THE DIFFERENCE BETWEEN A PHYSICIAN ANESTHESIOLOGIST AND A NURSE ANESTHETIST

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

What’s the difference between a physician anesthesiologist and a nurse anesthetist? After the first 3 – 4 years in the workforce, either one can master the manual skills of anesthesia. That is, either one can display excellence in intubating the trachea, performing a spinal or an epidural anesthetic, performing a nerve block, inserting an arterial line, or inserting a central venous pressure catheter. There is no fork in the career path that makes a busy Certified Registered Nurse Anesthetist (CRNA) automatically inferior to a medical doctor anesthesiologist in hands-on skills. So what really is the difference between a physician anesthesiologist and a nurse anesthetist? The answer: internal medicine.

All physician anesthesiologists graduate from medical school, where they rotate through clerkships in surgery, pediatrics, obstetrics-gynecology, internal medicine, emergency medicine and psychiatry, as well as electives in surgical or medicine subspecialties of their choice.

By contrast, CRNAs are registered nurses experienced in intensive care or emergency room nursing, who then enter a 2 – 3 year program of learning the skills to anesthetize patientsCRNAs can now administer anesthesia independent of any physician anesthesiologist supervision in the majority of the United States

The difference between a physician anesthesiologist and a nurse anesthetist is that the former has a depth of knowledge of 1) the physiology of the human body, 2) the pathophysiology of diseases, 3) the breadth of pharmacology, and 4) the ability to make diagnoses and prescribe treatment. In short, the physician anesthesiologist has extensive training in the internal medicine essentials of 1), 2), 3), and 4) above.

Nurse anesthetists are valuable and integral cogs in American healthcare. It’s not my intention to demean or minimize the role of CRNAs. My goal is to point out the most specific difference between a physician anesthesiologist and a nurse anesthetist.

At Stanford our department is named the Department of Anesthesiology, Perioperative and Pain Medicine. What is Perioperative Medicine? Perioperative Medicine is all the medical care before, during, and after surgery. Is Perioperative Medicine a subspecialty of internal medicine? In a way, it is. Following an internal medicine residency, graduates may subspecialize in cardiology, oncology, pulmonary medicine, kidney medicine, infectious disease, critical care, or . . . perioperative medicine. When I finished my Stanford internal medicine residency, the top four choices among my colleagues for the next step were: #1 a cardiology fellowship, #2 general internal medicine private practice, #3 an anesthesia residency, or #4 an oncology fellowship.

Stanford University now offers a combined internal medicine/anesthesiology residency, with the goal of training leaders in anesthesiology. The PGY1 year is spent entirely on medicine rotations.  The PGY2 year consists of all anesthesia rotations.  During PGY3-5 years, the resident alternates between 3 months of medicine rotations and 3 months of anesthesia rotations.

The outgoing Chairman of Anesthesiology, Perioperative and Pain Medicine at Stanford is Ronald Pearl MD PhD, an outstanding clinician and scientist who led our department for twenty-two years. In addition to board-certification in internal medicine and anesthesiology, Dr. Pearl is also board certified in critical care medicine. Dr. Pearl is one of the smartest clinicians I’ve ever met. His extensive internal medicine knowledge raises him above other anesthesia providers. 

Currently, anesthesiology residency programs are three years in duration, beginning after a resident has completed at least one year of internship. During those three years of anesthesia residency (PGY2 – PGY4) the resident rotates through

  • two one-month rotations in: obstetric anesthesiology, pediatric anesthesiology, neuro anesthesiology, and cardiothoracic anesthesiology
  • a minimum of one month in the adult intensive care unit during each of the three years 
  • three months of pain medicine, including one month in acute perioperative pain, one month in chronic pain, and one month of regional analgesia/peripheral nerve blocks
  • one-half month in a preoperative evaluation clinic 
  • one-half month in a post anesthesia care unit, and one-half month in out-of-OR locations.  

These rotations of an anesthesia resident develop the young doctor into a clinician comfortable in preoperative assessment and management, in the intraoperative administration of anesthesia, and in the postoperative evaluation and treatment of patients. 

Currently, internal medicine residency programs are three years in duration, including a one-year internship in internal medicine. During those three years (PGY1 -PGY3) a resident rotates through: 

  • a minimum of 4 months of critical care (medical ICU or cardiac care unit) rotations
  • a minimum of 1/3 of Internal Medicine training occurs in an ambulatory setting
  • a minimum of 1/3 of Internal Medicine training occurs in an inpatient setting
  • a longitudinal continuity clinic of 130 one-half-day sessions over the course of training, including one clinic per month. The continuity clinic includes evaluation of performance data for resident’s panel of patients.
  • exposure to each of the internal medicine subspecialties and to neurology
  • an assignment in geriatric medicine
  • an emergency medicine experience of four weeks
  • electives available in psychiatry, allergy/immunology, dermatology, medical ophthalmology, office gynecology, otorhinolaryngology, non-operative orthopedics, palliative medicine, sleep medicine, and rehabilitation medicine

These rotations of an internal medicine resident develop the young doctor into a broadly trained clinician experienced in multiple areas.

I’m not advocating that anesthesia departments be folded under the umbrella of their institution’s department of internal medicine. Instead, what I am recognizing is that the field of anesthesiology is more than putting in breathing tubes, arterial catheters, IV lines, or nerve block needles in a variety of different surgical settings. The field of anesthesiology is understanding and managing medical problems before, during, and after surgery, i.e., Perioperative Medicine. Describing our specialty with the word “Anesthesia” is an oversimplification of what we do. If our specialty was newly named today, it would be called Perioperative Medicine, period.

What about pediatric perioperative medicine? Doesn’t pediatric perioperative medicine involve the knowledge base of pediatricians, instead of the knowledge base of internal medicine? Yes. Deep knowledge of pediatric medicine instead of internal medicine (on adult patients) applies to pediatric perioperative medicine. No doubt a pediatrician who then completes an anesthesia residency will likely be an outstanding pediatric perioperative doctor, but only 5.4 % of anesthesia care in the United States is on pediatric patients less than 15 years old. The majority of the knowledge base for anesthesia care pertains to adult patients, i.e. the knowledge base for internal medicine physicians.

Several examples will illustrate why internal medicine forms the backbone of perioperative anesthesia practice. Before surgery, a patient who presents with insulin dependent diabetes, hypertension, hyperlipidemia, and obstructive sleep apnea is an example of the kind of patient an internal medicine doctor sees regularly in his or her outpatient clinic. During surgery, a patient who develops atrial fibrillation or marked hypertension is an example of the kind of events an internal medicine doctor sees in an intensive care unit. After surgery, a patient who presents with chest pain or shortness of breath is an example of the kind of patient an internal medicine doctor sees in the emergency room or in the intensive care unit. Wait . . . you can argue that a CRNA has previous experience working as a registered nurse in an ICU or an emergency room before beginning nurse anesthetist training. But a registered nurse in an ICU or an emergency room does not independently diagnose and treat medical conditions. A registered nurse in an ICU or an emergency room follows written orders from a medical doctor. There is a world of difference between a medical doctor commanding diagnosis and treatment in an ICU/emergency room versus a registered nurse who follows orders.

Should all anesthesia residency training follow the Stanford optional model of combining internal medicine and anesthesia residencies into one program? No. Prolonging the training of every physician anesthesiologist in the United States makes little sense, but those who desire to be leaders will consider this double-residency option. 

Recent years brought an attempt to rename the territory of anesthesiologists as the “Perioperative Surgical Home.”  The Perioperative Surgical Home is defined as “a patient-centered, team-based, and coordinated perioperative care setup, composed of the head anesthesiologist-perioperativist in tandem with dedicated nurse practitioners and other PSH team doctors.” This is a move in a positive direction, with the intent of better patient care coordinated by an anesthesiologist-led team. There is an economic barrier to the Perioperative Surgical Home, in that the PSH may appear to be a coup attempt for anesthesia departments to take over jurisdictions from preoperative and postoperative internal medicine doctors. Any adoption of the PSH will likely be gradual, as the battle for patients plays out in each medical center.

Instead, a first step is that anesthesia departments redefine themselves as Departments of Perioperative Medicine, and that the academic training for these departments involve increasing time spent expanding the internal medicine knowledge base of residents in medical intensive care units, cardiac intensive care units, medicine wards, and medicine clinics. Performing month after month of repetitive intraoperative anesthesia care has a decreasing return on expanding a resident’s fund of knowledge, and can serve to make the role of a physician anesthesiologists and the role of a nurse anesthetist close to being the same.

It’s important that physician anesthesiologists create perceivable differences between themselves and CRNAs. The role of Perioperative Medical Doctors is a more broad and more specific identity when compared to what nurse anesthetists do. Let’s make our young physician anesthesiologist trainees into Perioperative Medicine Specialists, instead of confusing them with other anesthesia professionals who can also administer propofol, sevoflurane, and rocuronium.

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM

WHEN INTERNS AND RESIDENTS UNIONIZE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

On May 2, 2022, residents and fellows (medical doctors in their first years of educational work after medical school) at Stanford University Health Care voted to unionize. In an email to medical staff, the Graduate Medical Education administration wrote: “Stanford Health Care (SHC) residents and fellows voted in favor of having The Committee of Interns and Residents (CIR), a local of Service Employees International Union (SEIU), serve as their collective bargaining representative. The votes cast in the election represent the sentiment of 1,049 residents and fellows who participated, out of the 1,478 employed by SHC. Ultimately, 835 voted ‘yes’ to unionization; 214 voted ‘no.’ . . . While we believe that the best relationship with our employees is a direct one without a union, we respect the results. . . . When the results are certified in the coming days, the first stages of the collective bargaining process will begin. . . . We will negotiate with the union in good faith to reach an agreement that reflects your priorities, while maintaining the best parts about training at Stanford.”

Stanford residents and fellows are not alone in choosing to unionize. A total of 1450 residents and fellows at UCSF (University of California San Francisco) recently voted to join the same Committee of Interns and Residents (CIR) union. The UCSF residents stated, “By joining CIR, UCSF residents will be able to negotiate their contracts for the first time, including bargaining for better salaries, benefits, time off, and other provisions that will improve resident life and well-being.” 

A total of over 20,000 residents and fellows at hospitals around the U.S. have voted to join this CIR union. What will this development mean to healthcare in the United States? I respect residents and fellows at the highest level. I spent five years as a medical resident, and I can empathize with the demands of their workload. From my current perspective as an attending physician at an academic medical center, how will this unionizing of housestaff (MDs who are residents and fellows) play out? 

