgery. A patient’s vital signs are the heart rate, respiratory rate, blood pressure, and temperature. It would be impossible to administer safe anesthesia without blood pressure measurement. Low blood pressures may be evidence of anesthetic overdose, excessive bleeding, or heart dysfunction. High blood pressures may be evidence of inadequate anesthetic depth, or uncontrolled hypertensive heart disease.

8040085_intube_cuffed_endotracheal_tube_id_8_web_large

1913. DISCOVERY OF THE CUFFED ENDOTRACHEAL BREATHING TUBE. Sir Ivan Magill of England developed a technique of placing a breathing tube into the windpipe, and endotracheal anesthesia was born. Dr. Chevalier Jackson of Pennsylvania developed the first laryngoscope used to visualize the larynx and insert an endotracheal tube. Drs. Arthur Guedel and Ralph Waters at the University of Wisconsin discovered the cuffed endotracheal tube in 1928. This advance allowed the use of positive-pressure ventilation into a patient’s lungs. Comment: Surgery within the abdomen and chest would be impossible without controlling the airway and breathing with a tube in the trachea. As well, the critical care resuscitation mantra of Airway-Breathing-Circulation would be impossible without an endotracheal tube.

1934. THE DISCOVER OF THIOPENTAL AND INJECTABLE BARBITURATES. Dr. John Lundy of the Mayo Clinic in Rochester, Minnesota introduced the intravenous anesthetic sodium thiopental into anesthetic practice. Injecting Pentothal became the standard means to induce general anesthesia. Pentothal provided a more pleasant method of going to sleep than inhaling pungent ether. Comment: This was a huge breakthrough. Almost every modern anesthetic begins with the intravenous injection of an anesthetic drug. (Propofol has now replaced Pentothal)

1940. THE DISCOVERY OF CURARE AND INJECTABLE MUSCLE RELAXANTS. Dr. Harold Griffith of Montreal, Canada injected the paralyzing drug curare during general anesthesia to induce muscular relaxation requested by his surgeon. Although the existence of curare was known for many years (it was an arrow poison of the South American Indians), it was not used in surgery to deliberately cause muscle relaxation until this time. Comment: Paralyzing drugs are necessary to enable the easy insertion of endotracheal tubes into anesthetized patients, and paralysis is also essential for many abdominal and chest surgeries.

1950’s. THE DEVELOPMENT OF THE POST-ANESTHESIA CARE UNIT (PACU) AND THE INTENSIVE CARE UNIT (ICU). The shock and resuscitation units organized during World War II and the Korean War resulted in efficient care for the sick and wounded. After the wars, PACU’s and ICU’s were natural extensions of these battlefield inventions. Comment: In the PACU, a patient’s airway, breathing, and circulation are observed, monitored, and treated immediately following surgery. PACU’s decrease post-operative complications. In the ICU, Airway-Breathing-Circulation management perfected in the operating room is extended to critically ill patients who are not undergoing surgery.

1956. THE DISCOVERY OF HALOTHANE, THE FIRST MODERN INHALED ANESTHETIC. British chemist Charles Suckling synthesized the inhaled anesthetic halothane. Halothane had significant advantages over ether because of halothane’s more pleasant odor, higher potency, faster onset, nonflammability, and low toxicity. Halothane gradually replaced older anesthetic vapors, and achieved worldwide acceptance. Comment: Halothane was the forerunner of isoflurane, desflurane, and sevoflurane, our modern inhaled anesthetics. These drugs have faster onset and offset, cause less nausea, and are not explosive like ether. The discovery of halothane changed inhalation anesthesia forever.

1983. THE DISCOVERY OF PULSE OXIMETRY MONITORING. The Nellcor pulse oximeter, co-developed by Stanford anesthesiologist Dr. William New, was the first commercially available device to measure the oxygen saturation in a patient’s bloodstream. The Nellcor pulse oximeter had the unique feature of lowering the audible pitch of the pulse tone as saturation dropped, giving anesthesiologists a warning that their patient’s heart and brain were in danger of low oxygen levels. Comment: The Nellcor changed patient monitoring forever. Oxygen saturation is now monitored before, during, and after surgery. Prior to Nellcor monitoring, the first sign of low oxygen levels was often a cardiac arrest. Following the invention of the Nellcor, oxygen saturation became the fifth vital sign, along with pulse rate, respiratory rate, blood pressure, and temperature.

etco2-waveforms-i4

1986.  END-TIDAL CO2 MONITORING. In 1986 the American Society of Anesthesiologists mandated continual end-tidal carbon dioxide analysis be performed using a quantitative method such as capnography, from the time of endotracheal tube/laryngeal mask placement until extubation/removal or initiating transfer to a postoperative care location. The detection and monitoring of carbon dioxide gave immediate feedback whenever ventilation of the lungs was failing. For example, an endotracheal breathing tube placed in the esophagus instead of the tracheal would yield zero (or close to zero) carbon dioxide. The end-tidal CO2 device alarms immediately, the anesthesiologist recognizes the problem, and fixes it at once. The development of pulse oximetry and end-tidal CO2 monitoring were concurrent, and because of these twin discoveries, anesthesia care became markedly safer after the 1980’s

These are the top 11 discoveries in the history of anesthesia as I see them. What will be the next successful invention to advance our specialty?  A superior pain-relieving drug? A better inhaled anesthetic? An improved monitor to insure patient safety? Top scientists and physicians worldwide are working this very day to join this list. Good luck to each of them.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

READING IN THE OPERATING ROOM

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You’re an attending anesthesiologist. You enter another colleague’s operating room to give him a bathroom break during his 6-hour plastic surgery case, and you find him tapping on an iPad and reading in the operating room. What do you do?

Discussion:  Is it OK for the anesthesiologist to be reading in the operating room? Is it OK for him to be referencing the Internet? Answering email? Sending text messages on his smartphone? Or should that anesthesiologist be staring transfixed at the monitor screen for hour after hour, maintaining flawless vigilance?

In the Anesthesia Patient Safety Foundation Newsletter Summer 1995 edition, Dr. Matthew Weinger discussed the issue of reading in the operating room. He emphasized that there were no scientific data on the impact of reading on anesthesia provider vigilance or task performance. He cited data that anesthesiologists are ‘idle’ during 40% of routine cases. He asserted that “anesthesia providers read during these idle periods to prevent boredom, and that boredom was a problem of information underload, insufficient work challenge, and under-stimulation…Adding tasks to a monotonous job may decrease boredom and dividing attention among several tasks (time-sharing) may, in some circumstances, actually improve monitoring performance.” Weinger concluded that, “in the absence of controlled studies on the effect of reading in the operating room on anesthesia vigilance and task performance, no definitive or generalizable recommendations can be made. The decision must remain a personal one based on recognition of one’s capabilities and limitations. From a broader perspective, the anesthesia task including associated equipment must be optimized to minimize boredom and yet not be so continuously busy as to be stressful.”

In the Anesthesia Patient Safety Foundation Newsletter, Fall 2004 edition, Dr. Terri Monk opined that reading in the OR seriously compromised patient safety. She was opposed to reading for the following reasons:

  1. Reading diverts one’s attention from the patient.
  2. The patient is paying for the anesthesiologist’s undivided attention, and most well-informed patients want to know if the anesthesiologist plans to turn over a portion of their anesthesia care to a nurse or resident. If we are obliged to honestly answer that concern, then, shouldn’t we also be obliged to inform the patient that we plan to read during a portion of the anesthetic?
  3. Reading is medico-legally dangerous. Dr. Monk wrote, “Any plaintiff’s attorney would love to have a case in which the circulating nurse would testify, ‘Dr. Giesecke was reading when the cardiac arrest occurred. Yep, he was reading the Wall Street Journal. You know he has a lot of valuable stocks that he must keep track of.’ It is possible that if anesthesiologists informed their malpractice carriers that they routinely read during cases, the companies might raise premiums or cancel malpractice coverage.”
  4. The practice of reading in the OR projects a negative public image. Nurses, technicians, and surgeons may think the anesthesiologist is less professional.

A 2009 study looked at 172 selected general anesthetic cases in an academic medical center. Vigilance was assessed by the response time to a randomly illuminated alarm light. Reading was observed in 35% of cases. In the 60 cases that involved reading, providers read during 25  +/- 3% of maintenance time but not during induction or emergence. Vigilance to the alarm light was no different between readers and non-readers.

Miller’s Anesthesia (7th Edition, 2009, chapter 6) states, “Although it is indisputable that reading can distract attention from patient care, there are no data at present to determine the degree to which reading does distract attention, especially if the practice is confined to low-workload portions of a case. Furthermore, many anesthetists pointed out that reading as a distraction is not necessarily any different from many other kinds of activities not related to patient care that are routinely accepted, such as idle conversation among personnel.”

A 2012 study concluded there were no data concerning the effects of the use of laptops and smartphones in the operating theatre on anesthetist performance, and that these devices were now in frequent use. They discussed the use of laptops and smartphones in regards to the two pertinent issues of vigilance and multitasking. There were data that in some circumstances the addition of a secondary task (i.e. using a laptop or smartphone) during periods of low stimulation can improve vigilance and overall task performance, but the workload and the nature of the secondary task were critical. The authors made the following points regarding the nature of anesthesia work and the factors that affect performance in anesthesia:

  1. Anesthesia involves multi-tasking and the maintenance of situational awareness. Studies have shown that attending to a range of tasks simultaneously is a key characteristic of anesthetic practice, and that anesthetists are superior to non-anesthetists in performing additional tasks while monitoring patients.
  2. Anesthetists typically only glance at monitors. Covert observations of anesthetists in British Columbia revealed subjects spent less than 5% of their time observing the monitoring display. This was made up of brief glances (1.5 to 2 seconds duration) occurring 15 – 20 times during each 10-minute segment of time.
  3.    Anesthetic work is reduced during prolonged maintenance, potentially resulting in boredom and/or secondary activities being undertaken. The maintenance phase in some anesthetics (typically cases of longer duration, lower complexity and where the patient is stable) may be a time of low workload and infrequent task demands. In a study of 105 anesthesia clinicians, half reported being bored infrequently, but 90% admitted to occasional episodes of extreme boredom. Boredom can result in severely decreased vigilance if the anesthetist is suffering from sleep deprivation.
  4.    The authors concluded there was no evidence to support a blanket prohibition on the use of smartphones and laptops in the operating theatre, and there was good reason to avoid edicts that are not supported by solid evidence. They stated, “There is no doubt that reading or computer usage gives the appearance of being less attentive, even if there are no measurable effects on routine care…Computer and phone tasks that also require immediate responses appear to provide a greater risk than reading (whether from a book or screen). While boredom may be cognitively unpleasant, there is no evidence of anesthetist boredom (in the absence of sleep) harming patients.”

I recently attended the American Society of Anesthesiologists national convention in San Francisco. At the conclusion of the meeting, the ASA emailed me a full text edition of the Refresher Course lectures as an email attachment, in a format designed to be downloaded onto a computer. Like myself, more than 10,000 anesthesiologist attendees of the ASA meeting will now have access to the Refresher Course curriculum on their laptops or iPads. Will some of them read these Refresher Courses during the stable maintenance phases of anesthetics in their operating rooms? Perhaps.

Returning to the Clinical Case for Discussion above, what will you do about your colleague you discovered using his iPad in the operating room? My guess is, based on what has been published in the anesthesia literature, you’ll give him the bathroom break as intended, and say nothing about his use of the iPad in the operating room.

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO WAKE UP PATIENTS PROMPTLY FOLLOWING GENERAL ANESTHETICS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Two patients arrive simultaneously in the recovery room following general endotracheal anesthetics. One patient is unresponsive and requires an oral airway to maintain adequate respiration. In the next bed, the second patient is awake, comfortable and conversant. How can this be? It occurs because different anesthetists practice differently. Some can wake up patients promptly, and some cannot.

Aldrete Score Calculator - Definition | Aldrete score chart

Does it matter if a patient wakes up promptly after general anesthesia? It does. An awake, alert patient will have minimal airway or breathing problems. When it’s time to walk away from your patient in the recovery room, you’ll worry less if your patient is already talking to you and has minimal residual effects of general anesthesia. Whether the surgery was a radical neck dissection, a carotid endarterectomy, a laparotomy, or a facelift, it’s preferable to have your patient as awake as possible in the recovery room.

What can you do to assure your patients wake up promptly? A Pubmed search will give you little guidance. There’s a paucity of data or evidence in the medical literature on how to wake patients faster. You’ll find data on ultra-short acting drugs such as propofol and remifentanil. This data helps, but the skill of waking up a patient on demand is more an art than a science. Textbooks give you little advice. Anesthesiologist’s Manual of Surgical Procedures, (4th Edition, 2009), edited by Jaffe and Samuels, has an Appendix that lists Standard Adult Anesthetic Protocols, but there is little specific information on how to titrate the drugs to ensure a timely wakeup.

Based on 29 years of administering over 20,000 anesthetics, this is my advice on how to wake patients promptly from general anesthesia:

  1. Propofol. Use propofol for induction of anesthesia. You may or may not choose to infuse propofol during maintenance anesthesia (e.g. at a rate of 50 mcg/kg/min) but if you do, I recommend turning off the infusion at least 10 minutes before planned wakeup. This allows adequate time for the drug to redistribute and for serum propofol levels to decrease enough to avoid residual sleepiness.
  2. Sevoflurane. Sevoflurane is relatively insoluble and its effects wear off quickly when the drug is ventilated out of the lungs at the conclusion of surgery. I recommend a maintenance concentration of 1.5% inspired sevoflurane in most patients. I drop this concentration to 1% while the surgeon is applying the dressings. When the dressings are finished, I turn off the sevoflurane and continue ventilation to pump the sevoflurane out of the patient’s lungs and bloodstream. The expired concentration will usually drop to 0.2% within 5-10 minutes, a level at which most patients will open their eyes.
  3. Nitrous oxide. Unless there is a contraindication (e.g. laparoscopy or thoractomy) I recommend you use 50% nitrous oxide. It’s relatively insoluble, and adding nitrous oxide will permit you to utilize less sevoflurane. I recommend turning off nitrous oxide when the surgeon is applying the dressings at the end of the case, and turning the oxygen flow rate up to 10 liters/minute while maintaining ventilation to wash out the remaining nitrous oxide.
  4. Narcotics. Use narcotics sparingly and wisely. I see overzealous use of narcotics as a problem. Prior to inserting an endotracheal tube, it’s reasonable to administer 50 – 100 mcg of fentanyl to a healthy adult or 0 -50 mcg of fentanyl to a geriatric patient. A small dose serves to blunt the hemodynamic responses of tachycardia or hypertension associated with larynogoscopy and intubation. Bolusing 250 mcg of fentanyl prior to intubation is an unnecessary overdose. The use of ongoing doses of narcotics during an anesthetic depends on the amount of surgical stimulation and the anticipated amount of post-operative pain. You may administer intermittent increments of narcotic (I may give a 50-100 mcg dose of fentanyl every hour) but I recommend your final narcotic bolus be given no less than 30 minutes prior to the anticipated wakeup. Undesired high levels of narcotic at the conclusion of surgery contribute to oversedation and slow awakening. If your patient complains of pain at wakeup, further narcotic is titrated intravenously to control the pain. Your patient’s verbal responses are your best monitor regarding how much narcotic is needed. Your goal at wakeup should be to have adequate narcotic levels and effect, but no more narcotic than needed.
  5. Intra-tracheal lidocaine. I recommend spraying 4 ml of 4% lidocaine into the larynx and trachea at laryngoscopy prior to inserting the endotracheal tube. I can’t cite you any data, but it’s my impression that patients demonstrate less bucking on endotracheal tubes at awakening when lidocaine was sprayed into their tracheas. Less bucking enables you to decrease anesthetic levels further while the endotracheal tube is still in situ.
  6. Local anesthetics. Local anesthetics are your friends at the conclusion of surgery. If the surgeon is able to blunt post-operative pain with local anesthesia or if you are able to blunt post-operative pain with a neuroaxial block or a regional block, your patient will require zero or minimal intravenous narcotics, and your patient will wake up more quickly.
  7. Muscle relaxants. Use muscle relaxants sparingly. Nothing will slow a wakeup more than a patient in whom you cannot reverse the paralysis with a standard dose of neostigmine. This necessitates a delay in extubation until muscle strength returns. Muscle relaxation is necessary when you choose to insert an endotracheal tube at the beginning of an anesthetic, but many cases do not require paralysis for the duration of the surgery. When you must administer muscle relaxation throughout surgery, use a nerve stimulator and be careful not to abolish all twitch responses. Avoid long-acting paralyzing drugs such as pancuronium, as you will have difficulty reversing the paralysis if surgery concludes soon after you’ve administered a dose. Use rocuronium instead. Avoid administering a dose of rocuronium if you believe the surgery will conclude within the next 30 minutes—it may be difficult to reverse the paralysis, and this will delay wakeup.
  8. Laryngeal Mask Airway (LMA). When possible, substitute an LMA for an endotracheal tube. Wakeups will be smoother, muscle relaxants are unnecessary, and narcotic doses can be titrated with the aim of keeping the patient’s spontaneous respiratory rate between 15- 20 breaths per minute.
  9. Temperature monitoring and forced air warming. Cold is an anesthetic. Strive to keep your patient normothermic by using forced air warming. If your patient’s core temperature is low, wakeup will be delayed.

10. Consider remaining in the operating room after surgery until your patient is awake enough to respond to verbal commands. This is my practice, and I recommend it for safety reasons. In the operating room you have all your airway equipment, drugs, and suction at your fingertips. If an unexpected emergence event occurs, you’re prepared. If an unexpected emergence event occurs in an obtunded patient in the recovery room, your resuscitation equipment will not be as readily available. If your patient is responsive to verbal commands in the operating room, your patient will be wakeful on arrival in the recovery room.

Is this protocol a recipe? Yes, it is. You’ll have your own recipe, and your ingredients may vary from mine. You may choose to administer desflurane instead of sevoflurane. You may choose sufentanil, morphine, or meperidine instead of fentanyl. My advice still applies. Use as little narcotic as is necessary, and try not to administer intravenous narcotic during the last 30 minutes of surgery. If you use a remifentanil infusion, taper the infusion off early enough so the patient is wakeful at the conclusion of surgery.

The principles I’ve recommended here are time-tested and practical. Follow these guidelines and you’ll experience two heartwarming scenarios from time to time:  1) Patients in the recovery room will ask you, “You mean the surgery is done already? I can’t believe it,” and 2) Recovery room nurses will ask you, “Did this patient really have a general anesthetic?  She’s so awake!”

Your chest will swell with pride, and you’ll feel like an artist. Good luck.

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

HOW IS YOUR ANESTHESIA BILL CALCULATED?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

How is your anesthesia bill calculated?

 

anesthesia billing

 

It depends. An anesthesiologist’s bill depends on several factors, including:

  1. The duration of the anesthesia care
  2. The complexity of the surgical procedure
  3. The insurance status of the patient

Let’s look at each of these factors in turn:

1. The duration of the anesthesia care.  Anesthesia provider bills are calculated by a simple formula:

Amount of Bill = (Number of Base Units + Number of Time Units) X the dollar value of a Unit.

Every anesthesia company assigns a monetary value to an anesthesia “Unit.” A “Unit” is a 15-minute length of time of anesthesia service. (The price of an anesthesia Unit varies. More on this topic later).

The total amount of an anesthesia bill depends largely on the duration of the anesthesia service, which depends on the duration of the surgery.

Anesthesia time begins when the anesthesia provider starts attending to the patient in the pre-operative area, and ends when the anesthesia provider transfers care to the post-anesthesia care unit (PACU) nurse or to the intensive care unit (ICU) nurse following the surgery.

For most surgeries, a typical timeline involves:

10-15 minutes of anesthesia exam in the pre-operative area,

5 minutes of time transporting the patient to the operating room,

5-10 minutes time inducing anesthesia,

10–40 minutes of time positioning, prepping, and draping the patient,

the entire surgical duration,

5-15 minutes of time to wake the patient up,

5-10 minutes of time to transport the patient to the PACU or ICU,

and 5-10 minutes time to sign the patient over to the nurse’s care in the PACU or ICU.

In the PACU, the anesthesiologist is responsible for the patient’s vital signs, pain control, nausea therapy, and the timing of the patient’s discharge from the PACU, even though the anesthesia billing time concluded when he or she signed the patient’s care to the PACU nurse. Typically the anesthesia provider returns to the pre-operative area to meet the next patient at this time, and the billing time for the next patient commences when the anesthesia provider begins attending to the next patient.

2. The complexity of the scheduled surgical procedure. The Base Unit value for any anesthetic varies with the complexity of the scheduled surgery. The Base Unit value can be as low as 3 Units for a simple procedure such as a finger or a toe surgery, or as high as 25 Units for open-heart surgery.  The Base Unit values are cataloged in a publication called the ASA (American Society of Anesthesiologists) Relative Value Guide. The Base Unit value reflects the degree of work and risk involved in the anesthetic management for each type of surgery.

3. The insurance status of the patient. The United States government sets a cap on how much Medicare and Medicaid patients can be billed. The dollar value per anesthesia Unit is severely discounted for Medicare and Medicaid patients to a number as low as one-fourth to one-fifth the amount a non-Medicare or Medicaid patient is billed.

                                                                                                                                               

FURTHER DISCUSSION…

THE PRICE OF AN ANESTHESIA UNIT: The price of an anesthesia Unit is set by the billing anesthesiologist and his or her anesthesia company. The price tends to be higher in major metropolitan centers, lower in rural areas, and lowest for Medicare patients. The price of an anesthesia Unit may vary from as high as $140/Unit in a major metropolitan area to a low of $20/Unit for a Medicare or a Medicaid patient.

EXAMPLE: Let’s look at a sample bill for an elbow surgery. The Base Unit value for elbow surgery is 3 Units. The surgery time was 1 hour, but the total anesthesia time from pre-operative area to the PACU sign out was 1 hour and 45 minutes. One hour and 45 minutes equals 7 Time Units. Let’s assume a Unit value price of $90/Unit.

Using the formula above,

Amount of Bill = (Number of Base Units + Number of Time Units)  X  the dollar value of a Unit.

OR

Amount of Bill = (3 Units + 7 Units) X $90/Unit = 10 X 90 = $900.

Will the anesthesia provider collect $900? Most likely not. Insurance companies negotiate with physicians, and the result of such negotiations may result in significant discounts paid on Unit values compared to billed rates. If the anesthesia group has a signed contract with an insurance company, the agreed reimbursement may be $60/Unit, and the maximal allowed bill would be $600.

In addition, if your insurance coverage requires you to pay for 20% of the bill, the insurance company may only pay 80%, or $480, and you will be expected to pay $120. If the anesthesiology company does not have a contract with the insurance provider, the insurance company will reimburse an out-of-network amount, usually less than the full $900, and you may be responsible for the balance of the bill (unless the anesthesia company is willing to discount the bill under these circumstances).

There are advantages of growing old. If you’re a Medicare patient, your anesthesia bill may total only $200:

(3 Units + 7 Units) X $20/Unit = 10 X 20 = $200.

COSMETIC SURGERY: Insurance companies do not pay for plastic surgeries such as liposuction, breast implants, or facelifts. Patients must pay the surgeon, operating room, and anesthesia bills in advance. Most anesthesiologists discount their customary rates in return for cash prepayment.

THE FUTURE: The nature of anesthesia billing may change in the future to embrace a concept known as “bundled payments.” Obamacare, or the Affordable Care Act, outlines provisions for bundled payments to hospitals rather than the traditional fee-for-service reimbursements described above. In a bundled payment model, the medical team will receive a lump sum from the government (or from an insurance company) for a surgical procedure. The medical center and physicians will negotiate and decide how to divide up the money between the surgeon, the anesthesiologist, and to the hospital (the hospital share will cover nurse salaries, technician salaries, supplies, and the overhead to run the hospital).

To date there is little data to support the advantage of bundled payments. The government hopes to save money by limiting what it pays out per procedure. Time will tell how prevalent this reimbursement model will be in the future of American healthcare economics.

When you buy retail goods, prices are available prior to purchase. With medical bills, you rarely know what the price of your medical care will be until you receive the bill weeks afterward. This is likely to change. There is momentum moving toward transparent pricing of medical fees, including listing of physician fees and facility fees prior to patient care. In the future you may have access to physician, hospital, and surgery center pricing to assist you in making your medical care choices.

SUMMARY: Your anesthesia bill will depend on how complex a surgery you are scheduled for, how long it takes to complete the procedure, and what kind of insurance coverage you have. Armed with this information, you may choose to contact your surgeon, the anesthesia company he or she works with, and your insurance company prior to your surgery to understand what your anesthesia bill is likely to be.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ANESTHESIA FACTS FOR NON-MEDICAL PEOPLE: ANESTHETIC TECHNIQUES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is for non-medical laypeople, and pertains to the different types of anesthetic techniques used in the 21st century. See below:

GENERAL ANESTHESIA

A general anesthetic renders the patient asleep and insensitive to pain for surgery. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. Before the anesthetic, oxygen is administered by mask to fill the patient’s lungs with 100% oxygen. Most adult patients are given general anesthesia by intravenous injection, usually of the medication propofol. This injection causes the patient to lose consciousness within 10 – 20 seconds. This is called the induction of anesthesia. The maintenance of anesthesia during surgery is done by mixing an anesthesia gas or gases with the oxygen. Typical inhaled anesthesia gases are nitrous oxide, sevoflurane, or isoflurane. Sometimes a continuous infusion of intravenous anesthetic such as propofol is given as well. The choice and dose of drugs is done by the anesthesia attending, based on the patient’s size, age, the type of surgery, and the anesthesiologist’s experience.

Many patients are given prophylactic anti-nausea medication during the anesthetic. If postoperative pain is anticipated, the anesthesiologist can also administer intravenous narcotics such a morphine, meperidine (Demerol), or fentanyl.

Depending on the patient’s medical condition and type of surgery, the anesthesiologist may protect the patient’s airway during the general anesthetic by placing a breathing tube through the mouth, either an endotracheal tube (ET Tube) into the patient’s windpipe, or a laryngeal mask airway (LMA) just above the voice box.

At the conclusion of surgery, the general anesthetic gases and/or intravenous anesthetic infusion(s) are discontinued. The patient usually regains consciousness within 5 – 15 minutes. The patient is then transferred to the recovery room.

SPINAL ANESTHESIA

Spinal anesthesia is done by the injection of local anesthetic solution into the low back into the subarachnoid space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The word subarachnoid translates to “below the arachnoid”. The arachnoid is one of the layers of the meninges covering the nerves of the spinal column. In the subarachnoid space lies the cerebral spinal fluid (CSF) which surrounds the spinal cord and brain. In a spinal anesthetic, the subarachnoid space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.

Local anesthetics, such as lidocaine or bupivicaine (brand name Marcaine), given into the subarachnoid space, bring on sensory and motor numbness. The anesthesiologist chooses the dose and type of drug depending on the patient’s age, size, height, medical condition, and the type of surgery.

Following the onset of numbness from spinal anesthesia, the patient may either stay awake for surgery, or more often intravenous anesthesia is given to achieve a light sleep. Sometimes light general anesthesia is given to supplement spinal anesthesia.

EPIDURAL ANESTHESIA

Epidural anesthesia is done by the injection of local anesthetic solution, with or without a narcotic medication, into the low back into the epidural space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The word epidural translates to “outside the dura”. The dura is the outermost lining of the meninges covering the nerves of the spinal column. The epidural space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.   Often, a tiny catheter is left in the epidural space, taped to the patient’s low back, to allow repeated doses of the medication to be given.  The catheter is removed at the end of surgery, or sometimes days later if continued epidural medications are administered for postoperative pain control.

Local anesthetics, such as lidocaine or bupivicaine (brand name Marcaine), given into the epidural space, bring on sensory and motor numbness. The anesthesiologist chooses the dose and type of drug depending on the patient’s age, size, height, medical condition, and the type of surgery.

Following the onset of numbness from epidural anesthesia, the patient may either stay awake for surgery, or more often intravenous sedation is given to achieve a light sleep. Sometimes light general anesthesia is given to supplement epidural anesthesia.

REGIONAL ANESTHESIA

Regional anesthesia is the injection of local anesthetic (either lidocaine or Marcaine) near a nerve to block that nerve’s function.  Examples of regional anesthesia include arm blocks (axillary block, interscalene block, subclavicular block), and leg blocks (femoral block, sciatic block, popliteal block, ankle block).  An advantage of regional anesthesia blocks is that the patient may remain awake for the surgery.  If desired, the anesthesia provider may administer intravenous sedation or general anesthesia in addition to the regional anesthetic, to allow the patient to sleep during the surgery–the advantage of this combined anesthetic technique is the regional anesthetic blocks all surgical pain and less sleep drugs are required.

INTRAVENOUS SEDATION ANESTHESIA

Some minor surgical procedures (for example: breast biopsies, eyelid surgery, some hernia surgeries) can be done with the combination of local anesthesia plus intravenous anesthesia sedation. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The anesthesiologist is present for the entire surgery, and administers intravenous sedatives as required for the patient’s comfort and the surgeon’s needs.  If the sedation is deep enough, the intravenous sedation will be termed general anesthesia. While the patient is sedated, the surgeon usually injects local anesthetics into the surgical site to block both surgical and post operative pain.

Vigilance by an anesthesiologist during intravenous sedation is also known as Monitored Anesthesia Care, or MAC.

PEDIATRIC ANESTHESIA

Because the separation of a young child from his or her parents can be one of the most distressing aspects of the perioperative experience, many children benefit significantly from oral preoperative sedation with midazolam. This relatively pleasant-tasting liquid is given by mouth about twenty minutes prior to the start of the anesthetic. Although the midazolam rarely causes children to fall asleep, it does reduce anxiety dramatically, allowing for a much smoother separation from parents. It also tends to cause a wonderful short term amnesia, so that the children often have no recollection of separating from their parents, or even of going to the operating room.
Although the initial anesthetic is usually administered via an intravenous infusion in adult patients, this approach requires starting an IV while the patient is still awake. This technique would be quite unpopular with younger children.  Most young children prefer to go to sleep breathing a gas, a technique known as an inhalation induction. This technique is used for almost all routine surgeries, but cannot safely be employed in certain rare situations, such as emergencies.

An inhalation induction consists of the child breathing a relatively pleasant smelling anesthetic vapor – usually sevoflurane – via a facemask for approximately 30 to 60 seconds. The child loses consciousness while breathing the gas, and the IV can then be started painlessly. Generally, the child continues to breath the gas throughout the duration of the surgery, either via the facemask or an endotracheal tube, depending on the duration and type of surgery. It is this breathing of the gas which keeps the child anesthetized. At the end of the surgery, the gas is discontinued, and the child begins to awaken.

Prior to awakening, children may be given either analgesics (pain medicines) or anti-emetics (drugs which reduce the likelihood of nausea and vomiting). The type of surgery will determine which of the many possible medications will be used for these purposes. The purpose of these medications is to make the child’s awakening as calm and pleasant as possible. Equally important in this regard is reuniting the child with his or her parents as quickly as possible.
Despite best attempts, it is important for parents to realize that children, especially those less than five years of age, often are somewhat cranky and irritable following anesthesia and surgery. We do our best to minimize this, but we cannot prevent it in all cases. Similarly, some children will experience postoperative nausea and vomiting despite receiving medications which are intended to prevent it.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ANESTHESIA FOR SPECIALTY SURGERIES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is specifically for my non-medical layperson readers, and is a discussion of the different types of anesthesia for specialty surgeries. See below:

 

I.  CHILDBIRTH (OBSTETRIC ANESTHESIA):

Most obstetric anesthesia is for either vaginal delivery or for Cesarean sections.

Anesthesia for Vaginal Delivery:  Anesthesia for vaginal delivery is utilized to diminish the pain of labor contractions, while leaving the mother as alert as possible, with as muscle strength as possible, to be able to push the baby out at the time of delivery.  Anesthesia for labor and vaginal delivery is usually accomplished by epidural injection of the local anesthetics bupivicaine (brand name Marcaine) or ropivicaine.

is done by the injection of local anesthetic solution, with or without a narcotic medication, into the low back into the epidural space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood.

The word epidural translates to “outside the dura”. The dura is the outermost lining of the meninges covering the nerves of the spinal column. The epidural space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.   Often, a tiny catheter is left in the epidural space, taped to the patient’s low back, to allow repeated doses of the medication to be given.  The catheter is removed after childbirth.

Anesthesia for Cesarean Section: Cesarean section is a surgical procedure in which the obstetrician makes an incision through the skin of the lower abdomen, and through the wall of the uterus, or womb, to extract the baby without the child requiring a vaginal delivery.  Anesthesia for Cesarean section is usually a spinal or an epidural anesthetic, which leaves the mother as alert as possible, while rendering surgical anesthesia to her abdomen and pelvis.  Spinal or epidural anesthesia is accomplished by injection of local anesthetics, with or without a narcotic medication, into the low back into the subarachnoid or the epidural space. The anesthesiologist remains present for the entire surgical procedure, to assure that the mother is comfortable and that all vital signs are maintained as close to normal limits as possible.

In a minority of cases, the anesthesia provider will administer a general anesthetic for Cesarean section surgery.  The most common indications for general anesthesia are (1) emergency Cesarean, when there is no time for a spinal or epidural block;  and (2) significant bleeding by the mother, leading to a low blood volume, which is an unsafe circumstance to administer a spinal or epidural block.  General anesthetics for Cesarean section carry an increased risk over spinal/epidural anesthesia, primarily because the mother is no longer able to breath on her own and maintain her own airway.

open heart surgery

II.  CARDIAC SURGERY/OPEN HEART SURGERY:

Open heart surgery requires specialized equipment.  Anesthesia for cardiac surgery is complex, and the following is a brief summary:  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure, or to increase the heart’s pumping function.

After the patient is anesthetized, the anesthesiologist often inserts a Transesophageal Echocardiogram (TEE) probe into the patient’s mouth, down the esophagus, and into the stomach.  The TEE gives the anesthesiologist a two-dimensional image of the beating heart and the heart valves in real time, and enables him or her to adjust medications and fluid administration as needed to keep the patient stable.

For open heart surgery, once the chest is open, the cardiac surgeon inserts additional tubes into the veins and arteries around the heart, diverting the patient’s blood from the heart and lungs into a heart-lung machine located alongside the operating table.  During the time the patient is connected to the heart-lung machine, the patient’s heart can be stopped so that the surgeon can operate on a motionless heart.

When the surgeon has completed the cardiac repair, the heart is restarted, and the heart-lung machine is disconnected from the patient.

As the heart resumes beating, the anesthesiologist manages the drug therapy and intravenous fluid therapy to optimize the cardiac function.

III.  ANESTHESIA FOR NEUROSURGERY (BRAIN SURGERY):

Intracranial (brain) surgery requires exacting maintenance of blood pressure, heart rate, and respiratory control.  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure.

The anesthetic technique is designed to provide a motionless operating field for the surgeon.  After the anesthesiologist anesthetizes the patient, he or she inserts the endotracheal tube into the windpipe.  The patient is often hyperventilated, because hyperventilation causes the blood vessels in the brain to constrict, and makes the volume of the the brain decrease.  The relaxed brain affords the surgeon more room to dissect and expose brain tumors or aneurysms.

An important goal of the anesthetic is a quick wake-up at the conclusion of surgery, so that (1) normal neurological recovery of the patient can be confirmed, and (2) the patient is alert enough to  maintain their own airway and breathe on their own.  Most brain surgery patients spend at least one night in the intensive care unit (ICU) after surgery.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW DOES THE ANESTHESIOLOGIST DECIDE WHAT DOSE OF ANESTHETIC TO GIVE A PATIENT?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is directed to my non-medical layperson readers. How does an anesthesiologist decide what dose of anesthetic to administer to a patient? You are a 100-pound, 70-year-old woman. Your son is a 200-pound, 35-year-old man. Do you both require the same doses of general anesthetic if you each need to have your gall bladder removed?

No, you do not.

Anesthesiologists use several criteria to choose the correct dose for your anesthetic.

  • Your weight.      All intravenous anesthetic drugs, such as hypnotics (propofol, sodium pentothal), narcotics (morphine, Demerol, fentanyl), anxiolytics (Versed, Ativan), or muscle paralyzing drugs (rocuronium, vecuronium, succinylcholine) are dosed on a milligram-per-kilogram basis. If you weigh half as much as your neighbor, if all other factors are equal, then you will receive approximately half as many milligrams of the injectable medication as she will.
  • Your age.        Abundant research has demonstrated the relationship between age and anesthetic effect. Youthful patients require more milligrams-per-kilogram of body weight. A teenager may require twice the dose of an 80-year-old patient.
  • How stimulating the surgery is, and how much pain there will be postoperatively.          A non-painful surgery, such as the repair of a small tendon in a finger, will not require large doses of narcotics or pain relievers post-operatively. A painful surgery, such as on open abdominal procedure to remove a pancreatic or liver tumor, will require more narcotics and increased doses of anesthetics. If postoperative pain is blocked by local anesthetic injection in the surgical site or by a nerve block, a patient will require less general anesthetic medications.
  • The duration of the surgery.      An 8-hour surgery will require a longer exposure to more anesthetic drugs than a 1-hour surgery.
  • Your preoperative exposure to central nervous system depressants.      All else being equal, a patient who drinks 12 beers every day will require more anesthesia than a teetotaler who never drinks. A patient who is addicted to chronic prescription painkillers will require more anesthesia than a non-addict.