First off, why form a union? The main reasons are a lack of bargaining power regarding:

  1. Burnout and staffing. Housestaff work up to 80 hours per week, a number that is twice the 40-hour workweek considered standard in the United States, and they do this for a duration of 3 to 7 years, depending on their specialty.  The rate of burnout is known to be high in medical doctors, and despite nods to wellness programs at most university hospitals, improvements have been slow in coming. An online survey of doctors finds an overall physician burnout rate of 42%, and the highest percentage of burnout occurred in these six specialties: urology: 54%, neurology: 50%, nephrology: 49%, diabetes and endocrinology: 46%, family medicine: 46%, and radiology: 46%.
  2. COVID. The long hours and risks of acquiring COVID while working with sick COVID patients from 2020 -2022 made many residents and fellows feel vulnerable and angry. While hospital administrators and many faculty returned to the safe havens of their homes each night, interns and residents staffed intensive care units, wards, and emergency rooms, caring for patients with this terrifying new contagious disease. When University of Massachusetts interns and residents joined the CIR union, they stated, “When the pandemic struck, securing better conditions became even more urgent, as the inequities in our healthcare system were laid bare — and in light of the rapid changes that left residents scrambling to keep up within traumatizing and sometimes dangerous practice conditions.”
  3. Higher pay. Residents and fellows are paid a salary. They do not earn an hourly wage. When their salary is divided by 80 hours of work per week, 50 weeks per year, most residents and fellows are making less than minimum wage. When University of Massachusetts interns and residents joined the CIR union, they stated, “UMass Memorial residents are willing to work 80 hours per week because we know exceptional care is critical to community well-being, but we are significantly underpaid for doing so.” 
  4. Better benefits. Residents and fellows will desire more vacation time, top-notch health insurance benefits, and perhaps even retirement contributions.

If residents and fellows don’t receive what they seek during negotiations with the administration, what consequence can residents and fellows turn to? Will they go on strike? In May 2019, interns and residents at UCSF staged a 15-minute “Unity Break” strike as a show of solidarity and power. The Committee of Interns and Residents, which represented 1,100 of UCSF’s resident and fellow population at that time, said that management had not properly recognized the contributions of their resident and intern members and offered a package that left them underpaid and underrepresented. “UCSF has failed to meet some of the very basic demands that we have been fighting for at the table,” said Kim Carter, director of the union. 

Can doctors strike? Is it ethically OK for doctors to strike? I think the answer is no. To leave patients without healthcare while doctors strike for better hours, wages, and benefits is a violation of the ethics of our healing profession. I don’t believe young doctors should be abused or squeezed into unacceptable hours, low wages, and/or poor benefits, but doctors staging a labor walkout would be a mistake. And if a union will never strike, will it ever have any real negotiating power? The CRONA (Committee for the Recognition of Nursing Achievement) nursing union at Stanford staged a strike beginning April 25, 2022, just days ago. Negotiations were successful after only one week of the strike, with the nurses gaining a tentative agreement for significant base wage increases of 5% on April 1, 2022, 2% on December 1, 2022, 5% on April 1 2023, and 5% on April 2024, in addition to other improvements in benefits, staffing, and scheduling. 

I have firsthand experience with strikes. I was a laborer during three United Steelworkers of America strikes in Northern Minnesota during summer employment in taconite mines while I was in college and medical school. Blue-collar strikes are not pretty. The picket lines were brutal, and no one dared cross them. Both sides lost money as the strikes wore on, and interpersonal conflicts simmered for a long time afterward. 

The idea of residents and fellows joining a union is not a new one. In 2001 The Los Angeles Times reported a story on this topic. The article stated, “Striking will disrupt the educational progression of classes, clinical practice and testing. A student wants to come in and have some certainty that his or her three-year residency will take three years. How would they feel if suddenly they were told they wouldn’t finish on time and, whether a strike is a good idea or a bad one, that they’re not going to be able to take a board exam?” One of the doctors who joined the union at that time stated, “Change won’t come overnight, but I think it will happen. We have to stop that cowboy attitude: ‘It’s always been this way, we’re tough, we don’t complain.’ Many residents want to complain, but they’re in an environment where if they do, they’re punished. Residents have to fight for all these things and, without a union, they don’t have any legs to stand on.”  

The ”cowboy attitude” refers an old-school medical education argument that sounds like this: “There’s no other way to educate doctors. It takes at least 80-100 hours per week. Even if you stay in-house every other night you miss half the good cases. When I was a resident, back in the (fill in the blank . . . 1950s, 1960s, 1970s, or 1980s), we slept in the hospital every other night and worked 120 hours per week. Now residents are complaining that 80 hours per week is too much.”

When I was an internal medicine resident in the 1980s, we stayed in the hospital on-call every third night and worked approximately 100 hours per week. My salary during my first year of residency was $16,000. On an hourly basis, this equated to $3.33 per hour. Adjusted for inflation, my 1980 salary would be $55,826, or $11.63 per hour, less than the current minimum wage. 

If medical centers shorten the workweek of interns and residents to 40 hours per week from the current limit of 80 hours per week, the medical center may need to hire twice as many interns and residents or other physician surrogates to do the workload. And if the union negotiates a 10-20% increase in annual salary, the cost for interns and resident would increase further. Where will all this money come from? Most of the salaries of residents and fellows are paid for by billions of dollars of federal tax money, as medical education is subsidized by the United States government. The publication Congressional Research Sources states, “Federal support for medical residency training (a.k.a., graduate medical education [GME]) is the largest source of federal support for the health care workforce. Although the health workforce includes a number of professions, the size of the federal investment in GME—estimated at $16 billion in 2015—makes it a policy lever often considered to alter the health care workforce and impact health care access.” 

Labor unions in the United States are organizations that represent workers in many industries. Labor unions grew afterCongress passed the National Labor Relations Act (NLRA) in 1935 to protect the rights of both employees and employers, to encourage collective bargaining, and to eliminate certain private sector labor and management practices which could harm the welfare of workers, businesses and the economy.

The Ailing Labor Rights of Medical Residents, by Sarah Geiger, published in 2006, describes the legal history of medical resident labor law and the attempts to legalize unionization among medical residents. I quote the following excerpts directly from Geiger’s paper: 

“From 1947 to 1974, hospital staff members did not have the right to unionize. . . . Congress then amended the NLRA in 1974 to include non-profit hospitals. The Committee on Labor and Public Welfare report on the amendments stated that it could find no acceptable reason why 1,427,012 employees of these non-profit, non-public hospitals, representing 56% of all hospital employees, should continue to be excluded from the coverage and protections of the Act. . . . One source of confusion involved the dubious supervisory status of professional health care providers. . . . health care professionals exercised supervisory roles and were thus excluded from the right to unionize. . . .

In Cedars-Sinai Medical Center, the NLRB held that the residents, interns, and clinical fellows of Cedars-Sinai were not ‘employees’ within the meaning of the NLRA. Thus, they had no right to unionize. . . . The Board thus concluded that interns, residents, and clinical fellows were primarily students, noting the relationship between residents and Cedars-Sinai was primarily educational, and not an employment relationship. . . .  The decision remarked that interns ‘participate in these programs not for the purpose of earning a living; instead they are there to pursue the graduate medical education that is a requirement for the practice of medicine. This statement implies that residents do not actually ‘practice medicine,’ but merely are training to do so. . . . 

“In response to staunch legal criticism, the Board reversed Cedars- Sinai.  Boston Medical, an oft-quoted case, involved a unit of housestaff at the Boston Medical Center (BMC) that attempted to unionize. . . .  The Board overruled its precedent in Cedars-Sinai and held that medical interns and residents were both students and employees and thus were entitled to unionize. . . . The NLRB recognition of housestaff’s plight has done little to encourage unionization among medical interns and residents. . . . The residents’ dual roles, however, present extra-legal barriers to unionization which are not present in other industries. Residents spend an inordinate number of hours in the hospital and often are directly serving patients for twenty-four hours at a time. . . .  the fears of Congress (and earlier fears of the American Medical Association) that unionization may compromise the doctor-patient relationship or the quality of health care residents adds another layer of complication. . . .   

“The Association of American Medical Colleges (AAMC), the representative body of all accredited medical schools in the United States and Canada, as well as over 400 teaching hospitals, vehemently opposed all resident unionization efforts. . . . Offering more labor rights to medical residents would cost academic hospitals inordinate amounts of money. The cost of replacing one surgical resident with a “physician extender,” or other physician, is $210,000 to $315,000 a year. . . . the federal government is by no means an objective observer in the matter of medical residency funding and regulations. Currently, the federal government is the main financier of graduate medical education, ‘contributing $6.8 billion through Medicare, plus additional sums through the Departments of Defense and Veteran Affairs.’ The federal government is constantly looking to reduce the cost of medical care. Offering residents more control over their working conditions would likely lead them to demand more money, money that would have to come from the federal government or from private university hospitals. Thus, the government and academic hospitals are appropriate bedfellows in opposing resident labor rights. 

“The Boston Medical decision made it clear that little legal basis exists to deny medical residents unionization rights or any NLRA specified rights for that matter. Thus, unless Congress amends the NLRA, no legal barriers exist to housestaff unionization.  Many other internal barriers, however, hinder medical residents from acquiring labor rights. Unionization takes more effort than residents have time for and many fear unions will compromise their goals as physicians. A national survey of residents found that residents’ willingness to get involved in forming a union or serving as a member of union management was inversely proportional to the difficulty and amount of time their specialty required them to be in the hospital. Residents are accountable to their superiors for their future careers and would rather endure a few years of grueling working conditions than do anything which might compromise their careers. . . . Hospitals should give residents a real opportunity to unionize. . . . An informed, inclusive dialogue will serve to clarify legal and extra-legal barriers to accomplishing these congressional goals as well as to alleviate medical residents’ labor burdens.”

As described above, a crucial issue which complicates union negotiations for medical residents and fellows is that their jobs are part work and part education. Each intern or resident is a medical worker, a student of the specialty he or she is training in, and a teacher to the interns and residents who are junior to them in the hierarchy. Residents and fellows are learning as they are paid to work. Their learning is both valuable and necessary for progression to their eventual career. The U.S. News and World Report’s listing of the “Best Paying Jobs in America” lists specialties of Medical Doctors as 7 of the 10 highest paying jobs in the United States. 

No discussion of intern and resident salaries would be complete without a disclosure of the average debt these young doctors carry. Because of the high costs of medical school and college tuition, the average medical school graduate owes $241,600 in education debt. The average medical school graduate owes six times as much as the average college graduate. You can’t blame student doctors for wanting to maximize their income as medical interns, residents, and fellows.

If there’s a silver lining in all this, it’s best described in this anecdote from my training years: After completing a 3-year residency in internal medicine, I applied for and was accepted to a second 2-year residency in anesthesiology, a field I was passionate to learn about. In the first weeks of my anesthesia residency, a former chairman of the Stanford anesthesiology department gave us a lecture and tutorial on how to intubate the trachea of a patient with the highest level of skill and ease. I hung on every word he said. I was getting a lesson from a legend, and I was collecting a salary while I was learning this craft. Image a young golf professional getting paid while he received a lesson from Jack Nicklaus. I was earning a salary while I bettered my education and became more marketable in the medical marketplace. Could I have been paid more as a resident? Perhaps. But the primary gain I made during five residency years was the investment of my time in the labor and learning which made it possible for me to work as a board-certified anesthesiologist for the past 36 years . . . and still counting.

I’m confident Stanford Healthcare and the CIF union will negotiate a successful compromise agreeable to both sides. Until that time, stay tuned, as the intersection of physician labor unions and academic medical centers will generate headlines in the days ahead.

I offer this question to my readers: Do you think it’s acceptable for unionized doctors to strike?

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

REMIMAZOLAM: NEW WONDER ANESTHETIC DRUG OR MEDICAL WHITE ELEPHANT?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

In July 2020 the Food and Drug Administration (FDA) approved the intravenous benzodiazepine remimazolam (Byfavo, Acacia Pharma) for use in sedation for procedures of 30 minutes or less. Will anyone utilize this new drug, or is it an expensive addition to our arsenal with few significant advantages over current agents?