Inhaled anesthetics, such as sevoflurane, desflurane, isoflurane, or nitrous oxide, are administered in standard concentrations, independent of all the above factors except the patient’s age.  Inhaled anesthetics are mixed into vapor by an anesthesia machine which is connected to the your breathing system during the surgery. The anesthesia machine will usually be set to deliver either sevoflurane 1-2 %, desflurane 3 – 6 %, or isoflurane 0.8 – 1.5 %. The required concentration of these potent inhaled anesthetic decreases with age. The dose for teenager is approximately twice the dose required for a 90-year-old patient.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

LETHAL INJECTION AND THE ANESTHESIOLOGIST

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Lethal injection requires someone to administer anesthetic medications in high concentrations, without supporting breathing or cardiac function. This column discusses lethal injection and the anesthesiologist. In the 2011 movie The Lincoln Lawyer, Matthew McConaughey’s character, a criminal defense lawyer working in Los Angeles, taunts his client who is on trial for murder to tell the truth in order to “avoid the needle.”  The needle he is talking about is the specter of execution by lethal injection.

lethal injection and the anesthesiologist

Since 2006, there have been no death penalty executions by lethal injection in the state of California.  In February 2006, U.S. District Court Judge Jeremy D. Fogel blocked the execution of convicted murderer Michael Morales because of concerns that if the three-drug lethal injection combination was administered incorrectly, it could lead to suffering for the condemned, and potential cruel and unusual punishment.  The ruling arose from an injunction made by the U.S. 9th Circuit Court of Appeals, which stated that an execution could only be carried out by a medical technician legally authorized to administer intravenous medications.  This led to a moratorium of capital punishment in California, as the state was unable to obtain the services of a licensed medical professional to carry out an execution.

The three intravenous drugs involved in lethal injection are (1) sodium thiopental, a barbiturate drug that induces sleep, (2) pancuronium, a drug that paralyzes all muscles, making movement and breathing impossible, and (3) potassium chloride, a drug that induces ventricular fibrillation of the heart, causing cardiac arrest.  The potential of cruel and unusual punishment can occur if the sodium thiopental does not reliably induce sleep, so that the individual to be executed is awake and aware when the paralyzing drug freezes all muscular activity.

How could sodium thiopental fail to induce sleep?  The lethal injection administered dose of sodium thiopental is always a massive dose, up to 3000 mg.  To compare, the usual dose of sodium thiopental administered by an anesthesiologist to begin a general anesthetic is 200 mg.  The 15-fold increase in the dose should insure lack of awareness, right?

Not necessarily.  What if the intravenous catheter or needle is incorrectly positioned, so that the drug does not enter the vein in a reliable fashion?  Is this a possibility?  It is.  If the catheter is not inserted by a trained medical professional, it’s possible that the catheter will be outside of the vein, and the intended medications will spill into the soft tissues of the arm.  The intended site of action of sodium thiopental is the brain.  To reach the brain, the drug must be correctly delivered into a vein.

Cases in which failure to establish or maintain intravenous access have led to executions lasting up to 90 minutes before the execution was complete.Thus, the role of a medical professional to insert the intravenous catheter and administer the lethal injection is critical.  The dilemma is that medical professionals are trained to save lives, not to execute people.  The Hippocratic Oath clearly states that physicians must “do no harm” to their patients.

The American Medical Association states, “A physician, as a member of a profession dedicated to preserving life when there is hope of doing so, should not be a participant in a legally authorized execution.”

The American Society of Anesthesiologists states, “Although lethal injection mimics certain technical aspects of the practice of anesthesia, capital punishment in any form is not the practice of medicine … The American Society of Anesthesiologists continues to agree with the position of the American Medical Association on physician involvement in capital punishment. The American Society of Anesthesiologists strongly discourages participation by anesthesiologists in executions.”

The American Nurses Association states, “The American Nurses Association is strongly opposed to nurse participation in capital punishment. Participation in executions is viewed as contrary to the fundamental goals and ethical traditions of the profession.”

Without a trained medical professional to administer the intravenous catheter and inject the drugs in a reliable fashion, the practice of lethal injection has stalled in the State of California.  The last prisoner executed by lethal injection in California was Clarence Ray Allen on January 17, 2006.

In 2010, a Riverside County judge scheduled the execution of Albert Greenwood Brown, after a California court lifted an injunction against capital punishment with the certification of new procedures.  The new procedures included the option of increasing the sodium thiopental dose to 5000 mg, and administering the drug alone without the pancuronium and potassium chloride.  (In this scenario, death would occur because the large dose of sodium thiopental would by itself induce both general anesthesia and the cessation of breathing, leading to death by lack of sufficient oxygen levels to the brain and heart.)  However, prior to the execution, the same Judge Jeremy D. Fogel halted the execution to permit time to determine whether the new injection procedures addressed defense arguments of cruel and unusual punishment.

An additional barrier to lethal injection arose in January 2011, as Hospira Corporation, the sole manufacturer of sodium thiopental, announced that they would stop making the anesthetic sodium thiopental, the key component in the drug cocktails used by 35 states for chemical executions.

Hospira had planned to shift production of thiopental from the U.S. to Italy, but Italian officials wanted assurances that the drug would not be used for lethal injections.  Hospira’s response was that while they “never condoned” the use of thiopental in executions, the company determined that it could not prevent corrections departments in the United States from obtaining the drug. “Based on this understanding, we cannot take the risk that we will be held liable by the Italian authorities if the product is diverted for use in capital punishment,” Hospira said in a statement.

The American Society of Anesthesiologists released a statement on January 21, 2011 condemning Hospira’s decision to cease manufacturing sodium thiopental. The American Society of Anesthesiologists “certainly does not condone the use of sodium thiopental for capital punishment, but we also do not condone using the issue as the basis to place undue burdens on the distribution of this critical drug to the United States. It is an unfortunate irony that many more lives will be lost or put in jeopardy as a result of not having the drug available for its legitimate medical use.”  According to the American Society of Anesthesiologists, thiopental is an important alternative for geriatric, neurologic, cardiovascular and obstetric patients “for whom the side effects of other medications could lead to serious complications.”

In current anesthetic practice in the U.S. and around the world, sodium thiopental is occasionally but rarely utilized in anesthetic or intensive care unit practice.  Propofol replaced sodium thiopental, as propofol is a shorter-acting drug with fewer side effects of post-operative sleepiness and nausea.

Propofol or other sedative drugs such as midazolam, Valium, etomidate, or methohexital could be used to replace sodium thiopental to carry out lethal injection, but the key issue of obtaining a trained medical professional to administer the drug still looms as a roadblock.

I recommend The Lincoln Lawyer as riveting entertainment, but when Matthew McConaughey urges the defendant to “avoid the needle” of lethal injection, you have to understand … it’s unlikely any anesthesiologist is ever going to assist in that execution.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

IS YOUR GRANDMOTHER TOO OLD FOR SURGERY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is for my non-medical layperson readers. Your 85-year-old grandmother had two gallstone attacks in the past 6 months. Is she too old for surgery? Is it safe for her to have her gallbladder removed?

 

It depends. A general surgeon would serve as the consultant as to the natural history of the gallbladder disease. He may opine that future gallstone attacks are likely, and that the severe pain and fever of acute cholelithiasis is possible.

If your grandmother was 50 years old, you’d expect the surgical team to operate on her. For an 85-year-old patient, the surgical prognosis depends on her medical condition. She needs preoperative assessment from a specialist, and that specialist would be an anesthesiologist.

At Stanford University the anesthesia department is known as the Department of Anesthesia, Perioperative and Pain Medicine. The word perioperative refers to medical practice before, during, and after surgical operations. Preoperative assessment refers to the medical work-up before a surgical procedure—the work-up which establishes that all necessary diagnostic and therapeutic measures have been taken prior to proceeding to the operating room.

Age alone should not be a deterrent to surgery. Increased life expectancy, safer anesthesia, and less invasive surgical techniques such as laparoscopy have made it possible for a greater number of geriatric patients to undergo surgical intervention. The decision to operate should not be based on age alone, but should be based on an assessment of the risk-to-benefit ratio of each individual case. Surgical risk and outcome in patients 65 years old and older depend primarily on four factors: (1) age, (2) whether the surgery is elective or urgent, (3) the type of procedure, and (4) the patient’s physiologic status and coexisting disease. (reference: Miller’s Anesthesia, Chapter 71, Geriatric Anesthesia, 7th Edition, 2009).

Let’s look at each of these four factors:

1)   Age. Data support that increasing age increases risk.  Complication rates and mortality rates are higher for patients in their 80’s than for patients in their 60’s.

2)   Emergency surgery. Patients presenting for emergency surgery are often sicker than patients for elective surgery, and have increased risk.  There may be insufficient time for a full preoperative medical workup or tune-up prior to anesthesia.

3)   Type of procedure. A trivial procedure such as finger or toe surgery carries significantly less risk than open heart surgery or intra-abdominal surgery.

4)   Coexisting disease. The American Society of Anesthesiologists has a classification system for patients which categorizes how healthy or sick a patient is (see the American Society of Anesthesiologists Physical Status Class categories below). A patient with severe heart or lung disease is at higher risk than a rigorous patient who hikes, bikes or swims daily without heart or lung pathology.

Let’s examine these four factors in your 85-year-old grandmother. Regarding factor (1), she is old, and therefore she carries increased risk solely because of her advanced age. Regarding factor (2), her surgery is non-emergent, and this is in her favor. Regarding factor (3), her procedure requires intra-abdominal surgery, which is more invasive and carries more cardiac and respiratory risk than a trivial hand or foot or cataract surgery. She’ll have to cope with post-operative abdominal pain and pain on deep breathing, each of which can affect her lung function after anesthesia. Factor (4), her pre-existing medical history and physical condition, is the key element in her pre-operative consult.

The American Society of Anesthesiologists Physical Status Class categorizes patients as follows:

Class I   – A normal healthy patient. Almost no one over the age of 65 is an ASA I.

Class II  – A patient with mild systemic disease.

Class II  – A patient with severe systemic disease.

Class IV – A patient with severe systemic disease that is a constant threat to life.

Let’s say your grandmother has well-treated hypertension, asthma, hyperlipidemia, and obesity. She is reasonably active without limiting heart or lung disease symptoms, and she can climb two flights of stairs without shortness of breath.

She is an ASA Class II.

What if your grandmother had a past heart attack which left her short of breath walking up two flights of stairs, or she has kidney failure and is on dialysis, or she has severe emphysema that leaves her short of breath walking up two flights of stairs? These problems make her an ASA Class III, and she is at higher risk than a Class II patient.

If your 85-year-old grandmother is short of breath at rest or has angina at rest, due to either heart failure or chronic lung disease, she is an ASA Class IV patient, and she is at very high risk for surgery and anesthesia.

Laypersons can access an online surgical risk calculator, sponsored by the American College of Surgeons, at www.riskcalculator.facs.org, and enter the specific data for any surgical patient, to estimate surgical risk.

If your grandmother has well-treated hypertension, asthma, hyperlipidemia, and obesity as described above, then her operative risk is moderate and most anesthesiologists will be comfortable giving her a general anesthetic. The American College of Surgeons risk calculator estimates her risk of death, pneumonia, cardiac complications, surgical site infection, or blood clots as < 1%. Her risk of serious complication is estimated at 2%.

How will the anesthesiologist proceed?

For an 85-year-old patient, most anesthesiologists will require a written consultation note from an internal medicine primary care doctor or a cardiologist prior to proceeding with anesthesia. The anesthesiologist will then confirm that all necessary diagnostic and therapeutic measures have been done prior to surgery. Routine lab testing is not be ordered because of age alone, but rather pertinent lab tests are done as indicated for the particular medical problems of each patient.

The anesthesiologist then explains the risks of anesthesia and obtains informed consent prior to the surgery. He or she will explain that an 85-year-old patient with treated hypertension, asthma, hyperlipidemia, and obesity has a higher chance of heart, lung, or brain complications than a young, healthy patient. Your grandmother will have to accept the risks as described by the anesthesiologist.

What do anesthesiologists do differently for geriatric anesthetics, in contrast to anesthesia practice on young patients?

(1) Anesthesiologists use smaller doses of drugs on elderly patients than they do on younger patients. Geriatric patients are more sensitive to anesthetic drugs, and the effect of the drugs will be more prolonged.

(2) Geriatric patients have progressive loss of functional reserve in their heart, lungs, kidney, and liver systems. The extent of these changes varies from patient to patient, and each patient’s response to surgery and anesthesia is monitored carefully. (Miller’s Anesthesia, Chapter 71, Geriatric Anesthesia, 7th Edition, 2009). The anesthesiologist’s routine monitors will include pulse oximetry, electrocardiogram, automated blood pressure readings, temperature monitoring, and monitoring of all inspired gases and anesthetic concentrations. Because most anesthetic drugs cause decreases in blood pressure, anesthesiologists slowly titrate additional anesthetic doses as needed, and remain vigilant for blood pressure drops that are excessive or unsafe.

What about mental decline following geriatric surgery?

Postoperative short-term decrease in intellect (decrease in cognitive test performance) during the first days after surgery is well documented, and typically involves decreases in attention, memory, and fine motor coordination. Early cognitive decline after surgery is largely reversible by 3 months. The reported incidence of cognitive dysfunction after major noncardiac surgery in patients older than 65 years is 26% at 1 week and 10% at 3 months. (reference: Johnson T, Monk T, Rasmussen LS, et al: Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology 2002; 96:1351-1357).

In conclusion, the decision to proceed with your grandmother’s surgery and anesthesia requires an informed assessment of the benefit of the surgery versus the risks involved. Well-trained anesthesiologists anesthetize 85-year-old patients every day, with successful outcomes. My advice is to choose a medical center with fine physician anesthesia providers, and heed their consultation regarding whether your grandmother poses any unacceptable risk for surgery and anesthesia.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

LANDING THE ANESTHESIA PLANE: WHEN SHOULD YOU EXTUBATE THE TRACHEA?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is for my readers who are anesthesia professionals. When should you extubate the trachea? Clinical Case for Discussion: You’re anesthetizing a 60-year-old woman for a thyroidectomy. The surgeon tells you, “If this woman bucks on the endotracheal tube on awakening it could cause a neck hematoma and damage my surgical closure. Can you extubate her deep?”

 

Discussion: The patient has a normal airway, and she is healthy and slender. You decide to comply with the surgeon’s request and remove the endotracheal tube (ET tube) at the end of surgery while the patient is still fully anesthetized. You turn off the nitrous oxide, allow the patient to breath 100% oxygen and 3% sevoflurane, and suction the patient’s throat. You deflate the cuff on the ET tube and remove the tube. Once the tube is withdrawn, you turn off all anesthetics. At this point the patient coughs and her mouth fills with yellow gastric contents. You suction the mouth again, but the patient develops upper airway obstruction. The oxygen saturation drops to 80%. Your diagnosis is laryngospasm. You attempt to apply continuous positive airway pressure with an anesthesia mask, but her oxygen saturation falls to 70%. Panicked, you inject 100 mg of IV succinylcholine to re-paralyze the patient, and you perform laryngoscopy and reintubate her. After the ET tube is replaced, the oxygen saturation returns to 100%. You suction through the lumen of the ET tube, and you find yellow gastric material inside the lungs. You diagnose aspiration.

After a 10½ hour flight from Seoul, Korea, an Asiana airplane crashed on landing at San Francisco Airport on July 6, 2013. Aviation and anesthesia have similarities. The takeoff and landing of an airplane, just as induction and emergence from anesthesia, are more complex events than piloting the middle of a plane flight or managing the maintenance phase of a long anesthetic.

The timing of the removal of the endotracheal tube at the end of an anesthetic requires skill and judgment. Does deep extubation ever make sense? During my first year after residency training, a gray-haired anesthesia attending at my new medical center told me, “Richard, in private practice you never extubate anyone deep.” Twenty-seven years later, I’m writing to convince you he was right.

Let’s define “deep extubation.” Per Miller’s Anesthesia, 7th Edition, 2009, Chapter 50, “Extubation may be performed at different depths of anesthesia, with the terms ‘awake,’ ‘light,’ and ‘deep’ often being used. ‘Light’ implies recovery of protective respiratory reflexes and ‘deep’ implies their absence. ‘Awake’ implies appropriate response to verbal stimuli. ‘Deep’ extubation is performed to avoid adverse reflexes caused by the presence of the tracheal tube and its removal, at the price of a higher risk of hypoventilation and upper airway obstruction. Straining, which could disrupt the surgical repair, is less likely with ‘deep’ extubation. Upper airway obstruction and hypoventilation are less likely during ‘light’ extubation, at the price of adverse hemodynamic and respiratory reflexes.”

The medical literature describes deep extubation as extubating a patient who is still breathing 1.5 times the minimal alveolar concentration (MAC) of inhaled anesthetic. A 2004 study examined 48 children tracheally extubated while deeply anesthetized with 1.5 times the MAC of desflurane (Group D) or sevoflurane (Group S). No serious complications occurred in either group, and the time to discharge was not significantly different between groups. The study concluded that deep extubation of children can be performed safely with desflurane or sevoflurane. (Valley RD, Anesth Analg. 2003 May;96(5):1320-4, Tracheal extubation of deeply anesthetized pediatric patients: a comparison of desflurane and sevoflurane.)

In a prospective trial, 100 children age<16 years, each with at least one risk factor for perioperative respiratory adverse events (e.g. current or recent upper respiratory tract infection or asthma) were randomized to extubation under deep anesthesia or extubation when fully awake after tonsillectomy. There were no differences in respiratory adverse events (laryngospasm, bronchospasm, persistent coughing, airway obstruction, or desaturation <95%). Tracheal extubation in fully awake children was associated with a greater incidence of persistent coughing (60 vs. 35%, P = 0.028), however the incidence of airway obstruction relieved by simple airway maneuvers in children extubated while deeply anaesthetized was greater (26 vs. 8%, P = 0.03).

Seventy healthy patients between 2 and 8 yr of age who had elective strabismus surgery or tonsillectomy were randomly assigned to group 1 (awake extubation) or group 2 (anesthetized extubation). The incidence of airway-related complications such as laryngospasm, croup, sore throat, excessive coughing, and arrhythmias was not different between the two groups. The authors concluded that the anesthesiologist’s preference or surgical requirements may dictate the choice of extubation technique in otherwise healthy children undergoing elective surgery. (Patel RI, Anesth Analg. 1991 Sep;73(3):266-70. Emergence airway complications in children: a comparison of tracheal extubation in awake and deeply anesthetized patients).

In an informal poll of the private practice anesthesiologists at Stanford University, the incidence of deep extubation (i.e. patient extubated asleep while breathing >1.5 MAC of inhaled anesthetic) approached zero. Why do I and my colleagues avoid deep extubation? If you have a life-saving and life-preserving device such as an endotracheal tube safely in place in your patient, and your goal is to maintain the values of Airway, Breathing, and Circulation, why remove that life-preserving device prematurely without any evidence that such a removal is beneficial? Why leave your anesthetized patient with an unprotected airway?

I cannot cite you outcome data that shows awake extubation provides superior outcomes to deep extubation, but with modern short-acting anesthetics such as propofol, sevoflurane, and desflurane, a well-trained anesthesiologist can decrease anesthetic depth quickly and have their patient very awake within minutes after the conclusion of surgery. Per Miller’s Aesthesia, “Rapid recovery of consciousness shortens the at-risk time during extubation and may reduce morbidity, particularly in obese patients. … Nitrous oxide, sevoflurane, and desflurane all contribute to rapid recovery, particularly after prolonged procedures.”

If your patient vomits on emergence and the ET tube is still in situ, the cuff on the ET tube will protect their lower airway. And if you choose to extubate your patient awake, the occurrence of laryngospasm will be, in this author’s experience, rare.

It’s true that coughing on an ET tube can disrupt surgical repairs, increase intracranial pressure, increase intraocular pressure, or cause hypertension and tachycardia, but per Miller’s Anesthesia, “Marked increases in arterial blood pressure and heart rate occur frequently at the time of ‘light’ extubation. These effects are alarming but normally transient, and there is little evidence of adverse consequences.”

My advice: Use light levels of general anesthetics on your intubated patients, and learn how to wake your patients from general anesthesia quickly at the conclusion of surgery. Don’t suction the patient until you are ready to remove the ET tube, because the suction catheter stimulates early coughing.

The ET tube is your friend. I’d recommend you don’t pull it out until you’re certain you don’t need it any more.

The definitive reference from the medical literature on this topic is Difficult Airway Society Guidelines for the management of tracheal extubation, written by Popat M.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WHY DOES ANYONE DECIDE THEY WANT TO BECOME AN ANESTHESIOLOGIST?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

A question anesthesiologists are commonly asked is, “Why did you want to become an anesthesiologist?”

This image has an empty alt attribute; its file name is anesthesiologist.jpg

Let’s assume a young man or woman has the discipline and intellect to attend medical school. Once that individual gains their M.D. degree, they will choose a specialty from a long line-up that includes multiple surgical specialties (general surgery, orthopedics, urology, neurosurgery, cardiac surgery, ophthalmology, plastic surgery, ear-nose-and-throat surgery), internal medicine, pediatrics, family practice, dermatology, radiology, invasive radiology, radiation oncology, allergy-immunology, emergency medicine, and anesthesiology.

Why choose anesthesiology? I offer up a list of the reasons individuals like myself chose this specialty:

  1. Anesthesiologists do acute care rather than clinic care or chronic care. Some doctors enjoy sitting in a clinic 40+ hours a week, talking to and listening to patients. Other doctors prefer acute care, where more exciting things happen moment to moment. It’s true that surgeons do acute care in the operating room, but most surgeons spend an equal amount of time in clinic, seeing patients before and after scheduled surgical procedures. Chronic care in clinics can be emotionally taxing. Ordering diagnostic studies and prescribing a variety of pills suits certain M.D.’s, but acute care in operating rooms and intensive care units is more stimulating. It’s exciting controlling a patient’s airway, breathing, and circulation. It’s exciting having a patient’s life in your hands. Time flies.
  2. Patients like and respect their anesthesiologist, and that feels good. Maybe it’s because we are about to take each patient’s life into our hands, but during those minutes prior to surgery, patients treat anesthesiologists very well. I tend to learn more about my patients’ personal lives, hobbies, and social history in those 10 minutes of conversation prior to surgery than I ever did in my internal medicine clinic.
  3. An anesthesiologist’s patients are unconscious the majority of time. Some anesthesiologists are attracted to this aspect. An unconscious patient is not complaining. In contrast, try to imagine a 50-hour-a-week clinic practice as an internal medicine doctor, in which every one of your patients has a list of medical problems they are eager to tell you about.
  4. There is tremendous variety in anesthesia practice. We take care of patients ranging in ages from newborns to 100-year-olds. We anesthetize patients for heart surgery, brain surgery, abdominal or chest surgeries, bone and joint surgeries, cosmetic surgery, eye surgery, urological surgery, trauma surgery, and organ transplantation surgery. Every mother for Cesarean section has an anesthetist, as do mothers for many vaginal deliveries for childbirth. Anesthesiologists run intensive care units and anesthesiologists are medical directors of operating rooms as well as pain clinics.
  5. Anesthesiologists work with a lot of cool gadgets and advanced technology. The modern anesthesia workstation is full of computers and computerized devices we use to monitor patients. The modern anesthesia workstation has parallels to a commercial aircraft cockpit.
  6. Lifestyle. We work hard, but if an anesthesiologist chooses to take a month off, he or she can be easily replaced during the absence. It’s very hard for an office doctor to take extended time away from their patients. Many patients will find an alternate doctor during a one month absence if the original physician is unavailable. This aspect of anesthesia is particularly attractive to some female physicians who have dual roles as mother and physician, and choose to work less than full-time as an anesthesiologist so they can attend to their children and family.
  7. Anesthesia is a procedural specialty. We work with our hands inserting IV’s, breathing tubes, central venous IV catheters, arterial catheters, spinal blocks, epidural blocks, and peripheral nerve blocks as needed. It’s fun to do these procedures. Historically, procedural specialties have been higher paid than non-procedural specialties.

What about problematic issues with a career in anesthesia? There are a few:

  1. We work hard. Surgical schedules commonly begin at 7:30 a.m., and anesthesiologists have to arrive well before that time to prepare equipment, evaluate the first patient, and get that patient asleep before any surgery can commence. After years of this, my internal alarm clock tends to wake me at 6:00 a.m. even on weekends.
  2. Crazy hours. Every emergency surgery—every automobile accident, gunshot wound, heart transplant, or urgent Cesarean section at 3 a.m. needs an anesthetist. Working around the clock can wear you out.
  3. The stakes are high if you make a serious mistake. In a clinic setting, an M.D. may commit malpractice by failing to recognize that a patient’s vague chest pain is really a heart attack, or an M.D. may fail to order or to check on an important lab test, leading to a missed diagnosis. But in an operating room, the malpractice risks to an anesthesiologist are dire. A failure in properly insert a breathing tube can lead to brain death in minutes. This level of tension isn’t for everyone. Some doctors are not emotionally suited for anesthesia practice.
  4. In the future, anesthesia doctors may gradually lose market share of their practice to nurse anesthetists. You can peruse other columns in this blog where I’ve discussed this issue.
  5. Anesthesiologists don’t bring any patients to a medical center. In medical politics, this can be problematic. Anesthesiologists have limited power in some negotiations, because we can be seen as service providers rather than as a source of new patient referrals for a hospital. Some hospital administrators see an anesthetist as easily replaced by the next anesthetist who walks through the door, or who offers to work for a lower wage.

The positive aspects of anesthesiology far outweigh these negatives.

Akin to the Dos Equis commercial that describes “The Most Interesting Man in the World,” I’d describe the profession of anesthesiology as “The Most Interesting Job in the World.”

And when you love your job, you’ll never work a day in your life.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

USEFUL PEDIATRIC ANESTHESIA EQUATIONS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You are driving to the hospital, en route to doing a pediatric anesthetic on a 2-year-old that will require an endotracheal tube. You are thinking through the case in advance. What can you do to plan your anesthetic? There are some useful pediatric anesthesia equations you can use to prepare yourself.

 

intubated anesthetized child

 

During my anesthesia training at Stanford, Dr. Stanley Samuels, the co-author of Anesthesiologist’s Manual of Surgical Procedures, by Jaffe and Samuels, (Fourth Edition, 2009, Lippincott Williams and Wilkins), taught me a series of equations regarding pediatric anesthetics. These equations are listed below, and provide time-tested guidelines to help the anesthesiologist select the correct endotracheal tube size, the correct intravenous infusion rate, and to estimate a child’s weight and dosing requirements of intravenous drugs.

As Dr. Samuels told me, “You can be driving in toward the hospital, knowing that your patient is 2 years old, and plan details of  your anesthetic in advance.” The equations are as follows:

  • The endotracheal tube size = age/4 + 4
  • Estimating a child’s weight:

Newborn = 3 kg

1-year-old = 10 kg

Add 2 kg per year up until the age of 6 years.

  • The IV rate per hour = 40 ml/hr (first 10 kg) + 20 ml/hr (second 10 kg) plus 10 ml/hr for every extra 10 kg
  • Dosing of IV medications:

A 7-year-old takes ½ of adult dose

A 1-year-old takes ¼ of adult dose

A newborn takes 1/10 of adult dose

For your 2-year-old patient, you will prepare a 4.5 ID endotracheal tube, expect the patient to weigh about 12 kilograms, plan a maintenance IV rate of 45 ml/hour, and expect that all drug doses (including emergency resuscitation drug doses) will be in a range of slightly more than ¼ of typical adult doses.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SEVEN DEADLY DRUGS IN AN ANESTHESIOLOGIST’S DRAWER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

As anesthesiologists we are the only physicians who routinely prescribe and administer injectable medications ourselves. Most physicians write orders for medications. Registered nurses then administer the medications on hospital wards, in intensive care units, in emergency rooms, and in clinics. As anesthesiologists we have our own drug cart, stocked with dozens of medications, including hypnotics, paralyzing drugs, cardiovascular drugs, antibiotics, anti-nausea drugs, anti-inflammatory drugs, and resuscitation drugs. There are Seven Deadly Drugs in an anesthesiologist’s drawer.

drug ampoules in an anesthesia drawer

Typically, we make a decision to inject a drug, then open the ampoule, draw the contents of the ampoule into a syringe, and inject it into the patient … without the approval, input, or monitoring of any other healthcare provider.

Do medication errors occur? Yes they do, because anesthesiologists are human, and to err is human. In a survey conducted in Japan between 1999 and 2002 in more than 4,291,925 cases, the incidence of critical incidents due to drug administration error was 18.27/100,000 anesthetics. Cardiac arrest occurred in 2.21 patients per 100,000 anesthetics. Causes of death were overdose or selection error involving non-anesthetic drugs, 47.4%; overdose of anesthetics, 26.3%; inadvertent high spinal anesthesia, 15.8%; and local anesthetic intoxication, 5.3%. Ampoule or syringe swap did not lead to any fatalities. (Irita K, et al. Critical incidents due to drug administration error in the operating room: an analysis of 4,291,925 anesthetics over a 4 year period. Masui 2004; 53(5):577–84. )

In a South African study of 30,412 anaesthetics, anaesthetists reported a combined incidence of one error or near-miss per 274 cases. Of all errors, 36.9% were due to drug ampoule misidentification; of these, the majority (64.4%) were due to similar looking ampoules. Another 21.3% were due to syringe identification errors. No major complication attributable to a drug administration error was reported. (Llewellyn RL, et al. Drug administration errors: a prospective survey from three South African teaching hospitals. Anaesth Intensive Care 2009 ; 37(1):93–8. )

What can be done to eliminate or minimize medication errors? A Japanese study examined the value of color-coding syringes, as follows: blue syringes contained local anesthetics; yellow syringes, sympathomimetic drugs; and white-syringes with a red label fixed opposite the scale, muscle relaxants. Although five syringe swaps were recorded from February 2003 to January 2004 in 5901 procedures prior to the change, they encountered no syringe swaps from February 2004 to January 2005 in 6078 procedures performed after switching to color-coded syringes (P <0.05). (Hirabayashi Y, et al. The effect of colored syringes and a colored sheet on the incidence of syringe swaps during anesthetic management. Masui 2005; 54(9):1060–2.)

Published evidence-based practices to reduce the risk of medication error include the following recommendations:

  1. The label on any drug ampoule or syringe should be read carefully before a drug is drawn up or injected;
  2. The legibility and contents of labels on ampoules and syringes should be optimized according to agreed standards; syringes should always be labeled; formal organization of drug drawers and workspaces should be used;
  3. Labels should be checked with a second person or a device before a drug is drawn up or administered. (Note: this is impractical in the anesthesia world.)
  4. Dosage errors are particularly common in pediatric patients. Technological innovations, including the use of bar codes and various cognitive aids, may facilitate compliance with these recommendations. (Merry AF, Anderson BJ. Medication errors–new approaches to prevention. Paediatr Anaesth 2011; 21(7):743–53.)

Bar-code medication administration (BCMA) systems exist for anesthesiologists to identify the ampoule of each drug at the time of administration. I’m not seeing these devices in widespread use in the United States yet. A pilot study in Great Britain perceived that bar-code readers contributed to the prevention of drug errors. The study concluded that the  technological aspects of its integration into the operating theatre environment, and learning, will require further attention. (Evley R. Confirming the drugs administered during anaesthesia: a feasibility study in the pilot National Health Service sites, UK. Br J Anaesth 2010; 105(3):289–96.)

In addition to the data from the aforementioned publications on the incidences of medication errors, how many medication errors go unpublished and unreported? Many anesthesiologists I know have shared their tales of medication errors, all of which are unpublished and unreported in the medical literature. Some swaps and errors will be inconsequential. Some swaps and errors will prolong an anesthetic, such as when a muscle relaxant paralyzes a patient at an unintended time or dose. Some swaps and errors contain the potential for dire complications.

The ancient Christian world identified Seven Deadly Sins. They were wrath, greed, sloth, pride, lust, envy, and gluttony. There exist at least seven medications that an anesthesiologist must strive to never inject intravenously in error. I call these the Seven Deadly Drugs.  All are present in the anesthesiologists’ drug drawer or at the operating room pharmacy. They are as follows:

  1. Epinephrine (1mg/1ml ampoule). Epinephrine is an important drug during ACLS to treat asystole and refractory ventricular fibrillation, to treat anaphylaxis, or to be used as an infusion to treat decreased cardiac output. This ampoule is routinely stocked in most drug drawers. If one injects it in error into a healthy patient, major hypertension and tachycardia will ensue.  Think blood pressures in the 250/150 range, and heart rates approaching 200 beats per minute. This can be lethal in elderly patients, or in patients with diminished cardiac reserve.
  2. Phenylephrine (10 mg/1 ml ampoule). Phenylephrine, when injected in 100-microgram doses or used as a dilute infusion, is an important drug to treat hypotension. This ampoule is routinely stocked in most drug drawers. If one injects it in error into a healthy patient, major hypertension will ensue, as well as reflex bradycardia.  Think blood pressures in the 250/150 range, and heart rates dropping below 50 beats per minute. This can be lethal in elderly patients, or patients with diminished cardiac reserve.
  3. Nitroprusside (50 mg/2ml) Nitroprusside, when diluted into an infusion, is an important drug to treat hypertension. If this ampoule is injected undiluted, the patient will experience rapid arterial vasodilation and severe hypotension.
  4. Insulin (100 Units/1ml, 10 ml vial). Insulin is an important medication to treat hyperglycemia. Typical doses range from 5–30 Units, which is a mere 1/20th to 3/10th of one milliliter. An erroneous injection of an insulin overdose to an anesthetized patient can result in severe hypoglycemia and brain death.
  5. Potassium Chloride (20 Meq/10 ml). Potassium chloride is an important treatment for hypokalemic patients. If it is administered erroneously as a bolus, potassium chloride can cause severe ventricular arrhythmias and death.
  6. Heparin (1000 U/ml). Heparin is an important anticoagulant, used routinely in open heart surgery and vascular surgery. If it is administered in error, it can cause unexpected bleeding during surgery.
  7. Isoproterenol (1 mg/5 ml) Isoproterenol can be used as a dilute infusion to increase heart rate in critically ill patients.  One of the hospitals I work at includes an ampoule of isoproterenol in the routine drug drawer, next to ampoules of common medications such as ketorolac (Toradol), hydrocortisone, and promethazine (Phenergan). If one injects a bolus of isoproterenol in error into a healthy patient, major tachycardia and hypertension will ensue. This can be lethal in elderly patients, or patients with diminished cardiac reserve.

What can anesthesiologists do to eliminate the risks of erroneously bolus injecting the Seven Deadly Drugs? This author recommends elimination of major vasopressor drugs such as epinephrine, phenylephrine, and isoproterenol and major vasodilators such as nitroprusside from routine drug drawers. This author recommends elimination of the potent anticoagulant heparin from routine drug drawers. Insulin is routinely sequestered in an operating room refrigerator, and most hospitals have protocols that insulin doses be double-checked by two medical professionals prior to injection. Potassium chloride is routinely sequestered the operating room pharmacy as well, distanced from the anesthesiologist’s routine drug drawer.

Above all, anesthesia practitioners need to be vigilant of the risk of picking up the wrong drug ampoule in error. Read the labels of your ampoules carefully, and take care not to inject any of the Deadly Seven Drugs.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WILL YOU HAVE AN ANESTHESIOLOGIST FOR YOUR WISDOM TEETH EXTRACTION SURGERY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

In the United States, will you have an anesthesiologist for your wisdom teeth extraction surgery? If you are a healthy patient, the answer is: probably not.

In the United States, oral surgeons perform most wisdom teeth extraction surgeries.  This is a very common surgery, with the operation performed on up to five million times in the United States each year. Most patients are healthy teenagers.  Oral surgeons perform wisdom teeth surgeries in their office operating rooms, and most oral surgeons manage the intravenous sedation anesthesia themselves, without the aid of an anesthesiologist.

Oral surgeons are trained in the airway management and general anesthesia skills necessary to accomplish this safely, and a nurse assists the oral surgeon in delivering sedative medications.  Oral surgeons must earn a license to perform general anesthesia in their office. To administer general anesthesia in an office, most oral surgeons complete at least three months of hospital-based anesthesia training. In most states, oral surgeons then undergo an in-office evaluation by a state dental-board-appointed examiner, who observes an actual surgical procedure during which general anesthesia is administered to a patient. It’s the examiner’s job to inspect all monitoring devices and emergency equipment, and to test the doctor and the surgical staff on anesthesia-related emergencies. If the examinee successfully completes the evaluation process, the state dental board issues the doctor a license to perform general anesthesia.  Note that even though the oral surgeon has a license to direct anesthesia, the sedating drugs he or she orders are often administered by a nurse who has no license or training in anesthesia.

In an oral surgeon’s office, general anesthesia for wisdom teeth extraction typically includes intravenous sedation with several drugs:  a benzodiazepine such as midazolam, a narcotic such as fentanyl or Demerol, and a hypnotic drug such as propofol, ketamine, and/or methohexital.  Prior to administering these powerful drugs, the oral surgeon must be certain that he or she can manage the Airway and Breathing of the patient. After the patient is asleep, the oral surgeon injects a local anesthetic such as lidocaine to block the superior and inferior alveolar nerves.  These local anesthetic injections render the mouth numb, so the surgeon can operate without inflicting pain.  Typically, no breathing tube is used and no potent anesthetic vapor such as sevoflurane is used.  The oral surgeon may supplement intravenous sedation with inhaled nitrous oxide.

The oral surgeon has all emergency airway equipment, breathing tubes, and emergency drugs available. The safety record for oral surgeons using these methods seems excellent.  My review of the National Institutes of Health website PubMed reveals very few instances of death related to wisdom teeth extraction.  Recent reports include one patient who died in Germany due to a heart attack after his surgery (Kunkel M, J Oral Maxillofac Surg. 2007 Sep;65(9):1700-6.  Severe third molar complications including death-lessons from 100 cases requiring hospitalization).  A second patient died in Japan because of a major bleed in his throat occluding trachea, one day after his surgery (Kawashima W, Forensic Sci Int. 2013 May 10;228(1-3):e47-9. doi: 10.1016/j.forsciint.2013.02.019. Epub 2013 Mar 26. Asphyxial death related to postextraction hematoma in an elderly man).

Most oral surgeons do not publish their mishaps or complications, so the medical literature is not the place to search for data on oral surgery deaths. Deaths that occur during or after wisdom teeth extraction are sometimes reported in the lay press.  In April 2013, a 24-year-old healthy man began coughing during his wisdom teeth extraction in Southern California, and went into cardiac arrest.  He was transferred to a hospital, where he died several days later.

In 2011, a Baltimore-area teen died during wisdom teeth extraction. The family’s malpractice claim was settled out of court in 2013.