Remimazolam differs from midazolam (Versed), the current most commonly used IV benzodiazepine, in that remimazolam is rapidly converted to an inactive metabolite by tissue esterases, resulting in an ultra-short onset/offset profile. Remimazolam is marketed as a powder which must be reconstituted into a liquid within its vial prior to administration.

remimazolam
propofol

For use in procedural sedation, remimazolam will not replace Versed, but rather will aim to replace propofol. The proposed advantages of remimazolam over propofol include:

  1. Remimazolam can be completely reversed by the benzodiazepine antagonist flumazenil (Romazicon) whereas there is no reversal agent or antagonist for propofol. The only way to end the sedative effects of propofol is for an anesthesia professional to support the airway, breathing, and circulation of the patient until the drug effects of propofol wear off in time.
  2. Remimazolam has minimal cardiac or respiratory depression. Sicker ASA III and IV patients maintain their breathing and circulation status while under remimazolam sedation.
  3. There is no accumulative effect of remimazolam over time. Its elimination by an esterase does not slow during lengthy administration of remimazolam, as in the prolonged sedation of an intensive care unit (ICU) patient on a ventilator.
  4. There is no burning sensation upon injecting remimazolam into a patient’s intravenous line as there is with propofol.
  5. A non-anesthesia-professional can administer remimazolam, whereas an anesthesia professional/airway expert must administer and monitor propofol administration.

Are these advantages important? Items 1 – 5 are discussed as follows:

  1. Non-anesthesiologists can reverse the effects of remimazolam with flumazenil if they overdose a patient, but this advantage is less important for anesthesia professionals. Anesthesiologists can manage the airway of a patient over-sedated with a benzodiazepine without need to administer a reversal agent. I’ve never administered a dose of flumazenil in my entire career, nor have most of my anesthesia colleagues. 
  2. Propofol has cardiac and respiratory depression, but in most cases these effects are minimal. Per the PDR (Physician’s Digital Reference), patients with compromised myocardial function, intravascular volume depletion, or abnormally low vascular tone (e.g. septic patients) are more susceptible to hypotension. When an anesthesiologist is present these risks are routinely managed. 
  3. For a long operating room anesthesia case (e.g. of 8 – 10  hours duration), there is no clinically significant accumulation of propofol in the bloodstream. Propofol Infusion Syndrome (PRIS), which can be potentially fatal, is a risk with prolonged propofol sedation in the ICU (See ICU Sedation below).
  4. The burning sensation upon injecting propofol can be blunted by intravenous lidocaine. A 2016 meta-analysis showed that both lidocaine pretreatment and mixing lidocaine with the propofol were effective in reducing pain on propofol injection. In addition, a preanesthetic dose of Versed prevents a patient from remembering any burning sensation from a propofol injection that follows. 
  5. The most important advantage of remimazolam is that non-anesthesiologists can safely administer remimazolam. Propofol administration requires an experienced clinician, e.g. either an anesthesiologist, a certified registered nurse anesthetist (CRNA), or an emergency medicine physician. Per the American Society of Anesthesiologists: “The practitioner administering propofol for sedation/anesthesia should, at a minimum, have the education and training to identify and manage the airway and cardiovascular changes which occur in a patient who enters a state of general anesthesia.” 

The disadvantages of remimazolam compared to propofol include:

  1. Expense. The cost of a 20 ml (200 mg) vial of propofol is $9.20. The cost of a 20 mg vial of powdered remimazolam is $41.67
  2. Remimazolam is sold as a powder and must be reconstituted into a liquid before it can be injected intravenously.

Remimazolam is currently approved as an anesthesia drug in Japan and South Korea, for intensive care unit sedation in Belgium, but only for procedural sedation in the United States, China, and Europe. In total, there are four possible applications for remimazolam. Let’s examine the pros and cons of using remimazolam in these four applications:

  1. Preoperative sedation. Since midazolam (Versed) was approved in 1982, a standard anesthesia practice has included a 2 mg dose of  Versed prior to surgery to calm a patient’s anxiety. In the 1980s my anesthesia chairman at Stanford received a letter from a postoperative patient in which she complained of being awake and very anxious in the operating room prior to the anesthetic for her breast cancer surgery. Our chairman lectured to us, “Do you know many patients are nervous prior to their anesthesia and surgery? Every one of them. We have an excellent drug for relieving preoperative anxiety, and that drug is Versed. Use it! Give your patient a dose of Versed before they enter the operating room. There are few significant side effects of one dose of Versed. Use it!” Will remimazolam replace Versed for this application? No. There is no advantage of the new, shorter acting, more expensive remimazolam over Versed for preoperative sedation.
  2. Sedation for short procedures. This is the FDA-approved application for remimazolam in the United States. An example procedure would be a colonoscopy. Will remimazolam be widely used for colonoscopies in the near future? No, I doubt it. The cost increase is the main disadvantage. See the typical drug acquisition costs for three alternative sedation recipes for colonoscopy below:

            $18.40 for 400 mg of propofol; or 

$5.17 for fentanyl+Versed ($4.35 dollars for 6 mg of Versed  plus $0.82 for 200 micrograms of fentanyl); or

$41.67 for 20 mg of remimazolam

The increased cost per case is $23.27 for remimazolam over propofol

The increased cost per case is $36.50 for remimazolam over fentanyl+Versed.

If a busy endoscopy center does 100 colonoscopies cases per week, the cost increase is $2327 per week for remimazolam over propofol, or $3650 per week for remimazolam over fentanyl+Versed. These are a prohibitive cost increases with no clear added benefits. The only way remimazolam could result in cheaper sedation costs would be if a healthcare system was looking to eliminating the cost of paying for an anesthesia provider for these procedures. The pairing of remimazolam+gastroenterologist sedation rather than propofol+anesthesiologist sedation could afford significant cost savings for a healthcare system.

3. Total intravenous anesthesia (TIVA). TIVA could include a continuous infusion of the ultra-short-acting narcotic remifentanil plus a continuous infusion of the ultra-short-acting remimazolam. An alleged advantage of this technique could be the fast offset time of these two TIVA anesthetic agents. I doubt this technique will gain market share. It’s far easier to turn on the knob of a sevoflurane vaporizer than to load and manage two TIVA-syringe pumps. As well, the added expense of a prolonged infusion of remimazolam will be prohibitive.

4. ICU sedation. Remimazolam has the advantage of ongoing first-degree elimination, meaning that no matter how long the drug is infused, it will always have reliable elimination by esterase and will not accumulate in the plasma. Prolonged ICU sedation with propofol can lead to the Propofol Infusion Syndrome (PRIS). PRIS occurs predominantly in patients receiving high doses of propofol for a prolonged period. Risk factors for the development of PRIS include a critical illness such as sepsis, head trauma, use of vasopressors, and carbohydrate depletion (liver disease, starvation, or malnutrition). PRIS commonly presents as a high anion gap metabolic acidosis, with rhabdomyolysis, hyperkalemia, acute kidney injury, elevated liver enzymes, and decreased cardiac output. Because of the risk of PRIS,  the duration of propofol infusion administration should not exceed 48 hours and the administered dose should not be higher than 4 mg/kg/hour.

This potential advantage of remimazolam over propofol will be offset by the increased expense of hours or days of remimazolam utilization in an ICU sedation situation. ICU sedation with fentanyl and older benzodiazepines such as Ativan will have the advantage of a lower cost. 

In the hands of an anesthesiologist, propofol is an elegant and almost ideal intravenous sedative, with the advantages of rapid onset, rapid offset, inexpensive generic pricing, minimal cardiovascular/respiratory depression, and lack of nausea. Propofol administration does carry the risks of upper airway obstruction, hypoventilation, and low oxygen saturation, but when an anesthesiologist is present these risks are minimal. 

If a healthcare organization doesn’t want to employ an anesthesiologist or a CRNA for a case which requires procedural sedation, then remimazolam may be an excellent sedative choice. Will gastroenterologists prefer to sedate patients with remimazolam plus fentanyl without an anesthesiologist? Or will they prefer to have an anesthesiologist present to administer propofol? Expect gastroenterologists to prefer the latter, because they are not only off-loading the task of sedating the patient, they are also off-loading the risks of managing the patient’s medical co-morbidities, which can be significant if a patient has lung disease, cardiac disease, morbid obesity, or obstructive sleep apnea.

The remimazolam story suggests one of my favorite anecdotes: A former Stanford Chairman of Anesthesiology and friend of mine who left the university in 2006 to become a pharmaceutical company executive, first at Novartis and then at AstraZeneca. Ten years ago, when I asked him what new anesthesia drugs were in the pipeline, he answered, “None, and there probably will be very few new ones. The drugs you have now are inexpensive generic drugs, and they work very well. The research and development costs to bring a new anesthetic drug to market are prohibitively expensive, and unless that new drug is markedly better, it will not push the inexpensive generic drugs out of use.”

Remimazolam will capture a very small market in the United States. Until remimazolam becomes an inexpensive generic drug, I see it as a medical white elephant rather than a wonderful anesthetic advance.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE RESCUE: UNDERWATER ANESTHETICS EXPLAINED

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Underwater general anesthetics of 3 hours duration? See it in The Rescue, a new National Geographic Documentary Film directed by Jimmy Chin (winner of the 2018 Academy Award for Best Documentary Feature for Free Solo)The Rescue details the miraculous extraction of 12 boys and their coach from a flooded Thailand cave in June and July of 2018. The Rescue required 13 underwater general anesthetics delivered by an anesthesiologist and maintained by non-medical cave divers during their 3-hour swim to the mouth of the cave. How did this once-in-history anesthetic tour de force come about? You can watch the movie—a favorite for this year’s Oscar for Best Documentary—on Disney+ for their $7.99 monthly fee. This column explains the specifics as to how anesthesiology innovation saved thirteen lives in The Rescue.

The site of The Rescue was the Tham Luang Nang Non cave in Chiang Rai Province in northern Thailand. Twelve boys of ages 11 – 16 from the Wild Boar soccer team and their coach entered the cave for a birthday celebration. June monsoon rains hit and flooded the entrance of the cave, trapping all thirteen inside. 

The boys were trapped at the left of this diagram. The entrance to the cave is at the right.

The synopsis of The Rescue follows this timeline:

Day 1 – Trials of gas-powered generators to pump the water out of the cave fail to lower the water level.

Day 2 – The Thai Navy Seals arrive on site. They attempt scuba diving into the cave but abort their efforts because of low visibility and difficult access. They were only able to advance 200 meters into the cave. None had experience diving into dark narrow caves. John Volanthen, an information technology consultant who does cave diving as a hobby, shows them a map of the long tortuous cave route, and surmises that the boys are trapped about 2 kilometers into the cave. Richard Stanton, a retired middle-aged British firefighter who is also an expert in cave diving, is alerted to the predicament, and flies to Thailand to help. 