Every general anesthetic carries a small risk, such as these two reported cases of death following wisdom teeth extractions.  All acute medical care involves attending to the A – B – C ‘s of Airway, Breathing, and Circulation.  During surgery for wisdom teeth extraction, the oral surgeon is operating in the patient’s mouth. Surgery in the mouth increases the chances that the operation will interfere with the patient’s Airway or Breathing.  The surgeon’s fingers, surgical instruments, retractors, and gauze pads crowd into the airway, and may influence breathing.  If the patient’s breathing becomes obstructed, altering the position of the jaw, the tongue, or the neck is more challenging than when surgery does not involve the airway.

I’ve attended to hundreds of patients for dental surgeries.  For dental surgery in a hospital setting, anesthesiologists commonly insert a breathing tube into the trachea after the induction of general anesthesia.  A properly positioned tracheal tube can assure the Airway and Breathing for the duration of the surgery.  Because an anesthesiologist is not involved with performing the surgery, his or her attention can be 100% focused on the patient’s vital signs and medical condition.  When anesthesiologists are called on to perform general anesthesia for wisdom teeth extraction in a surgeon’s office, we typically use a different anesthetic technique.  Usually there is no anesthesia machine to deliver potent inhaled anesthetics, therefore intravenous sedation is the technique of choice.  Usually no airway tube is inserted.  When general anesthesia is induced in an office setting, the patient must have an adequate airway, i.e. and American Society of Anesthesiologists Class I or II airway. A typical technique is a combination of intravenous midazolam, fentanyl, propofol, and/or ketamine.  Oxygen is administered via the patient’s nostrils throughout the surgery. The adequacy of breathing is continuously monitored by both pulse oximetry and end-tidal carbon dioxide monitoring.  The current American Society of Anesthesiologist Standards for Basic Anesthetic Monitoring (July 1, 2011) state that “Every patient receiving general anesthesia shall have the adequacy of ventilation continually evaluated. … Continual monitoring for the presence of expired carbon dioxide shall be performed unless invalidated by the nature of the patient, procedure or equipment.”

The motto of the American Society of Anesthesiologists is “Vigilance.”  If the patient’s oxygen saturation and/or end-tidal carbon dioxide numbers begin to decline, an anesthesiologist will act immediately to improve the A – B – C ‘s of Airway, Breathing, and Circulation.

Let’s return to our opening question: Will you have an anesthesiologist for your wisdom teeth extraction surgery?  If you are a healthy patient, I cannot show you any data that an anesthesiologist provides safer care for wisdom teeth surgery than if an oral surgeon performs the anesthesia. The majority of wisdom teeth extractions in the United States are performed on healthy patients without an anesthesiologist, and reported complications are rare.  If you want an anesthesiologist, you need to make this clear to your oral surgeon, and ask him to make the necessary arrangements.  If you do choose to enlist a board-certified anesthesiologist for your wisdom teeth extractions, know that your anesthesia professional has completed a three or four year training program in his field, and is expert in all types of anesthesia emergencies.  As a downside, you will be responsible for an extra bill for the professional fee of this anesthesiologist.

Whether an anesthesiologist or an oral surgeon attends to your anesthesia, the objectives are the same:  Each will monitor the A – B – C ‘s of your Airway, Breathing, and Circulation to keep you oxygenated and ventilated, so you can wake up and leave that dental office an hour or so after your wisdom teeth extraction surgery has concluded.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

CAN YOU CHOOSE YOUR ANESTHESIOLOGIST?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You choose the car you drive, the apartment you rent, the smart phone in your pocket, and the flavor of ice cream among 31 flavors at Baskin-Robbins.  Most of you  choose your family physician, your dermatologist, and your surgeon.  But can you choose your anesthesiologist?

 

It depends.

To answer the question, let’s look at how anesthesia providers are assigned for each day of surgery.

Who makes the decision as to which anesthesia provider is assigned to your case? The anesthesia service at every hospital or healthcare system will have a scheduler.  This scheduler is an individual (usually an anesthesiologist) who surveys the list of the surgical cases one day ahead of time.  There will be multiple operating rooms and multiple cases in each operating room. Each operating room is usually scheduled for six to ten hours of surgical cases.  The workload could vary from one ten-hour case to eight shorter cases.  The total number of operating rooms will vary from hospital to hospital.  Typically each room is specialty-specific, that is, all the cases in each room are the same type of surgery.  The scheduler will an assign appropriate anesthesia provider to each room, depending on the skills of the anesthesia provider and the type of surgery in that room.

There are multiple surgical specialties and multiple types of anesthetics.  An important priority is to schedule an anesthesia provider who is skilled and comfortable with the type of surgery scheduled.  An open-heart surgery will require a cardiac anesthesiologist.  A neonate (newborn) will require a pediatric anesthesiologist.  Most surgeries, e.g., orthopedic, gynecologic, plastic surgery, ear-nose-and-throat, abdominal, urologic, obstetric, and pediatric cases over age one, are bread-and-butter anesthetics that can be handled by any well-trained provider.

Each day certain anesthesiologists are “on-call.”  When an anesthesiologist is on-call, he or she is the person called for emergency add-on surgeries that day and night.  The on-call anesthesiologist is expected to work the longest day of cases, and the scheduler will usually assign that M.D. to an operating room with a long list of cases.  If you have emergency surgery at 2 a.m., you will likely be cared for by the on-call anesthesiologist.  A busy anesthesia service may have a first-call, a second-call, and a third-call anesthesiologist, a rank order that defines which anesthesia provider will do emergency cases if two or three come in simultaneously.  A busy anesthesia service will have on-call physicians in multiple specialties, i.e., there will be separate on-call anesthesiologists for cardiac cases, trauma cases, transplant cases, and obstetric cases.

Different hospitals have different models of anesthesia services.  In parts of the United States, especially the Midwest, the South, and the Southeast, the anesthesia care team is a common model.  An anesthesia care team consists of both certified registered nurse anesthetists (CRNA’s) and M.D. anesthesiologists.  For complex cases such as cardiac cases or brain surgeries, an M.D. anesthesiologist may be assigned as the solitary anesthesia provider.  For simple cases such as knee arthroscopies or breast biopsies, the primary anesthesia provider in each operating room will be a CRNA, with one M.D. anesthesiologist serving as the back-up consultant for up to four rooms managed by CRNA’s.

In certain states, the state governor has opted out of the requirement that an M.D. anesthesiologist must supervise all CRNA-provided anesthesia care.  In these states, a CRNA may legally provide anesthesia care without a physician supervising them.  Currently, the seventeen states that have opted out of physician supervision of CRNA’s include Alaska, California,  Colorado, Iowa, Idaho, Kansas, Kentucky, Minnesota, Montana, Nebraska, New Hampshire, New Mexico, North Dakota, Oregon, South Dakota, Washington, and Wisconsin.  In some hospitals in these states, your anesthesia provider may be an unsupervised nurse anesthetist, not a doctor at all.

Some hospitals have only M.D. anesthesiologists who personally do all the cases.

Academic hospitals, or university hospitals, have residents-in-training who administer most of the anesthetic care.  In academic hospitals, faculty members supervise anesthesia residents in a ratio of one faculty to one resident or one faculty to two residents.

Can a surgeon request a specific anesthesia provider?  Yes.  At times, a surgeon may have certain anesthesia providers that he or she requests and uses on a regular basis.  It’s far easier for a surgeon to request a specific anesthesia provider than it is for you to do so.

The assignment of your anesthesia provider is usually made by the scheduler on the afternoon prior to surgery, and you the patient will have little or no say in the matter. If you are like most patients, you have no idea who is an excellent anesthesia provider and who is less skilled. You won’t find much written about anesthesiologists on Yelp, Healthgrades, or other consumer social-media websites.  Most patients don’t even remember the name of their anesthesia provider unless something went drastically wrong.  Such is the nature of our specialty.  Your anesthesia provider will spend a mere ten minutes with you while you’re awake, and during those ten minutes your mind will be reeling with worries about surgical outcomes and risks of anesthesia.  The anesthesia provider’s name is not a high priority.  After the surgery is over, anesthesiologists are a distant memory.

What if your next-door neighbor is an anesthesiologist whom you respect?  What if you are scheduled for surgery at his hospital or surgery center, and you want him to take care of you?  Can this be arranged?  Most likely, it can.  The best plan for requesting a specific anesthesiologist is to have the anesthesiologist work the system from the inside, several days prior to your surgery date.  He will talk to the scheduler and make sure that he is assigned into the operating room list that includes your surgery.  You’ll be happy and reassured to see him on the day of surgery, and he’ll likely be happy to take care of you.  Anesthesiologists love to be requested by patients.  It makes us feel special.  Doctors aspire to be outstanding clinicians, and a request from a specific patient validates that we are unique.

As you can see, the decision of who is assigned to be the anesthesia provider for your surgery is a multifaceted process. Your best strategy for requesting a specific anesthesiologist is to (1) contact the anesthesiologist yourself and ask that he or she contact anesthesia scheduling and make sure that he or she is scheduled to do your case, or (2) contact your surgeon and ask your surgeon if they can arrange to have the specific anesthesia provider that you request.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

DOES REPEATED GENERAL ANESTHESIA HARM THE BRAINS OF INFANTS AND YOUNG CHILDREN?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Recent scholarly publications have raised the question whether repeated exposure to general anesthesia is harmful to the developing brain in infants and young children.  Millions of children have surgery under general anesthesia each year. Is repeated exposure to general anesthesia safe for the developing brain of your child? Let’s look at the evidence.

pediatric anesthesia

In 2011, a retrospective Mayo Clinic study looked at the incidence of learning disabilities (LDs) in a cohort of children born in Olmsted County, Minnesota, from 1976 to 1982.  Among the 8,548 children analyzed, 350 of the children received general anesthesia before the age of 2.  A single exposure to general anesthesia was not associated with an increase in LDs, but children who had two or more anesthetics were at increased risk for LDs.  The study concluded that repeated exposure to anesthesia and surgery before the age of 2 was a significant independent risk factor for the later development of LDs.  The authors could not exclude the possibility that multiple exposures to anesthesia and surgery at an early age adversely affected human neurodevelopment with lasting consequences.

The same group of Mayo Clinic researchers looked at the incidence of attention-deficit/hyperactivity disorder (ADHD) in children born from 1976 to 1982 in Rochester, Minnesota.  Among the 5,357 children analyzed, 341 ADHD cases were identified.  For children with no exposure anesthesia before the age of 2 years, the cumulative incidence of ADHD at age 19 years was 7.3%  Exposure to multiple procedures requiring general anesthesia was associated with an increased cumulative incidence of ADHD of 17.9%. The authors concluded that children repeatedly exposed to procedures requiring general anesthesia before age 2 years were at increased risk for the later development of ADHD.

Anesthesia scientists decided to study this problem in mice.  In March 2013, researchers at Harvard and other hospitals exposed 6- and 60-day-old mice to various anesthetic regimens. The authors then determined the effects of the anesthesia on learning and memory function, and on the levels of proinflammatory chemicals such as cytokine interleukin-6 in the animals’ brains. The authors showed that anesthesia with 3% sevoflurane for 2 hours daily for 3 days induced cognitive impairment (i.e., unusually poor mental function) and neuroinflammation (i.e., elevated levels of brain inflammatory chemicals such as interleukin-6) in young but not in adult mice. Anesthesia with 3% sevoflurane for 2 hours daily for 1 day or 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation. Treatment with the non-steroidal anti-inflammatory (NSAID) drug ketorolac caused improvement in the sevoflurane-induced cognitive impairment. The authors concluded that anesthesia-induced cognitive impairment may depend on age, the specific anesthetic agent, and the number of exposures. The findings also suggested that cellular inflammation in the brain may be the basis for the problem of anesthesia-induced cognitive impairment, and that potential prevention and treatment strategies with NSAIDs may ultimately lead to safer anesthesia care and better postoperative outcomes for children.

The same Harvard research group assessed the effects of sevoflurane on brain function in pregnant mice, and on learning and memory in fetal and offspring mice. Pregnant mice were treated with 2.5% sevoflurane for 2 hours and 4.1% sevoflurane for 6 hours. Brain tissues of both fetal and offspring mice were harvested and immunohistochemistry tests were done to assess interleukin-6 and other brain inflammatory levels.  Learning and memory functions in the offspring mice was determined by using a water maze. The results showed that sevoflurane anesthesia in pregnant mice induced brain inflammation, evidenced by increased interleukin-6 levels in fetal and offspring mice.  Sevoflurane anesthesia also impaired learning and memory in offspring mice. The authors concluded that sevoflurane may induce detrimental effects in fetal and offspring mice, and that these findings should promote more studies to determine the neurotoxicity of anesthesia in the developing brain.

What does all this mean to you if your children need anesthesia and surgery?  Although further studies and further data will be forthcoming, the current information suggests that:  (1) if your child has one exposure to anesthesia, this may constitute no increased risk to their developing brain, and (2) repeated surgery and anesthetic exposure to sevoflurane may be harmful to the development of the brain of children under 2 years of age.  It would seem a wise choice to delay surgery until your child is older if at all possible.

What does all this mean to anesthesiologists?  We’ll be watching the literature for new publications on this topic, but in the meantime it seems prudent to avoid exposing newborns and young children to repeated anesthetics with sevoflurane.  Currently, sevoflurane is the anesthetic of choice when we put children to sleep with a mask induction, because sevoflurane smells pleasant and it works fast.  Children become unconscious within a minute or two.  After a child is asleep, it may be advisable to switch from sevoflurane to the alternative gas anesthetic desflurane, since the Harvard study on mice showed anesthesia with 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation.  A second alternative is to switch from sevoflurane to intravenous anesthetics alone, e.g., to utilize propofol and remifentanil infusions instead of sevoflurane.

The concept of pediatric anesthesia harming the developing brain was reviewed in the lay press in Time magazine in 2009.  The four articles I summarized above represent the most recent and detailed advances on this topic.  Stay tuned.  The issue of anesthetic risk to the developing brain will be closely scrutinized for years to come.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE TOP TEN MOST USEFUL ADVANCES AND THE FIVE MOST OVERRATED ADVANCES AFFECTING ANESTHESIA IN THE PAST 25 YEARS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

In 1986 the American Society of Anesthesiologists adopted pulse oximetry and end-tidal CO2 monitoring as standards of care.  These two monitors were our specialty’s major advances in the 1980’s, and made anesthesia safer for everyone. What are the most significant advances affecting anesthesia since that time? As a clinician in private practice, I’ve personally administered over 20,000 anesthetics in the past quarter century.  Based on my experience and observations, I’ve assembled my list of the Top Ten Most Useful Advances Affecting Anesthesia from 1987-2012.  I’ve also assembled my list of the Five Most Overrated Advances Affecting Anesthesia from 1987-2012.

THE TOP TEN MOST USEFUL ADVANCES AFFFECTING ANESTHESIA IN THE PAST 25 YEARS (1987- 2012):

#10. The cell phone (replacing the beeper).  Cell phones changed the world, and they changed anesthesia practice as well.  Before the cell phone, you’d get paged while driving home and have to search to find a payphone.  Cell phones allow you to be in constant contact with all the nurses and doctors involved in your patient’s care at all times.  No one should carry a beeper anymore.

#9. Ultrasound use in the operating room.  The ultrasound machine aids peripheral nerve blockade and catheter placement, and intravascular catheterization.  Nerve block procedures used to resemble “voodoo medicine,” as physicians stuck sharp needles into tissues in search of paresthesias and nerve stimulation.  Now we can see what we’re doing.

#8.  The video laryngoscope.  Surgeons have been using video cameras for decades.  We finally caught up.  Although there’s no need for a video laryngoscope on routine cases, the device is an invaluable tool for seeing around corners during difficult intubations.

#7.  Rocuronium.  Anesthesiologists long coveted a replacement for the side-effect-ridden depolarizing muscle relaxant succinylcholine.  Rocuronium is not as rapid in onset as succinylcholine, but it is the fastest non-depolarizer in our pharmaceutical drawer.  If you survey charts of private practice anesthesiologists, you’ll see rocuronium used 10:1 over any other relaxant.

#6.  Zofran.  The introduction of ondansetron and the 5-HT3 receptor blocking drugs gave anesthesiologists our first effective therapy to combat post-operative nausea and vomiting.

#5. The ASA Difficult Airway Algorithm.  Anesthesia and critical care medicine revolve around the mantra of “Airway-Breathing-Circulation.”  When the ASA published the Difficult Airway Algorithm in Anesthesiology in 1991, they validated a systematic approach to airway management and to the rescue of failed airway situations.  It’s an algorithm that we’ve all committed to memory, and anesthesia practice is safer as a result.

#4.  The internet.  The internet changed the world, and the Internet changed anesthesia practice as well.  With Internet access, clinicians are connected to all known published medical knowledge at all times.  Doctors have terrific memories, but no one remembers everything.  Now you can research any medical topic in seconds. Some academics opine that the use of electronic devices in the operating room is dangerous, akin to texting while driving.  Monitoring an anesthetized patient is significantly different to driving a car.  Much of O.R. monitoring is auditory.  We listen to the oximeter beep constantly, which confirms that our patient is well oxygenated.  A cacophony of alarms sound whenever vital signs vary from norms.  An anesthesia professional should never let any electronic device distract him or her from vigilant monitoring of the patient.

#3.  Sevoflurane.  Sevo is the volatile anesthetic of choice in community private practice, and is a remarkable improvement over its predecessors.  Sevoflurane is as insoluble as nitrous oxide, and its effect dissipates significantly faster than isoflurane.  Sevo has a pleasant smell, and it replaced halothane for mask inductions.

#2.  Propofol.  Propofol is wonderful hypnotic for induction and maintenance.   It produces a much faster wake-up than thiopental, and causes no nausea.  Propofol makes us all look good when recovery rooms are full of wide-awake, happy patients.

#1.  The Laryngeal Mask Airway.  What an advance the LMA was.  We used to insert endotracheal tubes for almost every general anesthesia case.  Endotracheal tubes necessitated laryngoscopy, muscle relaxation, and reversal of muscle relaxation.  LMA’s are now used for most extremity surgeries, many head and neck surgeries, and most ambulatory anesthetics.

THE FIVE MOST OVERRATED ADVANCES AFFECTING ANESTHESIA IN THE PAST 25 YEARS (1987-2012):

#5.   Office-based general anesthesia.  With the advent of propofol, every surgeon with a spare closet in their office became interested in doing surgery in that closet, and they want you to give general anesthesia there.  You can refuse, but if there is money to be earned, chances are some anesthesia colleague will step forward with their service.  Keeping office general anesthesia safe and at the standard of care takes careful planning regarding equipment, monitors, and emergency resuscitation protocols.  Another disadvantage is the lateral spread of staffing required when an anesthesia group is forced to cover solitary cases in multiple surgical offices at 7:30 a.m.  A high percentage of these remote sites will have no surgery after 11 a.m.

#4.  Remifentanil.  Remi was touted as the ultra-short-acting narcotic that paralleled the ultra-short hypnotic propofol.  The problem is that anesthesiologists want hypnotics to wear off fast, but are less interested in narcotics that wear off and don’t provide post-operative analgesia.  I see remi as a solid option for neuroanesthesia, but its usefulness in routine anesthetic cases is minimal.

#3.  Desflurane.  Desflurane suffers from not being as versatile a drug as sevoflurane.  It’s useless for mask inductions, causes airway irritation in spontaneously breathing patients, and causes tachycardia in high doses.  Stick with sevo.

#2.  The BIS Monitor.  Data never confirmed the value of this device to anesthesiologists, and it never gained popularity as a standard for avoiding awareness during surgery.

#1.  The electronic medical record.  Every facet of American society uses computers to manage information, so it was inevitable that medicine would follow. Federal law is mandating the adoption of EMRs.  But while you are clicking and clicking through hundreds of Epic EMR screens at Stanford just to finish one case, anesthesiologists in surgery centers just miles away are still documenting their medical records in minimal time by filling out 2 or 3 sheets of paper per case. Today’s EMRs are primitive renditions of what will follow. I’ve heard the price tag for the current EMR at our medical center approached $500 million.  How long will it take to recoup that magnitude of investment?  I know the EMR has never assisted me in caring for a patient’s Airway, Breathing, or Circulation in an acute care setting.  Managing difficulties with the EMR can easily distract from clinical care.  Is there any data that demonstrates an EMR’s value to anesthesiologists or perioperative physicians?

Your Top Ten List and Overrated Five List will differ from mine.  Feel free to communicate your opinions to me at rjnov@yahoo.com.

As we read this, hundreds of companies and individuals are working on new products.  Future Top Ten lists will boast a fresh generation of inventions to aid us in taking better care of our patients.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

AWARENESS UNDER GENERAL ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

How common is awareness under general anesthesia? In 2007, Hollywood released the movie Awake, in which the protagonist, played by Hayden Christensen (Anakin Skywalker from Star Wars) is awake during the general anesthetic for his heart surgery, and overhears the surgeon’s plan to murder him.  Producer Joana Vicente told Variety that Awake “will do to surgery what Jaws did to swimming in the ocean.” The movie trailer airs a statement that states, “Every year 21 million people are put under anesthesia. One out of 700 remain awake.”

 

            Awake was not much of a commercial success, with a total box office of only $32 million, but the film did publicize the issue of intraoperative awareness under general anesthesia, a topic worth reviewing.

If you undergo general anesthesia, do you have a 1 in 700 chance of being awake?  If you are a healthy patient undergoing routine surgery, the answer is no.  If you are sick and you are having a high-risk procedure, the answer is yes.

A key publication on this topic was the Sebel study. The Sebel study was a prospective, nonrandomized study, conducted on 20,000 patients at seven academic medical centers in the United States. Patients were scheduled for surgery under general anesthesia, and then interviewed in the postoperative recovery room and at least one week after anesthesia.

A total of 25 awareness cases were identified, a 0.13% incidence, which approximates the 1 in 700 incidence quoted in the Awake movie trailer. Awareness was associated with increased American Society of Anesthesiologists (ASA) physical status, i.e. sicker patients.  Assuming that approximately 20 million anesthetics are administered in the United States annually, the authors postulated that approximately 26,000 cases of intraoperative awareness occur each year.

Healthy patients are at minimal risk for intraoperative awareness. Patients at higher risk for intraoperative awareness include:

1. Patients with a history of substance abuse or chronic pain.

2. American Society of Anesthesiologists (ASA) Class 4 patients (patients with a severe systemic disease that is a constant threat to their life) and others with limited cardiovascular reserve.

3. Patients with previous history of intraoperative awareness.

4. The use of neuromuscular paralyzing drugs during the anesthetic.

5. Certain surgical procedures are higher risk for intraoperative awareness.  These procedures include cardiac surgery, Cesarean sections under general anesthesia, trauma or emergency cases.

The causes of intraoperative awareness include:

1. Intentionally light anesthesia administered to patients who are hypotensive or hypovolemic, or those with limited cardiovascuar reserve.

2. Intentionally light anesthesia administered to obstetric patients, in the attempt to avoid neonatal respiratory depression.

3. Efforts to expedite operating room turnover and minimize recovery room times.

4. Some patients have higher anesthetic requirements, due to chronic alcohol or drugs.

5. Equipment and provider errors:

Empty vaporizers with no potent anesthetic liquid inside

Syringe pump malfunction

Syringe swap, or mislabeling of a syringe

6. Difficult intubation, in which the anesthesia provider forgets to give supplementary IV doses of hypnotics.

7. Choice of anesthetic.  In multiple trials, the use of neuromuscular blockers is associated with awareness.

8. Some studies show a higher incidence of awareness with total intravenous anesthesia or nitrous-narcotic techniques.

What are the legal implications of intraoperative awareness?

The Domino study reported that cases of awareness represented 1.9% of malpractice claims against anesthesiologists. Deficiencies in labeling syringes and vigilance were common causes for awake paralysis. The patients’ vital signs were not classic clues:  hypertension was present in only 15% of recall cases, and tachycardia was present in only 7%.

What are the consequences of intraoperative awareness?

The following consequences have been reported from the Samuelsson study:

1. Recollections of auditory perceptions and a sensation of paralysis.  Anxiety, helplessness, and panic.  Pain is described less frequently.

2. Up to 70% of patients develop Post-Traumatic Stress Disorder (PTSD), i.e. late psychological symptoms of anxiety, panic attacks, chronic fear, nightmares, flashbacks, insomnia, depression, or preoccupation with death.

What about BIS Monitoring?

Bispectral Index monitoring, or BIS monitoring, uses a computerized algorithm to convert a single channel of frontal EEG into an index score of hypnotic level, ranging from 100 (awake) to 0 (isoelectric EEG).

The BIS monitor was FDA-approved in 1996.  A BIS level of 40 – 60 reflects a low probability of consciousness during general anesthesia.  BIS measures the hypnotic components of anesthesia (e.g. effects of propofol and volatile agents), and is relatively insensitive to analgesic components (e.g. narcotics) of the anesthetic.  The BIS monitor is neither 100% sensitive nor 100% specific.

The B-Aware Trial was a randomized, double-blind, multi-center controlled trial using BIS in 2500 patients at high risk for awareness (cardiac surgery, C-sections, impaired cardiovascular status, trauma, chronic narcotic users, heavy alcohol users).   Explicit recall occurred in 0.16% (2 patients) when BIS used, vs. 0.89% (11 patients) when no BIS was used. This was a significant finding (p=0.022).

A significant paper published in the world’s leading anesthesia journal concluded that the predictive positive and negative values of BIS monitoring were low due to the infrequent occurrence of intraoperative awareness.  In addition, the cost of BIS monitoring all patients undergoing general anesthesia is high. Because there have been reported cases of awareness despite BIS monitoring, the authors concluded that the effectiveness of the monitor is less than 100%. The authors concluded that the contention that BIS Index monitoring reduces the risk of awareness is unproven, and the cost of using it for this indication is currently unknown.

In 2005, the American Society of Anesthesiologists published its Practice Advisory for Intraoperative Awareness.  The anesthesia practitioner is advised to do the following:

1. Review patient medical records for potential risk factors. (Substance use or abuse, previous history of intraoperative awareness, history of difficult intubation, chronic pain patients using high doses of opioids, ASA physical status IV or V, limited hemodynamic reserve).

2. Determine other potential risk factors. (Cardiac surgery, C-section, trauma surgery, emergency surgery, reduced anesthetic doses in the presence of paralysis, planned use of muscle relaxants during the maintenance phase of general anesthesia, planned use of nitrous oxide-opioid anesthesia).

3. Patients considered to be at increased risk of intraoperative awareness should be informed of the possibility when circumstances permit.

4. Preinduction checklist protocol for anesthesia machines and equipment to assure that the desired anesthetic drugs and doses will be delivered.  Verify IV access, infusion pumps, and their connections.

5. The decision to administer a benzodiazepine prophylactically should be made on a case-by-case basis for selected patients.

6. Intraoperative monitoring of depth of anesthesia, for the purpose of minimizing the occurrence of awareness, should rely on multiple modalities, including clinical techniques (e.g., ECG, blood pressure, HR, end-tidal anesthetic gas analyzer, and capnography)…. Brain function monitoring is not routinely indicated for patients undergoing general anesthesia, either to reduce the frequency of intraoperative awareness or to monitor depth of anesthesia…. The decision to use a brain function monitor should be made on a case-by-case basis by the individual practitioner of selected patients (e.g. light anesthesia).

Published suggestions for the prevention of awareness include:

1. Premedication with an amnestic agent.

2. Giving adequate doses of induction agents.

3. Avoiding muscle paralysis unless totally necessary.

4. Supplementing nitrous/narcotic anesthesia with 0.6% MAC of a volatile agent.

5. Administering 0.8 – 1.0 MAC when volatile agent is used alone.

6. Confirming delivery of anesthetic agents to the patient

In 2006, the California Society of Anesthesiologists released the following Statement on Intraoperative Awareness:

“ . . . Anesthesiologists are trained to minimize the occurrence of awareness under general anesthesia.  It is recognized that on rare occasions, usually associated with a patient’s critical condition, this may be unavoidable.  Furthermore, it is commonplace in contemporary anesthetic practice to employ a variety of techniques using regional nerve blocks and varying degrees of sedation.  Patients often do not make an distinction between these techniques and general anesthesia, yet awareness is often expected and anticipated with the former.  This may have led to a misunderstanding of ‘awareness’ during surgery by many patients.”

In 2011, the New England Journal of Medicine, arguably the most prestigious medical journal in the world, published a study looking at using the BIS monitor for the prevention of intraoperative awareness. Prevention of intraoperative awareness in a high-risk surgical population). The researchers tested the hypothesis that a protocol incorporating the electroencephalogram-derived bispectral index (BIS) was superior to a protocol incorporating standard monitoring of end-tidal anesthetic-agent concentration (ETAC) for the prevention of awareness. They randomly assigned 6041 patients at high risk for awareness to either BIS-guided anesthesia or ETAC-guided anesthesia. Results showed that a total of 7 of 2861 patients (0.24%) in the BIS group, as compared with 2 of 2852 (0.07%) in the ETAC group, had definite intraoperative awareness.  The superiority of the BIS protocol was not established.  Contrary to expectations, fewer patients in the ETAC group than in the BIS group experienced awareness.

To conclude, intraoperative awareness is a real but rare occurrence, with certain patient populations at higher risk. The BIS monitor is no panacea. Specific pharmacologic strategies can minimize the incidence of awareness. If you are a healthy patient undergoing a routine procedure, intraoperative awareness should be very rare.

The best defense against intraoperative awareness will always be the presence of a well-trained and vigilant physician anesthesiologist.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ON PEDIATRIC ANESTHESIA: THE METRONOME

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

The Russell Museum of Medical History and Innovation at Massachusetts General Hospital presented an audio recording of The Metronome at Perspectives on Anesthesia, at Boston City Hall Plaza as part of HUBweek, Boston’s festival of innovation, in October 2017.

THE METRONOME, a poem by Richard Novak, M.D.     (as published in ANESTHESIOLOGY, Mind to Mind Section 2012: 117:417).

metronome medical

To Jacob’s mother I say,

“The risk of anything serious going wrong…”

She shakes her head, a metronome ticking without sound.

“with Jacob’s heart, lungs, or brain…”

Her lips pucker, proving me wrong.

“isn’t zero, but it’s very, very close to zero…”

Her eyes dart past me, to a future of ice cream and laughter.

“but I’ll be right there with him every second.”

The metronome stops, replaced by a single nod of assent.

She hands her only son to me.

An hour later, she stands alone,

Pacing like a Palace guard.

Her pupils wild.  Lower lip dancing.

The surgery is over.

Her eyebrows ascend in a hopeful plea.

I touch her hand.  Five icicles.

I say, “Everything went perfectly.  You can see Jacob now.”

The storm lifts.  She is ten years younger.

Her joy contagious as a smile.

The metronome beat true.

 

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ROBOT ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Will robots replace anesthesiologists? I am the Medical Director of a surgery center in California that does 5,000 gastroenterology endoscopies per year.  In 2013 a national marketing firm contacted me to seek my opinion regarding an automated device to infuse propofol. The device was envisioned as a tool for gastroenterologist/nursing teams to use to administer propofol safely for endoscopy procedures on ASA class I – II patients.

The marketing firm could not reveal the name of the device, but I believe it was probably the SEDASYS®-Computer-Assisted Personalized Sedation System, developed by the Ethicon Endo-Surgery, Inc., a division of Johnson and Johnson.  The SEDASYS System is a computer-assisted personalized sedation system integrating propofol delivery with patient monitoring. The system incorporates standard ASA monitors, including end-tidal CO2, into an automated propofol infusion device.

The SEDASYS system is marketed as a device to provide conscious sedation.  It will not provide deep sedation or general anesthesia.

Based on pharmacokinetic algorithms, the SEDASYS infuses an initial dose of propofol (typically 30- 50 mg in young patients, or a smaller dose in older patients) over 3 minutes, and then begins a maintenance infusion of propofol at a pre-programmed rate (usually 50 mcg/kg/min).  If the monitors detect signs of over- sedation, e.g. falling oxygen saturation, depressed respiratory rate, or a failure of the end-tidal CO2 curve, the propofol infusion is stopped automatically.  In addition, the machine talks to the patient, and at intervals asks the patient to squeeze a hand-held gripper device.  If the patient is non-responsive and does not squeeze, the propofol infusion is automatically stopped.

As of February, 2013, the SEDASYS system was not FDA approved. On May 3, 2013, Ethicon Endo-Surgery, Inc. announced that the Food and Drug Administration (FDA) granted Premarket Approval for the SEDASYS® system, a computer-assisted personalized sedation system.  SEDASYS® is indicated “for the intravenous administration of 1 percent (10 milligrams/milliliters) propofol injectable emulsion for the initiation and maintenance of minimal to moderate sedation, as identified by the American Society of Anesthesiologists Continuum of Depth of Sedation, in adult patients (American Society of Anesthesiologists physical status I or II) undergoing colonoscopy and esophagoduodenoscopy procedures.”  News reports indicate that SEDASYS® is expected to be introduced on a limited basis beginning in 2014.

Steve Shaffer, M.D., Ph.D., Stanford Adjunct Professor, editor-in-chief of Anesthesia & Analgesia, and Professor of Anesthesiology at Columbia University, worked with Ethicon since 2003 on the design, development and testing of the SEDASYS System both as an investigator and as chair of the company’s anesthesia advisory panel.

Dr. Shafer has been quoted as saying, “The SEDASYS provides an opportunity for anesthesiologists to set up ultra-high throughput gastrointestinal endoscopy services, improve patient safety, patient satisfaction, endoscopist satisfaction and reduce the cost per procedure.” (Gastroenterology and Endoscopy News, November 2010, 61:11)

In Ethicon’s pivotal study supporting SEDASYS, 1,000 ASA class I to III adults had routine colonoscopy or esophagogastroduodenoscopy, and were randomized to either sedation with the SEDASYS System (SED) or sedation with each site’s current standard of care (CSC) i.e. benzodiazepine/opioid combination.  The reference for this study is Gastrointest Endosc. 2011 Apr;73(4):765-72. Computer-assisted personalized sedation for upper endoscopy and colonoscopy: a comparative, multicenter randomized study. Pambianco DJ, Vargo JJ, Pruitt RE, Hardi R, Martin JF.

In this study, 496 patients were randomized to SED and 504 were randomized to CSC. The area under the curve of oxygen desaturation was significantly lower for SED (23.6 s·%) than for CSC (88.0 s·%; P = .028), providing evidence that SEDASYS provided less over-sedation than current standard of care with benzodiazepine/opioid.  SEDASYS patients were significantly more satisfied than CSC patients (P = .007). Clinician satisfaction was greater with SED than with CSC (P < .001). SED patients recovered faster than CSC patients (P < .001). The incidence of adverse events was 5.8% in the SED group and 8.7% in the CSC group.

Donald E. Martin, MD, associate dean for administration at Pennsylvania State Hershey College of Medicine and chair of the Section on Clinical Care at the American Society of Anesthesiologists (ASA), expressed concerns about the safety of the device.  Dr. Martin (Gastroenterology and Endoscopy News, November 2010, 61:11) was quoted as saying, “SEDASYS is requested to provide minimal to moderate sedation and yet the device is designed to administer propofol in doses known to produce general anesthesia.”

Dr. Martin added that studies to date have shown that some patients who had  propofol administered by SEDASYS experienced unconsciousness or respiratory depression (Digestion 2010;82:127-129, Maurer WG, Philip BK.). In the largest prospective, randomized trial evaluating the safety of the device compared with the current standard of care, five patients (1%) experienced general anesthesia with SEDASYS. The ASA also voiced concern that SEDASYS could be used in conditions that do not comply with the black box warning in the propofol label, namely that propofol “should be administered only by persons trained in the administration of general anesthesia and not involved in the conduct of the surgical/diagnostic procedure.”

Anesthetists, emergency room doctors, and trauma helicopter nurses are trained in the administration of general anesthesia. Gastroenterologists and endoscopy nurses are almost never experts in airway management.  For this reason, propofol anesthetics for endoscopy are currently the domain of anesthesiologists and nurse anesthetists.

In my phone conversation regarding the automated propofol-infusion system, I told the marketing company’s representative that in my opinion a machine that infused propofol without an airway expert present could be unsafe.  The marketing consultant responded that in parts of the Northeastern United States, including New York City, many GI endoscopies are done with the assistance of an anesthesia provider administering propofol.  If SEDASYS were to be approved, the devices could replace anesthesiologists.

In the current fee-for-service model of anesthesia billing, anesthesiologists and CRNA’s bill insurance companies or Medicare for their professional time.  If machines replace anesthesiologists and CRNA’s, the anesthesia team cannot send a fee-for-service bill for professional time.  The marketing consultant foresaw that with the advent of ObamaCare and Accountable Care Organizations, if a health care organization is paid a global fee to take care of a population rather than being paid a fee-for-service sum, then perhaps the cheapest way to administer propofol sedation for GI endoscopy would be to replace anesthesia providers with SEDASYS machines.

A planned strategy is to have gastroenterologists complete an educational course that would educate them on several issues.  Key elements of the course would be: 1) anesthesiologists are required if deep sedation is required, 2) SEDASYS is not appropriate if the patient is ASA 3 or 4 or has severe medical problems, 3) SEDASYS is not appropriate if the patient has risk factors such as morbid obesity, difficult airway, or sleep apnea, and 4) airway skills are to be taught in the simulation portion of the training.  Specific skills are chin life, jaw thrust, oral airway use, nasal airway use, and bag-mask ventilation.  Endotracheal intubation and LMA insertion are not to be part of the class.  If the endoscopist cannot complete the procedure with moderate sedation, the procedure is to be cancelled and rescheduled with an anesthesia provider giving deep IV sedation.

Some anesthesiologists are concerned about being pushed out of their jobs by nurse anesthetists.  It may be that some anesthesiologists will be pushed out of their jobs by machines.

I’ve been told that the marketing plan for SEDASYS is for the manufacturer to give the machine to a busy medical facility, and to only charge for the disposable items needed for each case. The disposable items would cost $50 per case. In our surgery center, where we do 5,000 cases per year, this would be an added cost of $25,000 per year. There would be no significant savings, because we do not use anesthesiologists for most gastroenterology sedation.