Day 5 – Stanton assembles a collection of his friends who are fellow cave divers. These men have real world jobs such as electricians, contractors, mechanics, and consultants, but are experienced in underwater cave exploration. At first, the Thai Navy Seals will not allow the cave divers to attempt a rescue because they deem it is too dangerous. Eventually the Thai Seals consent to let the cave divers proceed. Stanton describes their passage as scuba diving against a raging river of white water, with the added problem of poor visibility. They surface at the first air-filled chamber inside the cave, and instead of finding the boys they find four pump workers who were unknowingly trapped inside the cave. The cave divers swim the pump workers out, sharing their scuba regulators as they swim, but find the pump workers are easily panicked in the dark cold underwater conditions, and the passage out is very difficult. Their entire swim rescue of these men takes only 30 to 40 seconds, yet Stanton describes the ordeal as “an underwater wrestling match.” 

Day 7 –Rain continues and the water levels rise. Hundreds of people surround the mouth of the cave, and worldwide media coverage is ongoing.

Day 10 – The cave divers continue their attempts to explore the length of the cave. They extend a rope behind them to trace their route back to the outside world. After several hours of traversing the narrow route, including passing through several air chambers above water, they reach a chamber where the atmosphere smells pungent. They fear they have located the rotting flesh of decomposing bodies. Instead they shine a light into the chamber and see 13 people—the Thai boys and their coach—sitting on the rocky floor. They are skinny and frightened, but alive. They’ve had no food for 10 days and have existed by drinking the water from the cave. The cave divers return to the mouth of the cave and announce that the boys are alive. 

Day 12 – The divers follow the rope back to the boys and bring them power gel food and foil blankets. Their plan going forward is unclear. There appears to be no way to swim the boys out for the 3-hour underwater journey to the mouth of the cave. One option is to wait until October (four months) until the monsoon season is over, and the cave is no longer flooded. A second option is to somehow drill down to where the boys are trapped. A third option is to pump out millions of gallons of water out of the cave, but this is also deemed impossible. Another cave diver friend of Stanton’s is Dr. Richard Harris, who lives and works in Australia. Dr. Harris is an anesthesiologist. The team of cave divers telephone him and ask if the boys can be anesthetized for 3 hours to be extracted underwater. His initial answer is no, that this would be impossible.

At the same time, the divers bring an oxygen analyzer into the cave and discover that there is only 15% oxygen left in the atmosphere where the boys are trapped. Normal room air contains 21% oxygen, and 15% oxygen is considered an eminent threat to life for the boys. Immediate action is necessary.

Day 14 – Dr. Harris arrives at the cave. He and his cave diver colleagues come up with a plan to anesthetize and extract the boys, but there is a new problem: The Thai government does not want them to attempt the rescue. The government fears the boys will all die in the futile attempt. Enter Josh Morris,   a cave diver who speaks Thai. He explains the facts and the threat of the low oxygen atmosphere to the government authorities, and convinces them there is no time to waste and that there is no other workable plan. The government agrees to let the cave divers proceed.

Day 15 – The rescue plan is as follows: Divers will swim into the cave to the chamber where the boys are located. The divers will transport an extra oxygen cylinder, a full-face dive mask and regulator, and a dive suit for each boy. They will also carry three medications: 1) Xanax, an oral anti-anxiety pill in the Valium family of benzodiazepines; 2) ketamine, an injectable general anesthetic drug, carried in a syringe-and-needle setup; and 3) atropine, an injectable drug which dries up oral secretions (necessary because ketamine can cause excessive salivation significant enough to choke off breathing). When the cave divers arrive at the chamber where the boys are situated, they dress the first boy in a dive suit complete with a rubber head-covering. Dr. Harris then administers the Xanax pill and the intramuscular injections of ketamine and atropine. After the boy loses consciousness, they tie the boy’s hands behind the boy’s back and apply the full-face oxygen dive mask to keep the water out. The boy is placed in the water atop a full oxygen cylinder, and a diver guides the boy and the cylinder under the water. This diver clings to the rope as he begins the 3-hour journey back toward the cave entrance. There are multiple air chambers on the route back to the entrance. At each air chamber, the diver surfaces and assesses if the boy is still alive and breathing, and whether the boy is anesthetized deeply enough. If the boy is twitching, the diver injects more ketamine. Keep in mind this diver is not a doctor—he has been taught by Dr. Harris to inject more drug if the boy seems to need more sedation. This process is repeated for four boys the first day and is successful. All four reach the surface, alive and anesthetized, and are transported to a nearby hospital.

Day 17 – The process is repeated and four more boys are successfully extracted.

Day 18 – A heavy monsoon rainstorm is expected, so all five remaining individuals are extracted before the cave is totally flooded. The cave divers are hailed as civilian heroes as the last of the boys is rescued. The rescue effort involved more than 10,000 people, including divers, rescue workers, 900 police officers, 2,000 soldiers representatives from 100 governmental agencies, 10 police helicopters, more than 700 diving cylinders, and the pumping of more than a billion liters of water from the caves. 

In the aftermath, Richard Stanton returns to England and receives a George Medal, the second highest award for civilian gallantry, in a regal ceremony at Buckingham Palace. 

The Rescue is riveting and suspenseful, and ultimately worth the one hour 45 minutes and the $7.99 you’ll invest in it.

*

*

Here’s the Anesthesia Consultant analysis of the medical circumstances in The Rescue:

  • In an operating room, anesthesia is typically delivered as a gas (e.g. sevoflurane), or intravenously. Neither gas anesthesia nor intravenous anesthesia is possible in an underwater cave rescue. Ketamine is the only general anesthetic drug which can be injected. Ketamine can be injected either into an IV (e.g. in an operating room by an anesthesiologist) or into a muscle (e.g. in a cave in Thailand). Ketamine has the advantages of quick onset and a lack of respiratory depression—that is, ketamine will not stop a patient’s breathing. But if a patient becomes over-sedated it’s possible they will have upper airway obstruction which can lead to inadequate ventilation, so ketamine administration typically needs to be administered by an anesthesia professional who monitors the patient’s breathing—unless you’re rescuing kids in a cave. Ketamine also has theses disadvantages: It results in a relatively slow wake up (compared to propofol and/or sevoflurane gas); it causes markedly increased saliva production (which is why we need to administer atropine, a secretion-blocking anticholinergic drug—along with ketamine); and ketamine can cause vivid bad dreams—for this reason we routinely give an IV benzodiazepine such as Versed along with ketamine. Re-dosing of ketamine was required because the drug’s half-life (the time it takes for the total amount of ketamine in the body to be reduced by 50%) is about 2.5 hours in adults. Dr. Harris couldn’t be with every boy en route, which is why he had to train the other cave divers how to inject ketamine for redosing.
  • Dr. Harris could have chosen to use an injection of intramuscular Versed instead of Xanax (the oral benzodiazepine used in The Rescue). A disadvantage with oral Xanax is its slow onset time. It’s unlikely the Xanax began to work until it was absorbed from the stomach and carried by the bloodstream to the brain, which likely took thirty minutes or more.
  • The choice of full-face dive masks (FFMs), capable of maintaining constant positive airway pressure (CPAP) during the anesthetics, was brilliant. All acute medical care, be it in an operating room, an intensive care unit, an emergency room, a battlefield, or a cave, follows the priority order of A-B-C, or Airway- Breathing-Circulation. The problems of keeping the airway open, as well as keeping oxygenation and ventilation intact, were daunting challenges underwater. There were no research articles and no textbooks to tell the cave divers how to deal with this situation. They used their best strategy and made their best guess, and it was successful. If excessive water had leaked into the mask, a boy could drown. 
full face dive mask

  • Fortunately all the boys and their coach were slender (per the video footage) and had low body-mass-indexes (BMIs). A patient with a low BMI typically has an easy airway, and would have a lower chance of obstructing their upper airway during a 3-hour underwater general anesthetic. An overweight patient would probably not have survived a 3-hour underwater general anesthetic. As well, all the boys and their coach were young and healthy with normal hearts and lungs. If they had been older, with any abnormal cardiac or respiratory function, they may not have survived the 3-hour underwater general anesthetic.
The Thai boys in the cave

  • It’s striking that the boys could survive for two weeks with only water and no food. Hydration is critical—no one can survive two weeks without water—but food was not imperative for this length of time. They survived without calories for two weeks, but humans can only survive for about three days without water.
  • Hypothermia, or low body temperature, was a risk during the underwater rescue. Anesthetized patients have no muscle movement and are unable to generate any body heat in the cold water. The scuba suits and hoods were aimed at minimizing the temperature drop while the boys were anesthetized.
  • No one monitored the vital signs of the boys during their 3-hour underwater general anesthetics. General anesthetics always require monitoring of these parameters: heart rate, oxygen saturation, blood pressure, ECG, respiratory rate, temperature, and end-tidal carbon dioxide expiration. In an underwater cave anesthetic, none of this was possible. Luckily the ketamine anesthesia as administered must have kept all the vital signs within acceptable limits.
  • The oxygen concentration in the atmosphere of the cave was only 15%, far lower than the normal room air concentration of 21% we’re all breathing right now. This oxygen concentration of 15% is roughly equivalent to the oxygen concentration atop a mountain at 10,000 feet of altitude. The boys tolerated the gradual decrease of the oxygen level within the cave from 21% to 15% over 12 days without any brain damage or any damage to a vital organ system. An acute decrease from 21% to 15% may have caused low blood oxygen—hypoxia—and organ damage. During anesthetics in an operating room, anesthesiologists commonly administer at least 40-50% oxygen—a higher concentration than in room air—as an extra margin of safety.

The film The Rescue documents a remarkable feat of emergency medicine and emergency anesthesia care. I recommend you see the movie, and I hope you’ll understand the medical care better because of the discussion presented above. 

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

PRESIDENT BIDEN’S COLONOSCOPY ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Three days ago, I was giving anesthesia for six consecutive colonoscopy patients. Following my first case, I checked my phone and discovered that the President of the United States Joe Biden was having a colonoscopy at Walter Reed Medical Center that very morning. The headlines stated that for the first time, temporary acting presidential power was being turned over to a woman, Vice President Kamala Harris, during the time of President Biden’s colonoscopy anesthesia.

I mentioned this to the gastroenterologist I was working with that day, and he asked, “How long do you think he will be unable to make decisions as the President? We tell our patients not to drive the rest of the day, and not to make any important life decisions after their general anesthetic. Biden has the most difficult and most important job on Earth. When can he return to duty?”

I answered, “My guess is that he’ll have the same propofol anesthetic we’re administering today. The procedure will last thirty minutes, he’ll begin to awaken five minutes after the propofol is discontinued, and within an hour he’ll feel clear-headed.” The gastroenterologist was dubious that the leader of the free world would be alert enough to resume power only one hour after receiving propofol. Joseph Biden was one day short of his 79th birthday when the colonoscopy took place. Later that morning the news services reported that the President had transferred presidential powers to Kamala Harris at 10:10 a.m. EST and resumed his presidential powers at 11:35 a.m., a mere 1 hour and 25 minutes later. 

The evening after the colonoscopy, comedian Colin Jost of Saturday Night Live joked about Biden’s colonoscopy.  During Weekend Update, Jost reported on Biden’s resumption of all his presidential responsibilities immediately following the colonoscopy, and noted that Biden had just turned 79. “Half the country already thinks he’s senile,” Jost said. “You can’t drop all that on him the second he comes out of the gas.”

A note from an anesthesiologist to the comedy writers: No one uses “gas” for anesthesia for a colonoscopy. The anesthetic is solely from intravenous (IV) drug(s).

I have no specific knowledge of what anesthetic drug regimen the President received for his colonoscopy, but more likely than not he received propofol. Anesthesia for colonoscopy is typically administered so that patients have no awareness during this procedure, a procedure which does not involve surgical pain, but rather involves the uncomfortable entrance of a 66-inch-long flexible hose, one-half-inch in diameter, into their anus, rectum, and colon. 

For the quickest recovery after colonoscopy, one option is no anesthesia at all. Very few patients sign up for a colonoscopy without any intravenous anesthesia. The press reports about Biden’s colonoscopy stated that he had anesthesia, so let’s discount the option that he had the procedure while awake. 

Colonoscopy sedation is typically done with one of two recipes: 1) conscious sedation with a combination of intravenous Versed (generic name midazolam, a benzodiazepine in the Valium family) plus intravenous fentanyl, such that the patient has no memory of the procedure; or 2) intravenous general anesthesia with propofol by continuous infusion or by intermittent boluses so that the patient is unresponsive. The combination of Versed and fentanyl leads to a slower wakeup and recovery than with propofol. The duration of effect of Versed is approximately 30 to 45 minutes after a single dose, with a recovery time of 2 to 6 hours. The duration of effect of IV fentanyl begins within minutes and lasts for 30 to 60 minutes after a single dose. 

Propofol for colonoscopy leads to a quicker wakeup, a quicker discharge home, and less hangover. Virtually every surgical general anesthetic in the United States includes propofol, and anesthesiologists are experts at the administration and pharmaceutical properties of the drug. Propofol is an intravenous nonbarbiturate anesthetic which induces anesthesia quickly and provides a rapid emergence from anesthesia. The onset of action is within 20 – 40 seconds. The anesthesia provider for a colonoscopy will continue administering IV propofol until the procedure is over. A typical colonoscopy will last 20 – 40 minutes, depending on whether the gastroenterologist needs to take extra time to remove any colonic polyps. In Biden’s case, a single 3 mm benign-appearing polyp was identified and removed.

Propofol’s pharmacokinetics are described by two phases:

In the first phase (red curve), the plasma concentration decreases rapidly because the drug redistributes, or spreads, out of the bloodstream into other tissues of the body. The halflife of this fast redistribution is only 2 – 8 minutes, meaning the concentration of propofol in the bloodstream is halved every 2 to 8 minutes. This first phase explains the quick transition to wakefulness up after the drug is stopped. The second phase (black curve) is the elimination of propofol from the body. The half-life time of this elimination from the body is 4 – 7 hours (reference: MILLER’S ANESTHESIA, 9thedition, chapter 23 on Intravenous Anesthetics).

The graph below depicts the timeline after propofol is discontinued. After a one-hour infusion, the concentration of propofol in the blood drops to near zero within 30-40 minutes.

THE PROPOFOL CONCENTRATION APPROACHES ZERO 40 MINUTES AFTER THE END OF INFUSION

The website PDR.net affirms this, stating that “Recovery from anesthesia is rapid (8 to 19 minutes for 2 hours of anesthesia) and is associated with minimal psychomotor impairment.” The PDR also states that “The elimination half-life of 3 to 12 hours is the result of slow release of propofol from fat stores. About 70% of a single dose is excreted renally (by the kidneys) in 24 hours.”

While the President would be awake one hour after receiving 30 minutes of propofol, and the blood concentration would be minimal, it still takes 24 hours for 70% of a single dose of propofol to be excreted by the kidneys. Therefore, one hour after the propofol was discontinued, even though the blood concentration was minimal, a significant amount of the drug would still be in the President’s body.

I’ve had propofol anesthesia for a colonoscopy, and I can attest that I woke up promptly and was in an automobile heading home within 45 minutes after the end of the procedure. I felt alert, albeit a bit woozy, after 60 minutes of recovery time. Did I feel it would have been safe for me to resume my duties administering general anesthetics to patients at that time? No. Would a major American airline allow one of its pilots to fly passengers at that time? No. Would the U.S. Army allow a general to command thousands of soldiers at that time? I doubt it.

One hour after a propofol colonoscopy anesthetic, the President would be awake enough to converse and give a “thumbs up.” Would he be alert enough at that point to make decisions regarding the nuclear football, a potential attack on Taiwan by mainland China, or a terrorist attack on a major United States city? Was this nearly 79-year-old man safe to make all the acute decisions the United States President could have to make, only one hour after discontinuing propofol? 

The Mayo Clinic website states that, “After the exam (colonoscopy), it takes about an hour to begin to recover from the sedative. You’ll need someone to take you home because it can take up to a day for the full effects of the sedative to wear off. Don’t drive or make important decisions or go back to work for the rest of the day.” 

Was Biden fit to run the country 55 minutes after his colonoscopy anesthetic? 

Hmmm. The decision as to whether he was recovered enough to resume running the country . . . was a decision made by President Biden’s doctors on that day.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE NEW 2022 ASA DIFFICULT AIRWAY ALGORITHM

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The American Society of Anesthesiologists (ASA) just published a 2022 update on their ASA Difficult Airway Algorithm Guidelines. The 2022 document is a revision of the 2013 publication “Practice guidelines for management of the difficult airway: A report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway.” The 2022 ASA Difficult Airway Algorithm Guidelines are 51 pages in total.

The most important changes are identified by examining the 2013 and the 2022 algorithms side by side. Let’s look at the 2013 flow chart algorithm and compare it to the 2022 flow chart algorithm below:

THE 2013 ASA DIFFICULT AIRWAY ALGORITHM

THE 2022 ASA DIFFICULT AIRWAY ALGORITHM

Note these major changes from 2013 to 2022:

  1. The top third of the 2022 algorithm lists factors which direct the anesthesiologist to perform awake intubation. The reason for this change is undoubtably the wisdom of utilizing awake intubation when a significant risk of a difficulty airway exists. There are minimal airway risks when a patient is awake, and the benefit of placing the endotracheal tube in a difficult airway patient while the patient is awake is immense. When we give mock oral board examinations to anesthesia residents at Stanford, and we describe to the examinee that the patient has a difficult airway, the answer of “I’d do an awake intubation” is hard to criticize and almost never leads to a catastrophe. In contrast, inducing general anesthesia prior to intubation in these patients can lead to a “Can’t intubate-can’t oxygenate” emergency, which can lead to a cardiac arrest and possible anoxic brain damage.
  2. The text highlighted in red in the 2022 document is both new and vital. The first of these is “OPTIMIZE OXYGENATION THROUGHOUT,” under the pathway INTUBATION ATTEMPT WITH PATIENT AWAKE, with the footnote 2Low- or high-flow nasal cannula, head elevated position throughout procedure. Noninvasive ventilation during preoxygenation. The message is to keep oxygen flowing via nasal cannula throughout airway management attempts to minimize hypoxia, and to keep the head elevated to maximize the functional residual capacity (FRC), which is the reservoir of oxygen in the patient’s lungs.
  3. LIMIT ATTEMPTS, Consider calling for help” is new and printed within a red box in the INTUBATION ATTEMPT AFTER GENERAL ANESTHESIA –> FAILED pathway. This is an effort to prevent repetitive unsuccessful intubation attempts from soaking up precious time, during which the brain is poorly oxygenated.
  4. LIMIT ATTEMPTS AND CONSIDER AWAKENING THE PATIENT” is new and printed in red in the NON-EMERGENCY PATHWAY under the “Ventilation adequate/intubation unsuccessful” pathway. This is again an effort prevent repetitive unsuccessful intubation attempts from soaking up precious time, during which the brain is poorly oxygenated.
  5. LIMIT ATTEMPTS AND BE AWARE OF THE PASSAGE OF TIME, CALL FOR HELP/FOR INVASIVE ACCESS” is new and printed in red in the EMERGENCY PATHWAY under the MASK VENTILATION NOT ADEQUATE, SUPRAGLOTTIC AIRWAY NOT ADEQUATE pathway. This is again an effort to prevent repetitive unsuccessful intubation attempts from soaking up precious time, during which the brain is poorly oxygenated.

These changes, printed or boxed in red, emphasize that the pace of difficult airway decisions is important. The duration of elapsed time is vital. When an anesthesia provider cannot intubate the patient and then cannot ventilate the patient, the oxygen level in the blood can plummet. There is a significant danger of anoxic brain damage within minutes. I’ve previously reviewed this topic in a 2019 Anesthesia Grand Rounds Lecture at Stanford, summarized in my article “Five Minutes to Avoid Anoxic Brain Damage.” The U.S. Library of Medicine website states that “Brain cells are very sensitive to a lack of oxygen. Some brain cells start dying less than 5 minutes after their oxygen supply disappears. As a result, brain hypoxia can rapidly cause severe brain damage or death,” and “Time is very important when an unconscious person is not breathing. Permanent brain damage begins after only 4 minutes without oxygen, and death can occur as soon as 4 to 6 minutes later.”

The sentence “Be aware of the passage of time, the number of attempts, and oxygen saturation” appears more than once in the 2022 Difficult Airway Algorithm Guidelines article, and is a key point for all anesthesia providers who encounter a difficulty airway emergency.

In my roles as an anesthesia quality assurance reviewer or a medical-legal expert consultant, I’ve seen this issue arise multiple times. Even though anesthesia providers believe they are following the Difficult Algorithm accurately, they are doing things too slowly, and they waste too much time. Once it’s clear that a “Cannot intubate-cannot oxygenate” scenario is occurring, the time clock is running, and the anesthesia provider must not only do the correct thing but he or she must do the correct thing without undue delay. The necessary procedure may be as invasive as a cricothyroidotomy/front of the neck access via the scalpel-bougie-endotracheal tube approach.  

The five points listed above are the major changes in the algorithm. In addition, the new 2022 article includes a Pediatric Difficult Airway Algorithm and an approach to Extubation of the Trachea in a Difficult Airway Patient. Other important quotes from the 2022 article include (bold emphasis added):

  1. “The consultants and members of participating organizations strongly agree with recommendations to perform awake intubation, when appropriate, if the patient is suspected to be a difficult intubation and difficult ventilation (face mask/supraglottic airway) is anticipated.”
  2. “Meta-analyses of randomized controlled trials comparing video-assisted laryngoscopy with direct laryngoscopy in patients with predicted difficult airways reported improved laryngeal views, a higher frequency of successful intubations, a higher frequency of first attempt intubations, and fewer intubation maneuvers with video-assisted laryngoscopy.”
  3. The footnote (7) for alternative difficult intubation approaches states: 7Alternative difficult intubation approaches include but are not limited to video-assisted laryngoscopy, alternative laryngoscope blades, combined techniques, intubating supraglottic airway (with or without flexible bronchoscopic guidance), flexible bronchoscopy, introducer, and lighted stylet or lightwand. 
  4. “A randomized controlled trial comparing a videolaryngoscope combined with a flexible bronchoscope reported a greater first attempt success rate with the combination technique than with a videolaryngoscope alone.”
  5. When appropriate, refer to an algorithm and/or cognitive aid.” 

AUTHOR’S NOTE: I’d suggest that the Stanford Emergency Manual of cognitive aid algorithms for anesthesia and ACLS emergencies be onsite at all anesthetizing locations. 

I’d also recommend that the 2022 ASA Difficult Airway guideline algorithm be onsite at all anesthetizing locations.