There have been other forays into robotic anesthesia, including:

1) The Kepler Intubation System (KIS) intubating robot, designed to utilized video laryngoscopy and a robotic arm to place an endotracheal tube (Curr Opin Anaesthesiol. 2012 Oct 25. Robotic anesthesia: not the realm of science fiction any more. Hemmerling TM, Terrasini N. Departments of Anesthesia, McGill University),

2) The McSleepy intravenous sedation machine, designed to administer propofol, narcotic, and muscle relaxant to patients to control hypnosis, analgesia, and muscle relaxation. (Curr Opin Anaesthesiol. 2012 Dec;25(6):736-42. Robotic anesthesia: not the realm of science fiction any more. Hemmerling TM, Terrasini N.)

3) The use of the DaVinci surgical robot to perform regional anesthetic blockade. (Anesth Analg. 2010 Sep;111(3):813-6. Epub 2010 Jun 25. Technical communication: robot-assisted regional anesthesia: a simulated demonstration. Tighe PJ, Badiyan SJ, Luria I, Boezaart AP, Parekattil S.).

4) The use of the Magellan robot to place peripheral nerve blocks (Anesthesiology News, 2012, 38:8)

Each of these applications may someday lead to the performance of anesthesia by an anesthesiologist at geographical distance from the patient.  In an era where 17% of the Gross National Product of the United States is already being spent on health care, one can question the logic of building expensive technology to perform routine tasks like I.V. sedation, endotracheal intubation, or regional block placement.  The new inventions are futuristic and interesting, but a DaVinci surgical robot costs $1.8 million, and who knows what any of these anesthesia robots would sell for?  The devices seem more inflationary than helpful at this point.

Will robots replace anesthesiologists?  Inventors are edging in that direction.  I would watch the peer-reviewed anesthesia journals for data that validates the utility and safety of any of these futuristic advances.

It will be a long time before anyone invents a machine or a robot that can perform mask ventilation.  SEDASYS is designed for conscious sedation, not deep sedation or general anesthesia.  Anyone or anything that administers general anesthesia without expertise in mask ventilation and all facets of airway management is courting disaster.

NOTE: In March of 2016, Johnson & Johnson announced that they were going to stop selling the SEDASYS system due to slow sales and company-wide cost cutting. The concept of Robot Anesthesia will have to wait for some future development, if ever, if it is to ever become an important part of the marketplace.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

ANESTHESIOLOGISTS KNOW WHO THE BEST SURGEONS ARE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You’re a patient.  Is your surgeon a wonderful doctor, superb under pressure, or is he or she a self-absorbed nervous individual who can’t operate their way out of a paper bag? You don’t know.  Your anesthesiologist does. Anesthesiologists watch surgeons for a living.

 

Yes, we happen to give anesthetics to patients at the same time, but we anesthesiologists are always watching surgeons work.  If you want to know who the best surgeons are, ask an anesthesiologist, an operating room nurse, or an operating room scrub tech.  We see the surgeons on the front line, and we see their strengths and weaknesses.

Most surgeons spend the majority of their professional time in clinics, meeting patients in preoperative surgical consultations or in postoperative surgical follow up.  Most surgeons operate 1 – 2 days per week.  In contrast, most anesthesiologists have no clinic, and work 90-100% of their time in operating rooms.  In a typical week, an anesthesiologist may do 20-25 anesthetics with 10 – 15 different surgeons.  In a typical year, a busy anesthesiologist may work with 100 – 150 different surgeons.

In an operating room, the anesthesiologist stands 2 to 6 feet away from the surgeon, and has a clear view of the surgeon’s technique and an excellent opportunity to establish rapport with the surgical team.  Anesthesiologists and surgeons know each other very well.

As a patient, you may form your impressions of your surgeon based on encounters in the office or in your hospital room.  Favorable surgeons cast an air of confidence, intelligence, leadership and experience.  You may trust the look in their eye, the tenor of their voice, the firmness of their handshake.  You may like or dislike their necktie, their suit, their haircut or their bedside manner.

You have no idea how competent they are once they don sterile gown and gloves in the operating room, but anesthesiologists know.

The surgeon with the firm handshake may have hands that genuinely shake when they are in surgery.  The slick-appearing surgeon may operate in low gear, their fingers moving as slowly as a twig winding downstream in a muddy river.  In the operating room, the surgeon may be a benevolent professional or a moody tyrant who screams and swears at nurses and techs.  The surgeon with the killer smile may cling to outdated techniques or equipment.  Alternately, the surgeon may be world-class technician who knows his or her anatomy cold, handles tissue with exacting precision, and treats everyone on the surgical team like gold.

What can you, the patient, do about accessing information about your surgeon?

You can Google the surgeon’s name to seek information on their professional background, as well as any Yelp comments on other patient’s experiences with that doctor.  If you know anyone who works at that hospital or surgery center, it’s worth your while to query them and get their insider’s impression about the choice of surgeons that work there.  If you can talk to an anesthesiologist, operating room nurse, or operating scrub tech, they will be your best source of information as to which surgeon to consult.

Good luck.  All surgeons are different.  And remember: tonight when you are watching television, thousands of anesthesiologists are watching thousands of surgeons all over the United States.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

BLINK: WHEN AN EXPERIENCED ANESTHESIOLOGIST MEETS THEIR PATIENT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

I urge you to use Malcolm Gladwell’s book Blink to become a better anesthesiologist. Clinical Case for Discussion:  As an anesthesia resident, how does your preoperative interview with a patient differ from that of an anesthesiologist with 20 years of experience?

Discussion:  In my second year of residency, I had the pleasure of working with Stanford anesthesia attending C. Philip Larson, M.D., a Past-Chairman of the Department and a Past Editor-In-Chief of our specialty’s leading publication, Anesthesiology.  My rotation was neuroanesthesia, and each evening prior to surgery Dr. Larson and I would make rounds on the wards to meet the surgical patients for the next day. (In the 1980’s almost all patients were hospitalized one night prior to surgery.)

I was surprised and taken aback by the experience, and I never forgot what those patient encounters were like.  Although Dr. Larson always let me do the anesthesia procedures in the operating room, he presented himself at the pre-op interview as the primary physician in charge of the anesthesia care.  When Dr. Larson entered a patient’s room, he sat down on the bed and played a role that was part Santa Claus and part all-knowing, all-loving deity.

Dr. Larson greeted the patient kindly, introduced both of us, and then launched into a comfortable dialogue about any variety of topics, none of them remotely related to the surgery or the anesthesia.  I kept waiting to hear him say, “can you walk up two flights of stairs?” or “do you ever have chest pain?”

These questions were never asked or answered at the bedside.  They’d already been asked and answered and were present in the patient’s chart.  Dr. Larson valued the preoperative interview as a time to connect with his patient, and to establish rapport and comfort between them.  After perhaps ten minutes of such banter, he would switch gears and state that we would be doing the anesthesia care the next day, that we would keep him or her asleep and safe, and give a modicum of detail about what to expect.  He did not perform any detailed physical exam.

Despite the fact that Dr. Larson was a renowned expert witness in the specialty of anesthesia, he did not recite a litany of informed consent risks.  A particular pet peeve of his was the suggestion that an informed consent discussion should include telling a patient of the risk of death.  His opinion on this issue always was, “If you tell the patient that they can die, and then you do something negligent and they do die, your informed consent protects you not one bit from the fact that you practiced below the standard of care.”

In his best-selling book, Blink, Malcolm Gladwell writes that the risk of a doctor ever being sued has very little to do with how many errors they make.  He explains that there’s an overwhelming number of patients who’ve been harmed by shoddy medical care yet never have filed a malpractice claim.  What was the common denominator of the people who do choose to sue?  According to Gladwell, they feel they were treated badly by their doctor.  That even when injured by clear negligence, most people won’t sue a doctor they like.

Dr. Bruce Halperin, a member of the Associated Anesthesiologists Medical Group in Palo Alto and a member of the Stanford clinical faculty, was renowned for his bedside manner.  In the preoperative area, I often heard Dr. Halperin telling joke after joke, and the intermittent bursts of laughter from his patients sometimes made it difficult for me to even hear the conversation with my own patient.  One of our busiest cosmetic surgeons often had Dr. Halperin telephone patients early in the consultative process to discuss anesthesia issues.  A patient later told this surgeon, “I’m not sure if I want to have the plastic surgery, but I sure do want to have the anesthesia!”

As an anesthesiologist, you have 10-15 minutes to complete your medical interview with your patient, and to get them to respect you, to have confidence in you, and yes . . . to like you.

As a resident-in-training, your preoperative interviews may be thick with questions about active medical problems, particularly cardiac, pulmonary, and neurologic questions.  You may perform a rigorous and detailed exam of the airway, lungs, and heart.  And you likely spend ample time explaining the anesthetic technique, alternatives, and risks.

You are trained to do all these things.  Twenty years from now, your interview may not be as conversational and sparse on medical questions as Dr. Larson’s was, but your technique will evolve.

Most pertinent questions have already been asked and answered in the patient’s medical records.  Tailor your interview as appropriate for the patient’s medical co-morbidities and the invasiveness of the surgery.  For a 68-year-old with diabetes and hypertension who is about to have a cholecystectomy, it will be relevant to ask them whether they can walk up two flights of stairs and whether they ever have chest pain.  For a 24-year-old with a negative history who is about to have a knee arthroscopy, a simple “Are you in excellent health?” may suffice.

What about the physical exam?  For experienced anesthesiologists, the assessment of whether the airway may be difficult can usually accomplished in seconds, with examination of the mouth opening and the neck extension.  You will listen to the lungs and the heart, but in the absence of symptoms, it is rare to uncover any information with your stethoscope that changes your anesthetic.

Patients are nervous before surgery.  They welcome both your expertise in medicine and your skills in making them relax.  Experienced anesthesiologists can explain the anesthetic plan and risks in a fashion that will gain the patient’s trust and confidence.

The only procedure most of us do while the patient is awake and unsedated is the insertion of an I.V. catheter.  This is a time when you have the luxury of talking about any topic that is calming to the patient.  Conversations about the patient’s hobbies, work, hometown, or family are all pleasant diversions to enter the realm of Dr. C. Philip Larson, and connect with the patient without talking any further about anesthesia.

In my previous career, I was an internal medicine doctor.  In medicine clinic there are dozens of questions to be asked and answered:  “Where is the pain?  How long has it been there?  What makes it better?  What makes it worse?  Does it move anywhere? . . .”  With a waiting room full of patients, there was little time to ask each patient where they had dinner last night or where their child was going to college.

In contrast, anesthesia practice can provide a wonderful opportunity to relax your patient with well-spun conversation.  My advice to you is to be as much like C. Philip Larson, M.D. as your practice allows.  Try not to be a walking, talking EPIC-checklist when it’s time to connect with your patients.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

8-HOUR OUTPATIENT PEDIATRIC ANESTHETICS FOR COMBINED ATRESIA-MICROTIA (CAM) EAR RECONSTRUCTION

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Our anesthesia group routinely performs 8-hour outpatient pediatric anesthetics for combined atresia-microtia ear reconstruction surgeries. As of 2021, we are the only surgical/anesthetic practice in the world performing this surgery in high volume, and we are proud to have restored hearing and a cosmetic ear to hundreds of children from North America, Asia, Europe, Australia, and South America.

 SUCCESSFUL EIGHT-HOUR OUTPATIENT PEDIATRIC GENERAL ANESTHETICS FOR EAR COMBINED ATRESIA-MICROTIA RECONSTRUCTION

Richard J. Novak, M.D.

Adjunct Clinical Professor of Anesthesia, Stanford University School of Medicine

Joseph Roberson, M.D.

California Ear Institute, Palo Alto, California

John Reinisch, M.D.

Cedar Sinai Hospital, Los Angeles, California and Children’s Hospital  Los Angeles

Introduction

The surgical team of Joseph Roberson, M.D. and John Reinisch, M.D. regularly performs Combined Atresia-Microtia (CAM) ear reconstruction surgery on children born without normal ear anatomy.  The total anesthetic time for these surgeries regularly totals 7-8 hours.  These children, who are generally in good health other than their undeveloped ear, are observed in the recovery room for 1 – 1 ½ hours, and are then discharged home with their parents.  As of 2021, the total number of CAM reconstructions have totaled over 350 cases.  Surgeries are performed at the California Ear Institute in East Palo Alto, CA, and Waverley Surgery Center in Palo Alto, CA.  The text below describes a the anesthetic care for a typical CAM reconstruction.

Case Report

A 5-year-old male was with congenital atresia and microtia of the left ear was scheduled for combined atresia repair and microtia reconstruction under general anesthesia. The estimated duration of the surgery was 9 hours, and the case was scheduled as outpatient surgery with no overnight stay planned.  The child was healthy.  A previous general anesthetic for adenoidectomy at the age of 2 was unremarkable.  The child weighed 17 kg, and the physical exam was normal except for the deformed ear.  One anesthesiologist administered the anesthetic care.

Premedication was oral midazolam 0.75 mg/kg.  The well-sedated child was brought into the operating room 20 minutes later.  Standard non-invasive monitors were applied, and a mask induction with 8% inspired sevoflurane was carried out.  A 20-gauge IV was inserted into the left arm, and the trachea was intubated.   Maintenance anesthesia was sevoflurane 1 – 1.5% end-tidal, nitrous oxide 50%, propofol infusion at 25 – 50 mcg/kg/min, and incremental doses of fentanyl as needed. Prophylactic antiemetics included ondansetron 2 mg, dexamethasone 4 mg,  and metoclopramide 4 mg.

The operating room table was turned 180 degrees, the circulating nurse inserted a Foley catheter, and a Bair Hugger warming blanket was applied to the patient’s torso.

The surgical procedure was carried out by the otologist and plastic surgeon as previously described (1).   Local anesthesia of bupivicaine 0.5% with 1/200,000 epinephrine was injected into the scalp and ear by the surgeons as indicated.  The surgical procedure was  combined atresia repair of the middle ear, reconstruction of the external auditory canal, and Medpor microtia reconstruction of an external ear.  Total surgical time was 8 ½ hours.

A total of 160 mcg of fentanyl was administered.  Total fluids for the case were 1000 ml of Lactated Ringers intravenously, and the estimated blood loss was 20 ml.  Vital signs were stable throughout, and there was minimal physiologic perturbation. Esophageal temperature was maintained as normal.

In addition to two surgical attendings and one anesthesiologist, staffing included two R.N.’s and one scrub tech.  The surgery concluded and the surgical dressing was applied 7 ½ hours after the induction of general anesthesia.  The Foley catheter was removed.  The anesthetics were discontinued, and the trachea was extubated when the patient opened his eyes.  Post-operative pain was treated by incremental 5 mcg doses of intravenous fentanyl until the patient was comfortable and calm, and the patient was transferred to the recovery room.  The parents were allowed into the recovery room 15 minutes after extubation.  The patient was discharged from the facility 70 minutes after extubation.  At the time of discharge, the patient was alert, pain-free, nausea-free, and tolerating oral fluids, and his Aldrete Score was 9.

Discussion

This combined atresia and microtia repair, requiring a total anesthetic time approaching ten hours, is a new procedure being carried out by our surgical team.   The atresia surgery involves a post-auricular incision, drilling through the mastoid to access the middle ear, and ossiculoplasty, tympanoplasty, creation and skin grafting of an external auditory canal as necessary to reconstruct the atresia.  The microtia repair involves the implantation of the Medpor synthetic auricular prosthesis, and covering the prosthesis with skin grafts obtained from the patient’s abdomen. The surgical-anesthetic team to date has successfully performed the combined procedure on 55 patients, 90% of who were of the ages between 2 and 5 years old.  All patients are ASA I – II, without significant medical comorbidity.  Every procedure to date has been performed as an outpatient.  Patients are discharged when their post-anesthesia care unit Aldrete Score reaches 8/10, and the family and physicians agree that the patient was stable to leave the facility. The discharge times vary between 70 – 100 minutes post-extubation for the 55 patients in our series, with a mean time of 91 minutes.  Post-operative pain is well-controlled by the bupivicaine injected into the operative sites, and because of the minimal post-operative pain, it has been possible to discharge the patients home despite the very long duration of their endotracheal anesthetic.

None of the combined surgeries were performed in a hospital.  The first 20 patients were operated on at a freestanding surgery center, 2 miles distant from the nearest hospital.  The majority of the following 330 patients had their surgery in an operating room in the surgeon’s California Ear Institute office. To date there have been no complications from the anesthetic management, and no admissions to a hospital or an emergency room following the combined procedures.

This case, one of 350+ in a series of similar cases, is noteworthy in that it markedly expands the boundaries of what is possible to safely accomplish with pediatric outpatient general anesthesia performed in a freestanding surgery center or in a surgeon’s office.

Outpatient pediatric surgery is increasingly common.  In 2006, an estimated 2.3 million ambulatory anesthetics were provided in the United States to children younger than 15 years.  Only 14,200 of these 2.3 million pediatric ambulatory anesthetics patients were admitted to the hospital postoperatively, a rate of 6 per 1000 ambulatory anesthesia episodes.  In 1996, 26 per 1000 children under the age of 15 experienced ambulatory pediatric surgery, while in 2006 that statistic increased to 38 per 1000 children.

Parents are often more satisfied with outpatient surgery over post-operative hospitalization. (3) The advantages of outpatient surgery are significant: reduced costs, lower rate of infection, avoidance of hospitalization with the inherent psychological stress, and timely return of the patients to their familiar home environment. (4)

This case report is evidence that pediatric patients can be discharged safely following a prolonged outpatient anesthetic.  Our current experience with such CAM reconstructions, exceeding 350 such cases without serious complication or adverse outcome, demonstrates that this combined procedure can be successfully carried out as an outpatient.  The duration of an anesthetic is not in itself an indication for overnight hospitalization post-operatively.  As well, selected pediatric ambulatory anesthetics of long duration can be safely performed in well-staffed operating rooms in a surgeon’s office, in addition to using a freestanding surgery center..

References:

(1)     Roberson JB Jr, Reinisch J, Colen TY, Lewin S. Atresia repair before microtia reconstruction: comparison of early with standard surgical timing.  Otol Neurotol. 2009 Sep;30(6):771-6.

(2)     Rabbitts JA, Groenewald CB, Moriarty JP, Flick R. Epidemiology of ambulatory anesthesia for children in the United States: 2006 and 1996.  Anesth Analg. 2010 Oct;111(4):1011-5. Epub 2010 Aug 27.

(3)     Erden IA, Pamuk AG, Ocal T, Aypar U. Parental satisfaction with pediatric day case surgery.Middle East J Anesthesiol. 2006 Oct;18(6):1113-21.

(4)     Mehler J.  Analgesia in pediatric outpatient surgery. Schmerz. 2006 Feb;20(1):10-6.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

IS ANESTHESIA 99% BOREDOM AND 1% PANIC?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

When you have surgery, do you care who administers your anesthetic? You should. An oft-repeated medical adage states:“anesthesia is 99% boredom and 1% panic.

36164768-a-depiction-of-the-pearly-gates-of-heaven-open-with-the-bright-side-of-heaven-contrasting-with-the-d

GOALIES AT THE PEARLY GATES

As an anesthesiologist who’s delivered over 50,000 hours of operating room care over 25 years, I can attest that the adage is true.  Ninety-nine percent of the time, the anesthesia provider’s job requires vigilance during a patient’s stable progression of metronome heartbeats and regular breathing, but 1% of the time requires clear thinking and prompt action during moments of sheer panic. These stress-filled episodes of panic are unknown to the general public, yet represent ordeals that every anesthesia provider must rise above to protect their patients.