Every anesthesia professional will encounter patients with difficult airways—this is one of the most important and most feared situations in our specialty. Commit the 2022 ASA Difficult Airway Algorithm to memory. Use awake intubation when you’re concerned about the potential of a “Cannot intubate-cannot oxygenate” scenario. And if you’re in the middle of a difficult airway emergency, call for help and be aware of the passage of time, the number of attempts, and the oxygen saturation. Don’t let an excessive number of minutes elapse without regaining oxygenation of your patient.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

PHYSICIAN TRAINING: TWO FORKS IN THE ROAD

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re in the middle of your medical school years, and wondering what specialty to pursue. There are two major forks in the road when trying to choose the career that suits your emotional make-up and work ethic. The sooner you understand these two forks in the road, the better off you’ll be. 

CLINIC DOCTOR OR ACUTE CARE DOCTOR?

The first major fork in the road is whether you’re best suited for a career as a clinic doctor or as an acute care doctor. The main specialties for clinic doctors are internal medicine, family practice, pediatrics, and psychiatry. The main specialties for acute care doctors are surgery, anesthesiology, emergency medicine, and obstetrics-gynecology.

Internal medicine and pediatrics include subspecialties. The subspecialties of endocrinology, oncology, nephrology (kidney specialist), and allergy-immunology are primarily clinic doctors. Cardiologists are hybrid clinic/acute care doctors who must first complete a residency in internal medicine, and then subspecialize with 3-4 additional years of fellowship training. Pulmonologists (lung specialists) are also hybrid clinic/acute care doctors who must first complete a residency in internal medicine, and then subspecialize with 2 additional years of fellowship training.

Pursue a career as a clinic doctor if you enjoy sitting in a room, listening to patients and talking to patients. Most clinic doctors rarely place a tube or a needle into a patient after their residency training is completed. Most clinic doctors work daytime hours, but have weekend call and night call, which may include phone consultations or emergency room visits. Clinic doctors see multiple patients per day, perhaps 4-8 patients per day for psychiatrists, and up to 30 patients or more for some specialists such as allergists.

Pursue a career as an acute care doctor if you prefer adrenaline-charged arenas such as the operating room, the intensive care unit, the labor and delivery suite, or the emergency room. The pace will be much faster than in a clinic, and the stress level will be higher. You’ll perform surgeries, deliver babies, or run trauma Code Blues. If you become an anesthesiologist, you’ll routinely put your patients into pharmaceutical comas and then reverse that status.

These are some of the significant differences between the clinic path and the acute care path:

  1. Sudden risks are almost unknown in clinics. In a clinic setting, doctors make diagnoses, order tests, and prescribe oral medications. In an acute care setting, health care interventions involve scalpels, tubes, IVs, intravenous medications, breathing tubes and ventilators. Malpractice events are less likely to occur in clinic settings. It’s difficult to harm a patient in a clinic. Clinic errors may involve the failure to make the correct diagnosis or the failure to follow up on the result of an important test. Acute care errors can include failure to manage the A-B-Cs of airway, breathing, and circulation safely.
  2. Income differences. Physicians who do procedures, and who incur the risks of procedures gone wrong, earn more money. Physicians who staff clinics usually earn less. This fact may be concealed from medical students. Once students become aware of the income differences, the invisible hand of capitalism tends to drive them into the acute care specialties which are higher paying. The financial numbers are pertinent, because the median debt for an American medical school graduate was $200,000 in 2019. The average four-year cost for a public medical school education was $250,222, and the average four-year cost for a private medical school education was $330,180.  Medical school graduates need to earn a significant income to repay their student loans.
  3. Long-term relationships with patients. Primary care clinic doctors often attend to the same patients for decades, and form long-term cordial relationships with their patients. Acute care doctors typically see a patient once, for a surgery, an anesthetic, a childbirth, or an emergency room visit. Acute care doctors rarely develop lasting interactions with any of their patients. Clinic doctors may receive holiday cards or presents from their patients; acute care doctors will not.
  4. Lifestyle differences. Clinic doctors mainly work daytime hours, although they may receive afterhours phone calls regarding patient health problems. If one of their patients becomes acutely ill, a primary care doctor may see that patient in the emergency room. Some acute care specialists work as shift labor, especially emergency room doctors, anesthesiologists, or hospitalists. Acute care doctors may also have schedules in which they can take blocks of weeks or even months off at a time, giving them the option to pursue longer vacations or travel. Primary care doctors are rarely able to take long blocks of time away from their patients.

ACADEMIC DOCTOR OR COMMUNITY DOCTOR?

A second fork in the road during physician training is the choice whether to become an academic physician or a community physician. An academic physician is a faculty member at a medical school. Their job description includes teaching younger doctors and mentoring younger doctors in patient care. Academic physicians work in university hospitals, Veterans Administration (VA) hospitals, and county hospitals—any setting where medical students and resident physicians are training. Ambitious medical students often plan to become academic physicians, because they admire the academic professors who are training them. Ambitious medical students may profess that they want to become academic professors, because it may appear this career path is what the finest university training programs are looking for. The gambit seems to look like this: if you want to be admitted to a famous university residency program, tell them you want to be a famous professor just like the individual who is interviewing you for that program. I can only advise you to tell the truth about your career ambitions.

Most physicians eventually drift away from academic intentions, and become community physicians. Community physicians are individuals who work at your local clinic, your local hospital, or your local health maintenance organization. A 2017 article stated that “Although 45 percent of graduating medical students aspire to work in an academic setting, only about 16 percent will do so. Of those who do work in academic settings, up to 38 percent will leave academia within 10 years.” 

These are some of the significant differences between the between the academic path and the community path:

  1. Income. Academic physicians usually earn less money than community physicians. Academics spend part of their time teaching young doctors, instead of seeing additional patients. Academics may also spend part of their time doing laboratory science or clinical studies, instead of seeing additional patients. Academic departments also typically pay a “Dean’s tax” to the medical school dean, as part of their agreement within the medical school. 
  2. Housestaff back-up. Academic physicians have a team of housestaff physicians—interns, residents, and fellows—to do many of the mundane tasks of patient care for them. These housestaff physicians may sleep in the hospital and handle middle-of-the night issues while the academic faculty member sleeps at home. This is a significant benefit. I can attest that as you age, you’ll have less and less desire to get out of bed to handle urgent medical issues. Community physicians must function like interns. They set up call schedules to share night duty with other community physicians in the same specialty, but if there’s an issue at night when you’re on call, you will have to drive to the hospital to handle it.
  3. Tenure for professors. If academic professors have a productive career of publishing significant research, their university may award them with tenure, defined as lifetime job security at that university. Tenure guarantees a distinguished professor academic freedom and freedom of speech by protecting him or her from being fired no matter how controversial or nontraditional their research, publications, or ideas are. This benefit is usually only an option for basic science research doctors who are specifically hired to “tenure-track” appointments.

A THIRD FORK:

A small minority of medical school graduates shun either academic or community practice, and instead take their MD degree and go directly to work in industry either as a researcher at a medical company, or a consultant in a medical industry. Consider this path if you believe you’re not suited to taking care of patients.

My Journey:

I had personal experience with each of these forks in my medical education road. During medical school I was having a difficult time deciding between surgery and internal medicine. During my final summer quarter break, I returned to my hometown and joined the local general surgeon to observe him performing a gall bladder surgery. After the procedure, I questioned him about his satisfaction with his career in general surgery. He told me, “I’m very happy with general surgery, but if I had to do the 7-year residency over again, I could never do it. It was that difficult.” The look on his face told me what I needed to know, so I opted for a career in internal medicine. I matched at Stanford and began my three-year residency. During my second year, while I was spending my afternoons in the internal medicine clinic, I realized I preferred acute care to clinic care. That same year I’d spent one month in the Stanford intensive care unit (ICU) rotation. The Stanford anesthesia department ran the ICU, and I met multiple faculty and resident anesthesiologists who loved their specialty and were excellent role models. I made an appointment to meet with the ICU physician-in-chief, and told him I wanted to become an ICU specialist like him. He told me, “If you want to be an ICU doctor, I’d advise you to do an anesthesia residency first, because ICU care involves airway-breathing-circulation, and anesthesiologists are the airway experts. But once you finish your anesthesia residency, you’ll never come back to see me, because you’ll love anesthesia so much you’ll probably just do anesthesiology as a career.” I followed his advice. I applied to anesthesia residencies, and was eventually accepted to begin my anesthesia training, albeit three years into the future.

During those three years, I finished my internal medicine training. Then I hovered at the fork in the road between academic and community medicine during my one-year gap between my internal medicine and anesthesia residencies. The Stanford Department of Internal Medicine hired me for a twelve-month position as a faculty member in the emergency room. My role was to be the attending in the ER from 9 a.m. to 5 p.m. Monday through Friday, and to give a lecture to the residents each morning at 8 a.m. I was thrilled to be on the faculty at Stanford at the young age of 29. I discovered during that year that if you’re an academic doctor/clinician/educator who doesn’t do research, that you have minimal respect within your department. That same year I met many community doctors on their ER duty who were very happy with their work. My conclusion from my one-year academic appointment was that if you enjoyed clinical care, then it was better to just graduate from your training program and go out there and do clinical care in the community. If I’d had the skillset to become a tenure-track academic professor, perhaps I would have pursued a university career, but I did not.

THE BIG PICTURE:

There is tremendous competition to become a physician. Applications to medical school are at an all time high. According to the American Association of Medical Colleges (AAMC), applications increased 18% from 2020 to 2021. Stanford University School of Medicine received 11,000 applications for an admission class of 90 spots.

It’s an honorable and a wonderful career to heal and take care of sick and suffering as a medical doctor. If you’re admitted to an American medical school, you’ll have the choice whether to become a primary care doctor or an acute care doctor. You’ll have the choice to become an academic physician or a community physician. But you’ll have made the most important choice already—to become a medical doctor in the first place. 

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

EMERGENCY AT A SURGERY CENTER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re the anesthesiologist assigned to a freestanding ambulatory surgery center (ASC). Are you and the facility prepared for an emergency at a surgery center? Let’s examine this case study:

You meet your first patient of the morning, a 75-year-old female scheduled for lateral epicondylitis release surgery on her right elbow.  You review her medical record and interview her. You discover she had her aortic valve replaced with a small metal valve two years earlier. She is active, although she does experience mild shortness of breath on walking stairs. She is obese, weighing 200 pounds, with a BMI=35. She is on no medications. On physical exam, her vital signs are normal, her lungs are clear, and her heart exam is positive for the clicking sound of a mechanical valve and a 2/6 systolic murmur. She has a thick neck and a large tongue. The surgeon says he will only need to operate for 15 minutes. The patient refuses a regional nerve block, so she’ll need to be asleep.

You attach the standard vital sign monitors, preoxygenate the patient, and induce anesthesia with 150 mg of propofol, 50 micrograms of fentanyl, and 40 mg of rocuronium. You intubate her trachea with a 7.0 tube without difficulty, and place her on a ventilator delivering 1.5% sevoflurane and 50% nitrous oxide.

The patient’s arm is prepped and draped. The surgeon injects 2% lidocaine at the skin incision site, and the surgery begins. Vital signs remain normal with BP=110/70, P=80, and oxygen saturation=99%. The surgery concludes after 17 minutes. You discontinue the sevoflurane and reverse the paralysis with sugammadex. The patient’s blood pressure increases to 150/100 within three minutes. Three minutes later the oxygen saturation drops to 80% and thick frothy fluid bubbles into the endotracheal tube and the circle breathing hoses which connect the patient to the anesthesia machine. The blood pressure is now BP=180/120.

You call for help and attempt to suction the frothy fluid out of the breathing tubes. You listen to the lungs and hear loud rattling rales. You assess that you’re dealing with pulmonary edema (excess fluid in the lungs). The patient’s oxygen saturation drops to 70%. 

A second anesthesiologist responds to your call for help and arrives in the room. You explain what is going on, and while you do, the oxygen saturation becomes unmeasurable and the blood pressure machine fails to give any reading. Your colleague suggests you administer 20 mg of Lasix (furosemide) as a diuretic, and he injects this for you. You continue to ventilate the patient with 100% oxygen, and continue to suction copious fluid out of the patient’s lungs. The ECG monitor descends into a slow agonal rhythm, and when you check the carotid artery at the patient’s neck, there is no pulse. You call a Code Blue and begin CPR compressions on the patient’s chest. After thirty minutes of Advanced Cardiac Life Support (ACLS) drug administration, the pulses have not returned. You have no other therapies to offer, and the patient is declared dead.

Acute pulmonary edema on a chest X-ray

Did this have to happen? No, it did not. In a parallel universe with more competent clinicians, let’s look at how this patient should have been handled:

  1. First off, this case was inappropriate for a freestanding outpatient surgery center. This freestanding outpatient surgery center was located miles from the local hospital, and the hospital resources of an intensive care unit (ICU), respiratory therapists, arterial blood gas analysis, and chest X-rays were not available. The surgery was trivial enough—a brief procedure on the elbow—but the patient had a medical history which was too complex to approve a general endotracheal anesthetic at a freestanding ASC. Typically patients who have had a successful cardiac valve replacement are much improved after their surgery, and complaints of shortness of breath or extreme fatigue—symptoms of inadequate cardiac function—are absent. A 75-year-old patient who complains of shortness of breath on exertion was a poor candidate for anesthesia at an ASC. A pre-operative cardiology consult was indicated, and would likely include an echocardiogram and a stress test. In our parallel universe, the echocardiogram ordered by the cardiologist revealed a small aortic valve diameter—less that one centimeter—and a dilated left ventricle with an ejection fraction (LVEF) of 35% (a severely abnormal value, as the normal left ventricle can eject more than 50% of its volume). This patient with a low LVEF needed to have her surgery postponed until her cardiac function was improved via medications or a further surgical cardiac intervention was done. After that, when and if this elbow surgery ever does occur, it would need to be done in a hospital setting.
  2. What if the anesthesiologist did not adhere to #1 above, and the anesthetic led to pulmonary edema as described above? How could the anesthesiologist better manage the emergency? All acute medical care is managed by A-B-C, or Airway-Breathing-Circulation. In this case the Airway tube was in place. The Breathing was being done by the ventilator, but the breathing tube was occluded by pulmonary edema fluid. The treatment to improve the Breathing was both active suctioning to clear the airway of fluid and medical treatment to reverse the cause of the increased fluid. Diagnosis of the Breathing and Cardiac problems was as follows: discontinuation of anesthesia in this patient, who still had a breathing tube in her trachea as she awakened, stimulated markedly increased blood pressure –> the left ventricle could not eject against this high pressure –> this led to acute left heart failure with resulting backup of fluid into the lungs –> this caused pulmonary edema and dropping oxygen saturation. (Because of her airway anatomy, she was not a candidate for a deep extubation.) Treatment for both the Breathing problem and the Cardiac problem was an emergency afterload reducing drug such as nitroprusside. Every ASC must have a Code Blue cart with emergency drugs and equipment, and the anesthesiologist must call for the cart. He or she instructs one of the RNs to prepare a 250 ml bag of nitroprusside and to attach it to an intravenous infusion pump.
  3. We anesthesiologists are only as good as our monitoring devices. When the oximeter reports very low readings and the BP cuff stops working, we are in big trouble. Anesthesiologists cannot safely administer a potent intravenous infusion such as nitroprusside without an accurate second-to-second monitor of the patient’s blood pressure. One of the anesthesiologists quickly places an arterial line catheter in the left radial artery at the wrist. The arterial line is connected to the monitoring equipment, to reveal that the blood pressure is 240/140, for a mean blood pressure (MAP) of 173 mm Hg. The anesthesiologists connect the nitroprusside drip to the peripheral intravenous line, and infuse the drug to decrease the blood pressure to 140/80 (MAP=100) within minutes. The frothing fluid in the breathing tubes clears, and the oxygen saturation returns to 100%. 
  4. The anesthesiologists then place a central venous catheter in the right internal jugular vein and transfer the nitroprusside infusion to the central line. They titrate small doses of fentanyl and Versed into the peripheral IV line to sedate the patient because immediate extubation is not appropriate, and prepare to transfer the patient via ambulance to the nearest hospital ICU. The original anesthesiologist accompanies the patient in the ambulance to the ICU, while continuing to monitor the patient’s vital signs and manage the blood pressure, sedation, ventilation, and oxygenation.
  5. The patient’s sedation is discontinued the next morning in the hospital ICU, and she is extubated safely. She has no brain damage or cardiac damage. The anesthesiologist visits her that afternoon, and converses with her as she eats her lunch. She has questions about how this could have happened, and he answers each question honestly.

There are multiple take-home messages from this case study:

  1. The preoperative screening of patients at a freestanding ASC is crucial. No one wants to have a Code Blue or a near-Code Blue, miles away from any hospital. Surgery centers manage preoperative screening in various ways, but most community ASCs do not run an in-person preoperative anesthesia clinic. At our ASC, a preoperative caller contacts each patient two days prior to their scheduled surgery, and fills out a comprehensive history form based on the patient’s answers and any medical tests and/or consults available on that patient. If there are positive answers regarding important medical issues such as shortness of breath, chest pain, heart disease, obstructive sleep apnea, morbid obesity, chronic kidney or liver disease, cancer, or previous transplants, then the preoperative caller refers the case to the Medical Director. The Medical Director makes the decision whether the patient is appropriate for the scheduled surgery. If the patient is not appropriate, the case is cancelled two days ahead of time.
  2. If an acute respiratory or cardiac emergency occurs at an ASC, the first move is to call for help from a second anesthesiologist. Two minds and four hands are a better solution. The registered nurses bring a copy of the Stanford Emergency Manual into the room, as well as the code cart which includes the emergency drugs and monitoring equipment.
  3. In a true emergency, diagnosis and treatment must occur within minutes. No anesthesiologist wants to be the doctor who “draws a blank” when their patient is trying to die right in front of them. Stanford’s Dr. David Gaba pioneered acute anesthesia simulator training to improve anesthesiologist performance in emergency settings. You may inquire whether such simulations are available in your geographic area.  
  4. Always manage acute medical emergencies as A-B-C, or Airway-Breathing-Circulation, in that order. In this case the improvement in Breathing required suctioning and afterload reduction, and the improvement Cardiac required arterial line monitoring and afterload reduction.
  5. Realize that short simple surgeries exist, but some short simple surgeries on sick patients present significant anesthetic risks. The anesthesiologist must assess all medical risks and not be swayed by a surgeon who insists this will be “just a short simple case.” If an anesthesiology complication occurs, that surgeon will not likely be blamed, nor will he or she come to your defense. It will be “the anesthesiologist’s fault.”
  6. Every ASC must be prepared for acute unexpected emergencies. The code cart must be stocked with ACLS medications and monitoring equipment for arterial and/or central lines. The ASC should ideally have a copy of the Stanford Emergency Manual, and all drugs and equipment listed in that manual should be available, even though it is not a hospital setting.
  7. It’s important for ASCs to conduct mock-Code-Blue drills on a yearly basis so that staff is prepared when a real emergency occurs.
  8. Depending on cost, an ASC may choose to stock a nitroglycerin drip or a newer potent vasodilator medication such as Cleviprex (clevidipine) rather than nitroprusside in their code cart.
  9. Ideally, anesthesiologists who work at ASCs should also have medical staff privileges at an acute care setting in a hospital, and be performing anesthetics on sicker hospitalized patients there. If an anesthesia provider’s practice is reduced to only healthy patients for outpatient surgeries, that anesthesia provider may become less than competent if a patient develops an emergency in a surgery center.
  10. In case of an emergency at a surgery center, your goal is to stabilize the patient and transfer the patient to the nearest hospital as soon as it is safely possible. The hospital resources of an ICU, respiratory therapists, radiology, cardiology consultation, and a full laboratory service including arterial blood gas analysis are invaluable.

For those readers who are surgical patients, let me reassure you that the vast majority of patients cared for at freestanding ASCs have no anesthesia complications, and many ASCs are staffed by competent anesthesiologists and nurses prepared to save you in the rare event that something goes awry before, during, or after your outpatient surgery.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

SMART GLASSES IN THE OPERATING ROOM

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

A South Korean group led by Dr. Y.E. Jang published a study in this month’s issue of Anesthesiology describing the use of a head-mounted smart glasses display during radial arterial line placement in patients younger than 2 years. Placing a catheter into the tiny radial artery in a child’s wrist is one of the most difficult procedures in our specialty. The average internal diameter of the radial artery is 1.2 ± 0.3 millimeter in children aged less than 2 years. Wearing smart glasses improved the anesthesiologist’s first-attempt success rate, and reduced the procedure time and complication rates. This was an important study, and important information.

In the control group of this study, each anesthesiologist would use a traditional ultrasound screen to visualize the artery. 

The anesthesiologist must look up to see the ultrasound machine, while he is working on the patient’s wrist.

In the smart glasses group, the ultrasound machine was located behind the operator, and the smart glasses were paired with the ultrasound machine. The smart glasses used were a binocular Moverio BT-35E unit,  connected to an ultrasound machine by a HDMI cable. The smart glasses displayed a simultaneous replica of the ultrasound screen image in front of the anesthesiologist’s eyes, so the operator could easily see both the procedure field (the radial artery at the wrist) and the ultrasound screen simultaneously without any head and eye movement. 

The anesthesiologist can see the ultrasound image while he is looking at the patient’s wrist

One hundred sixteen children were included in the study. The smart glasses group had a higher first-attempt success rate than the control group: 87.9% (51 of 58) vs. 72.4% (42 of 58) in the control group, with p = 0.036. The smart glasses group also had a shorter first-attempt procedure time (median 33 seconds) than the control group (median 43 seconds), with p = 0.007.

An accompanying editorial in the same issue of Anesthesiology stated, “This elegant prospective trial offers objective insight into the potential impact of head-mounted displays on the overall success and provider ergonomics in anesthetic care during technically complex procedures. Head-mounted displays and augmented reality devices have been evaluated in various settings, including placement of ultrasound-guided peripheral nerve blocks, for use in intraoperative patient monitoring and placement of central venous catheters.”

What will be the role of smart glasses in medicine? We all remember the original hype surrounding the 2013 release of Google Glass, a product which failed to capture a significant market of users. 

Google Glass

Problems with Google Glass included: “The unit overheated frequently with use and shut itself down, the battery life wasn’t long enough (less than an hour), the apps were great demos but limited in scope, and the user interface — tapping, swiping, blinking, head gestures, and the voice recognition after saying ‘Ok Glass’ — was not always smooth.” 