Webster’s Dictionary defines panic as “ an overwhelming feeling of fear and anxiety.”  If you were to observe an anesthesiologist at work, you would see little or no evidence of overwhelming fear or anxiety.  Even under dire emergencies, most anesthesia providers remain outwardly composed and efficient while they make the necessary diagnoses and apply the appropriate treatments.  But anesthesiologists are human–no human can watch another human trying to die without feeling intense emotions.  These emotions are fear and anxiety.

No field of medicine provides the stunning variety of anesthesia.  Patients vary from neonates to centenarians, from laboring women to motor vehicle accident victims at three a.m., while surgeries vary from repair of a broken finger to the transplantation of a heart or a liver.  Technologic advances have led surgeons to operate on older and sicker patients, and to attempt more complex surgeries than decades ago.

The operating room is an intense environment.  Operating room medicine is pressure-packed for four reasons:

  1. Anesthetic drugs change the physiology of patients in profound ways.
  2. Surgeons do dangerous things to patients.
  3. Surgical patients have diseases.  Some of these diseases are urgent or severe.
  4. Human beings make errors.  This includes both surgeons and anesthesia providers.

Unbelievable events occur at unexpected times in operating rooms, and your anesthesia provider must keep you safe.  He or she is in control of your airway, breathing, and circulation at every moment.  Your anesthesia provider is your insurance policy against medical complications during surgery.  Your anesthesia provider’s job is to play Goalie at the Pearly Gates, and keep you alive.

The individual administering your anesthesia can vary–your anesthesia provider may be:

  1. a medical doctor (an anesthesiologist),
  2. a certified registered nurse anesthetist (CRNA) or anesthesia assistant (AA) supervised by an anesthesiologist, or
  3. a CRNA working without anesthesiologist supervision.

In the United States, anesthesiologists personally administer 35% of the anesthetics.  Anesthesia care teams, in which an anesthesiologist medically directs a team of AA’s or CRNA’s, administer 55% of the anesthetics.  CRNA’s, working unsupervised, administer 10% of the anesthetics.

There are people who perceive anesthesia care to be so safe that it can be taken for granted.  They are wrong.  Anesthesia care is safest when a physician, a board-certified anesthesiologist, directs the anesthetic care.  Published data shows that:

  1. Mortality rates after surgery are significantly lower when anesthesiologists direct anesthesia care.
  2. Failure-to-rescue rates (the rate of death after a complication) are significantly lower when anesthesiologists direct anesthesia care.
  3. Death rates and failure-to-rescue rates are significantly lower when board-certified anesthesiologists supervise anesthesia care, compared to when mid-career anesthesiologists who are not board-certified supervise anesthesia care.

“Failure-to-rescue” implies that the anesthesia provider wasn’t successful in preventing a 1% panic moment from turning into a death statistic. The phrase “failure-to-rescue” is a key theme of this book.   Or more precisely, the phrase “successful rescue” is a key theme of this book.  When unexpected events occur during surgery–the 1% panic moments–your anesthesia provider needs to make the correct diagnosis and apply the correct therapeutic intervention to successfully rescue you.

When you meet your anesthesia provider prior to surgery, you’re about to trust your life to a stranger.  It matters who that stranger is.  As a patient, do you have any control over who your anesthesia provider will be?  If your surgery is an emergency at 2 a.m. when only one anesthesia provider is available, you will not.  But for most surgeries, and all elective surgeries, this book will teach you what to expect in anesthesia care, and what you can do to receive the best in anesthesia care.

Anesthesiologists must finish a minimum of 12 years of post-high school education–four years of college, four years of medical school, and four years of anesthesia internship and residency.  Nurse anesthetists must finish a minimum of 7 or 8 years of post-high school education –four years of college, a minimum of one year of critical care nursing experience, and two to three years of anesthetist training.  Anesthesia assistants must finish a minimum of 6 years of post-high school education–four years of college, and a 24-month program to obtain a Master’s degree as an anesthesia assistant.

Why would an individual choose to become an anesthesia provider?  It’s rare for teenagers or college students to dream of themselves as anesthetists.  Most popular television, movies, and fiction portray physicians in more conventional careers as surgeons, emergency room doctors, or in clinics.  Only 4% of medical school graduates choose anesthesiology.

I believe that individuals who choose anesthesia for their medical career are individuals who love the adrenaline rush of acute medical care.  Operating room anesthesia is a 180-degree turn from outpatient clinics, where practitioners take histories, order lab tests, write prescriptions for pills, and make appointments to see their patient weeks into the future.  Instead of  experiencing clinic visits over months or years, the anesthetic encounter is immediate care with immediate results.  Instead of a clinic patient returning weeks later for a recheck, the anesthetic patient wakes up from their anesthetic, and is discharged to their home or their hospital bed within hours.

I had already completed a three-year residency in internal medicine before I began my years of anesthesia training.  The diagnosis and treatment of complex medical patients appealed to me during internal medicine training, but I found the glacial pace of outpatient clinic care boring.  When I worked along side anesthesiologists in the intensive care unit, I was wooed by their skills in placing breathing tubes, intravenous and intra-arterial catheters, and their apparent calmness no matter how ill any patient was.  The world of acute care medicine is the world of airway, breathing, and circulation.  No specialty mastered all three as completely as anesthesiologists did.

The beginning of specialty training in anesthesia brings both intimidating power and overwhelming challenge.  For the first time in your life, your profession is to inject powerful medications into patients and watch them lose consciousness in seconds.  Administering your first anesthetic is an unforgettable experience.  One minute you are chatting with a patient, telling them to picture themselves relaxing on a beach in Hawaii, and the next minute you’ve rendered them unconscious and totally dependent on you to manage their airway, breathing, and circulation.

Moving from novice anesthesiologist trainee to experienced specialist requires hard work and patience.  On the first day of my anesthesia residency, I was so green I didn’t even know which hoses connected my anesthesia gas machine to the patient.  While learning the anesthesia profession, trainees must learn to endure the 99% boredom factor and glean their most valuable lessons during the 1% panic time.  During my first week of training, after my patient was asleep with the breathing tube inserted and the anesthesia gases flowing, my faculty member, Dr. Gregory Ingham, said to me, “This procedure will take four hours.”  He stood next to me for a minute or two in silence, then he said, “I hope you’re of a contemplative nature.”

Why would he say such a thing to a first-week trainee?  I believe he said it because much of operating room anesthesia care is tedious vigilance over a stable situation.  The anesthetist needs to cope with this fact, and hopefully even appreciate and enjoy the stability.

One week after my first exposure to Dr. Ingham, I was on call overnight in the hospital with him again.  We had four consecutive emergency cases, all young healthy men with injuries suffered in motor vehicle or motorcycle accidents.  Prior to the fourth case, at 2 a.m., I evaluated the patient and proposed my anesthetic plan.  “Our patient is a healthy 25-year-old male except for his open femur fracture,” I said.  “I thought we could do the anesthetic the same way we did the last three.”

Dr. Ingham nodded at me and sighed, “Richard, the patients are all different, but the anesthetics are all the same.”

Is this true?  Why would he make a statement like this to an impressionable young trainee?  There is a great deal of cynicism and battle fatigue in his comment, but a grain of truth.  Patients are all different, and many anesthetics are similar, but not every anesthetic is identical.  There are always choices for the anesthetist to make–crucial, life threatening decisions–every day, and on every case.  Decisions are made before the surgery, during the stable phases of the anesthetic, and during the 1% of moments when the anesthetist’s mind is reeling.

Patients see none of this.  Patients typically have ten minutes or less to meet their anesthesia provider.  In the internal medicine clinic, patients are awake for 100% of their face-to-face time with their doctor, but before a surgery the anesthesiologist has only a brief encounter to gain their patient’s trust.  In the internal medicine clinic, a large number of patients had chronic complaints that were difficult to cure:  chronic pains, high blood pressure, obesity, or diabetes.  The treatments usually involved a prescription for pills.  At the next office visit, the patient might feel better, but there was a significant chance that the patient would feel the same or feel no better, or perhaps they would have a new side-effect symptom from the pill you prescribed for them.

The anesthetic patient encounter is markedly different.  Prior to the surgery, most patients are anxious but they treat their anesthesiologist with soaring respect.  After the surgery, I find my patients are often gushing in their gratitude for the fact that I had delivered them safely back to consciousness.  In contrast to my sometimes-disappointed medicine clinic patients, the anesthetic patients are so upbeat that they make me feel wonderful.

When I describe the elation of interacting with anesthesia patients, my best friend offers a simple explanation:  “Of course your patients respect you before the surgery.  You’re about to knock them unconscious.  They’ll have no control and they’re completely dependent on you.  They want you to like them.  They want you to keep them alive.”

I believe that assessment is accurate.  Every patient wants the same thing from their anesthesia provider.  A successful, complication-free experience.  And that’s what happens . . . almost every time.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

AN ANESTHESIA ANECDOTE: AN INEPT ANESTHESIA PROVIDER CAN KILL A PATIENT IN LESS THAN TEN MINUTES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An inept anesthesia provider can lose a patient’s life in less than ten minutes.

NEWSPAPER HEADLINE:  “ANESTHESIOLOGIST KILLS PREGNANT MOTHER DURING EMERGENCY SURGERY”

 

What follows is a true story, with the names changed to protect the identities of the individuals…

THE CASE:  At 1:30 a.m. during the 14th month of his anesthesia training, Dr. Tony Andrews had been on duty inside the hospital since 7:00 a.m. the previous day–a total of 19 hours already.  He’d spent most of that time inserting epidural anesthetics into the lower backs of laboring women on the obstetrics ward.  He went to sleep in his on-call room shortly after midnight, exhausted and hopeful that he’d sleep until dawn.

No such luck.  The telephone woke him up–the caller was Jennifer Rogers, an obstetrician with a busy private practice.  “I need you,” she said.  “I have a patient named Naomi Jordan who’s in labor with new onset of vaginal bleeding and late decels.  I need to do a stat C-section.”

A layman’s translation of Jennifer’s sentence was this:  Naomi Jordan was a laboring mother who was bleeding from her vagina.  Her baby’s heart rate was dropping to dangerously low levels (known as decelerations, or decels) during the late phase of each uterine contraction.  Dr. Rogers needed to do an emergency cesarean section, that is, she needed to cut open the lower abdomen of the mother, cut open the uterus (the medical term for the womb), and deliver the baby before the mother’s bleeding endangered the baby’s health.  An emergency cesarean section meant Dr. Andrews wouldn’t get back to sleep for three hours, minimum.

“How much blood has she lost?” he mumbled, trying not to fall back asleep.

“No more than a cup so far, but the bleeding could accelerate within minutes.”

“I’ll be there in a minute.”  Every cesarean section required an anesthetic–that’s why Dr. Rogers called Dr. Andrews.  He was sleeping in the hospital to be immediately available for urgent obstetric anesthetics.  He turned on the room light and rubbed my eyes.  His wrinkled blue scrubs served as both pajamas and surgical attire.  He put his sneakers back on and set out down the hallway to find his new patient.

Once Dr. Andrews was on his feet, the prospect of emergency surgery jolted him like a double espresso.  By the time he reached Naomi Jordan’s room, his head was clear and he’d forgotten what time of night it was.

Naomi Jordan was a round-faced black woman in her 20’s.  She was sitting up in bed and panting her way through a labor contraction.  She flared her lips and bared her teeth to endure the pain and grunted out, “Ow, ow, ow,” with each exhaled breath.  Naomi did little to hide her suffering, and paid no attention to Andrews when he entered the room.  A gray-haired labor and delivery nurse stood at the bedside.  The nurse held one hand on Naomi’s shoulder and focused her eyes on the fetal monitor screen that traced the baby’s heart rate.

Dr. Andrews opened the patient’s chart to skim through the pertinent details.  Naomi was 25 years old and healthy.  She was 9 months pregnant with her first child.  Her current weight was 185 pounds, and she was 5 feet 4 inches tall.  She’d been in labor for four hours, and her progress had been unremarkable until the last thirty minutes.

He sat down on the bed next to the patient, and said, “Hi, Ms. Jordon, I’m Dr. Andrews, one of the anesthesiologists who will be with you during your cesarean section.”  What he didn’t say was, “I’m a partially-trained anesthesiologist.”  It was his objective to appear confident and competent–she didn’t have to know he still had almost a year before he finished his training.  She didn’t have to know that his calm appearance was a guise that hid any uncertainty due to his inexperience.

Sweat dripped down Naomi’s cheeks and forehead.  Her eyes were dilated and wild.  She replied, “My baby girl.  I just want my baby to be all right.”

“We’ll do everything we can,” he said.  “You’re going to need be asleep for the surgery.  For most cesarean sections, anesthesiologists give an injection in the lady’s back–a spinal anesthetic–to numb you from your chest down.  But because you’re bleeding from below, that’s not a safe option.”

“I can see my baby as soon as I wake up, right?”

“Yes you can.  I’ll give you medicine into your I.V., and you’ll fall asleep in seconds.  When you wake up, the surgery will be finished.”  Dr. Andrews rattled through a brief explanation of the common risks, which included post-operative pain, nausea, and a sore throat from the breathing tube that I would place after she lost consciousness.  “It’s common for the bleeding to stop once you’ve delivered your baby.  It’s not likely that you’ll receive a blood transfusion, but if I need to give you blood to keep you safe, I will.”

She nodded her head and shivered.  “I’m scared to death,” she said.

“I’m not.  I’ll take good care of you.” He touched the back of her hand, and said, “I’ll be right back.”

He stepped out of her room to find a telephone.  This was his second and final year of anesthesia residency training, and he was the sole anesthesiologist on the obstetrics ward at 1:40 in the morning.   He had a faculty backup, Dr. Luke Harrington, who was at his home, presumably asleep.  It was time to end Dr. Harrington’s slumbers.

Dr. Andrews called Dr. Harrington and explained the urgent clinical situation.  Dr. Harrington said, “If she’s bleeding, she’ll need a general anesthetic.  I’ll be right in.”

When patients have significant bleeding, the volume of blood in their arteries and veins is depleted.  For most cesarean sections, anesthesiologists prefer to give a regional anesthetic (either a spinal anesthetic or an epidural anesthetic), that leaves the patient awake but numb from the nipples down.  Neither a spinal nor an epidural can be safely administered in a patient who is actively bleeding.  Spinal and epidural anesthetics relax the sympathetic nervous system and dilate both arteries and veins, lowering the blood pressure further.  Dilating arteries that are already emptied because of bleeding is dangerous, and can lead to cardiac arrest or death.

Dr. Andrews hung up the phone and returned to Naomi’s bedside.  The nurse was disconnecting the fetal monitors and readying the bed for transport to the operating room.  Together they rolled the gurney down the hallway, and into the operating room.  A surgical scrub technician and an operating room nurse were waiting for them inside the OR.  The nurses and Dr. Andrews pulled surgical masks over their faces.  Only Naomi Jordan stayed unmasked.  Her hands shook and her voice cracked.  “Is my baby still all right?  She’s going to be O.K., isn’t she?”

“We’re going to move ahead and deliver her as soon as we can,” Dr. Andrews said.  He hung her I.V. bottle on a pole next to the anesthesia machine and said, “Can you please move over from your bed to the operating room table?”

With a loud grunt and a louder moan, Naomi wiggled herself to her right from the hospital bed onto the narrow O.R. table.  She left behind a two-foot-wide circular stain of blood on the sheets of her bed–evidence of ongoing vaginal bleeding.  The sight of the pool of blood fed Dr. Andrews’ sense of urgency.  It looked like more than a cup had spilled onto the sheets.  How much blood had she lost?

He used his stethoscope to listen to Naomi’s chest, and confirmed that her heart tones and breath sounds were normal.  He asked her to open her mouth, and assessed how easy it would be to insert a breathing tube after he anesthetized her.  She had a short neck and a thick tongue, but otherwise he didn’t note anything exceptional about her mouth or airway.  Dr. Andrews went about his routine and attached a blood pressure cuff to her arm, electrocardiogram stickers to her chest, and an oximeter probe to her finger.

Her heart rate was fast at 120 beats per minute.  The elevated heart rate could be secondary to her anxiety, but it could be because her bleeding was ongoing and her heart was working hard to pump a depleted blood volume to her vital organs.

Her blood pressure was 100/55, a lower value than the last reading of 115/60 ten minutes earlier.  The low blood pressure worried him–it could be further evidence that her blood vessels were emptying as she continued to bleed.  The pulse oximeter on her finger gave a reading of 100%, indicating that her arterial blood was 100% saturated with oxygen–a good sign.

Naomi looked like she was ready to sit up and run out of the room.  “It’s freezing in here,” she said, glancing around the room at the anesthesia machines and the array stainless steel surgical tools laid out on the scrub table.  “I’m so scared.  Can’t my mom be in here with me?”

“No,” Dr. Andrews said as he loaded my syringes with anesthetic drugs.  “When patients are going to be asleep, it’s not safe for family to be in here observing.  You’re going to be all right.”

The operating room nurse pulled up Naomi’s gown and began painting the bulbous abdomen with Betadine, an iodine disinfectant soap.  Dr. Rogers entered the room. She was a trim, attractive woman in her thirties.  She grabbed Naomi’s left hand and wiped away the tears from her patient’s eyes. “We’ll take great care of you,” she said.  Naomi blinked hard and closed her eyes.

A female scrub tech unfolded a large blue sterile paper drape, and set it down over Naomi’s abdomen to cover the Betadine-painted skin.  The scrub tech’s job was to hang the drapes to isolate the surgical field, and after that to hand sterile instruments to the surgeon during the surgery. She handed one edge of the drape to Andrews, and he applied clamps to secure the drape to two tall metal poles to the left and right of the patient’s shoulders.  This configuration formed a wall of blue paper with Naomi’s head and the anesthesiologist on one side of the barrier, and the sterile surgical field on the opposite side.  Dr. Rogers reentered the operating room.  She’d left to scrub her hands, and now she donned the sterile gown and gloves of her trade.  She took her position on the left side of the patient’s abdomen, and looked Dr. Andrews in the eye.  “Are you ready to get her asleep?” she asked him.

“I’m still waiting for Dr. Harrington,” he said. “Otherwise I’m ready to go.”  He turned to the nurse and said, “Call the general O.R. and the ICU.  Find out if any other anesthesiologists are available to assist me.”

“Will do,” she said, and she picked up a phone.

It was 1:55 a.m.  Dr. Andrews had checked the necessary anesthesia equipment, and it was all present and in order: breathing tubes, laryngoscopes needed for inserting a breathing tube, multiple syringes loaded with anesthetic drugs, and the anesthesia machine capable of delivering mixtures of oxygen, nitrous oxide, and the potent anesthetic vapor called isoflurane.

He looked down at the spheres of sweat beading up on Naomi’s forehead.  She was breathing oxygen through a clear plastic mask.  Each time she exhaled, water vapor fogged the clear plastic of the mask in front of her mouth.

The surgeon looked at the clock and said, “I don’t have any monitor of the fetal heart tones at this point, so I have no idea if the baby’s all right.  The patient is still bleeding.  We need to get the