A 2014 study looked at using Google Glass to aid central venous catheter insertion in adults. This study failed to show any positive effects on success rate, procedure time, or number of attempts. These results most likely were due to the fact that larger central blood vessels in adults are easier to locate than the diminutive radial artery in the pediatric population.

Smart glasses are being studied in aviation. Both anesthesiologists and pilots have occupations where the slightest miscalculation or mistake can cost lives. Any step which enhances safety can be seen as a valuable change. A new product called AEROGLASS (Augmented reality aerial navigation for a safer and more effective aviation) attempts to put augmented reality in front of pilots’ eyes.

AEROGLASS in aviation

A recent review states, “The AEROGLASS turnkey smart glass solution provides general aviation pilots a true 3D, 360° view of navigation and safety features. One of the largest challenges for aviation professionals is accurately and safely navigating an aircraft. Current studies show that pilot error accounts for up to 70 % of all aviation accidents. Piloting an aircraft requires translating complex readings from the control panel displayed in 2D into a 3D environment and 360° reality. Accessing this information also requires pilots to take their eyes off the sky, thereby making them more prone to errors and increasing their stress levels. With a headset on, pilots will now be able to have digital 3D information appearing naturally in their field of vision, helping them make faster and better decisions. ‘Our product is an AR solution based on smart glasses. When pilots wear them, they will continue to see the scenery around them, but in addition to that, relevant safety and navigation information will be overlaid transparently within their field of view. . . . At first, the newly developed technology targets professional general aviation, but after some time AEROGLASS plans to utilize its technology in other transportation domains such as automotive and maritime or even for passengers.”

There are two potential uses for smart glasses in anesthesiology. The first is for performing invasive procedures which require ultrasound technology, such as the placement of peripheral nerve blocks or the placement of catheters into arteries and veins. This use makes sense, because it can make some procedures easier, as shown in the Jang study. But the placement of pediatric arterial lines, as in the Jang study, is a small marketplace (e.g. including pediatric open heart surgery, and pediatric surgery involving major blood loss). Ultrasound imaging for the placement of peripheral nerve blocks would be a bigger market, but to date there is no data supporting the use of smart glasses in the placement of peripheral nerve blocks.

Anesthesia vital signs monitor display

A second and more compelling use for smart glasses would be the display of a patient’s vital sign monitoring in real time on the smart glass screen, so that an anesthesiologist is in constant contact with the images of the vital sign electronic monitors. In 2021 a nurse anesthetist publication looked at the use of Google Glass by seven nurse anesthetists for display of the vital signs monitor, but there were no quantitative data to examine the significance of the technology. The physician medical literature has not studied the issue. 

Advantages of using smart glasses for real time patient vital signs monitoring would include:

  • The electrocardiogram, oximeter, and end-tidal CO2 waveforms would be displayed front and center in the anesthesiologist’s sight. The vital signs of heart rate, blood pressure, oxygen saturation, end-tidal gas values, and temperature would be constantly visualized no matter where the anesthesiologist was looking. 
  • This is a futuristic technology, and its use may connote that the hospital or surgery center is at the cutting edge of monitoring and safety equipment (despite the lack of any data to confirm this advantage at this time).

Disadvantages of using smart glasses for patient vital signs real time monitoring would include:

  • The cost of the head-mounted display (Moverio BT-35E, glasses in the current study) is approximately $800. This is not a large amount of money, but multiplied times every anesthetizing site, the expense rises.
  • The requirement for reliable and constant Bluetooth connection between the smart glasses and the electronic monitor.
  • The weight of the smart glasses (119 grams, or 0.43 pounds) is 4 – 8 times heavier than usual glasses (25 – 50 grams, or 0.05 – 0.1 pounds). Many individuals may object to wearing this product. 
  • If an anesthesiologist wears prescription glasses of his or her own, there would be two pairs of glasses needed.
  • The question of whether smart glasses are necessary in every routine anesthetic.

Let’s look at this last point. During most routine anesthetics the constant beep-beep-beep note and tone of the pulse oximeter gives the anesthesiologist real-time audible monitoring of both the heart rate and the ballpark oxygen saturation, without having to look at the display. The anesthesiologist still has to look up at the vital signs screen intermittently to note the blood pressure, end-tidal gas values, and temperature, but this intermittent look is part of the vigilance all anesthesiologists must do anyway. A left-to-right scanning gaze at the patient, the surgical field, the IV lines, any IV infusions, the airway tubing, the anesthesia machine, and the vital signs monitor screen is standard procedure in anesthesiology. If adopted, the use of smart glass technology for routine vital signs monitoring would indeed be a large market. Would the addition of smart glasses for routine monitoring be an overdose of technology in the operating room cockpit? Does excessive technology distract us from the actual patient?

Let me give you a historical perspective. As recently as the year 2000 there were zero computers in the anesthesia workstation. Our equipment included an anesthesia gas machine, a vital signs monitor, and carts which contained breathing tubes, airway equipment, syringes, needles, and drugs. Now we are encumbered by an electronic medical record (EMR) system screen + keyboard, and a narcotic-dispensing computerized drug cart in every hospital anesthetizing location. 

EPIC anesthesia electronic medical record (EMR) computer
Anesthesia drug cart
Anesthesia bar code reader/label printer computer

Add in some smart glasses with Bluetooth connection, and you’ve got an armada of gadgets to both aid the anesthesiologist and to distract him or her from the actual patient, who is three feet away and in need of vigilant care. Is anesthesia care any safer with all the computers: the EMR, and the narcotic-dispensing computerized drug cart? There is no data that these devices have made anesthesia any safer—it is only more complicated.

If smart glasses are ever to become a standard of care, I believe it would require data and proof that anesthesia complications were reduced and anesthesia outcomes were improved with such a device.

Technology in medicine tends to come between the patient and his or her doctor, a theme explored in my 2019 editorial, and in my novel Doctor Vita. View the future of medical technology with care. Think of that computer terminal between you and your doctor during a clinic visit. Now imagine a parallel situation with that computer terminal between you and your anesthesiologist, between you and your emergency room doctor, or between you and your ICU nurse. Will adding more electronic devices lead to safer care or more convoluted care? 

Put it another way: Do we need smart glasses, if we have smart anesthesiologists?

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

CARDIAC ARREST DURING A PEDIATRIC TONSILLECTOMY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

A 12-year-old boy and his mother walk into a surgery center. The child is scheduled for a tonsillectomy, and is otherwise healthy. The anesthesiologist induces general anesthesia, and ten minutes later the patient has ventricular arrhythmias which descend into a cardiac arrest. Advanced Cardiac Life Support (ACLS) measures are applied, but the child cannot be resuscitated, and is declared dead. What caused this cardiac arrest during a pediatric tonsillectomy?

This is an actual closed malpractice case which I was asked to review. The anesthesiologist induced general anesthesia with propofol and a paralytic drug called succinylcholine (sux-in-ol-KOH-leen), and then inserted a breathing tube successfully into the patient’s windpipe. All vital signs were normal. Sevoflurane, nitrous oxide, and 50% oxygen were ventilated into the patient’s lungs. The surgeon began the tonsillectomy. One minute later the cardiac arrest occurred. The anesthesiologist followed ACLS guidelines, but standard ACLS treatments and hyperkalemia (elevated potassium concentration) treatments were unsuccessful.

Succinylcholine is an intravenous muscle relaxant (paralytic) drug commonly used in the United States. Succinylcholine is an old drug—available since 1951—which has the distinction of being the most rapid-acting intravenous muscle relaxant, and also the shortest-acting muscle relaxant. Succinylcholine is an important drug in an anesthesiologist’s toolkit. When an airway emergency threatens a patient’s life, such as the unexpected occurrence of laryngospasm, succinylcholine is the emergency drug of choice to paralyze the patient, relax the spasm of the vocal cords, and enable the anesthesiologist/emergency room physician/acute care physician to insert a life-saving breathing tube into the trachea.

But succinylcholine can be a dangerous drug. The Food and Drug Administration (FDA) placed a Black Box Warning on succinylcholine in 1994. The current succinylcholine warning in the PDR (Prescribers’ Digital Reference) reads:

Succinylcholine is contraindicated in patients with a personal or familial history of malignant hyperthermia and/or skeletal muscle myopathy. Malignant hyperthermia may be precipitated by succinylcholine; concomitant use of volatile anesthetics may further increase this risk. 

In neonates, infants, children, and adolescents, reserve the use of succinylcholine for emergency intubation or instances where immediate securing of the airway is necessary (e.g., laryngospasm, difficult airway, full stomach, or lack of intravenous access). 

There have been rare reports of ventricular dysrhythmias and fatal cardiac arrest secondary to rhabdomyolysis with hyperkalemia, primarily in healthy-appearing pediatric patients who were subsequently found to have undiagnosed skeletal muscle myopathy, most frequently Duchenne’s muscular dystrophy. 

Affected pediatric patients are typically, but not exclusively, males 8 years or younger. Although some patients have no identifiable risk factors, a careful history and physical exam may identify developmental delays suggestive of myopathy, and a preoperative creatinine kinase could identify patients at risk. 

Closely monitor body temperature, expired CO2, heart rate, blood pressure, and electrocardiogram in pediatric patients to help detect early signs of malignant hyperthermia and/or hyperkalemia. 

The rhabdomyolysis syndrome often presents as peaked T-waves and sudden cardiac arrest within minutes of succinylcholine administration. If cardiac arrest occurs immediately after succinylcholine administration, institute treatment for hyperkalemia (e.g., intravenous calcium, bicarbonate, glucose with insulin, hyperventilation). If malignant hyperthermia is suspectedinitiate appropriate treatment (e.g., dantrolene, supportive care) concurrently.”

Per the Black Box warning, succinylcholine has the potential for inducing life threatening hyperkalemia in children with undiagnosed skeletal muscular dystrophies. Severe hyperkalemia and ventricular arrhythmias followed by cardiac arrest may occur in apparently healthy children who have an occult muscular dystrophy (usually Duchenne’s muscular dystrophy). An occult muscular dystrophy is a rare inherited disease. The global prevalence of Duchenne’s muscular dystrophy is 7.1 cases per 100,000 males, and 2.8 cases per 100,000 in the general population. The Black Box warning on succinylcholine recommends to “reserve use in children for emergency intubation or need to immediately secure the airway.”

The Black Box warning applies to neonates, infants, children and adolescents. No parent wants their son or daughter under the age of 18 to electively receive a drug which has an FDA Black Box Warning for use in adolescents. No parent wants their neonate, infant, child, or adolescent to have a risk of sudden cardiac arrest under general anesthesia for a common elective surgery.

In 1994 the Anesthesia Patient Safety Foundation (APSF) published a sentinel article about the risks of succinylcholine in pediatric anesthesia. The article reviews the history of the succinylcholine warning: “In 1992, Drs. H. Rosenberg and G. Gronert published a letter in Anesthesiology briefly reviewing four deaths in male children under the age of eight who had received halothane and then succinylcholine. These cases were identified through the Malignant Hyperthermia (MH) Hotline. Reference was also made to ‘11 similar cases’ identified through the German MH Hotline. Their letter concluded with the statement: ‘We have notified the Food and Drug Administration of this potential problem and recommended that anesthesiologists carefully consider the indications for use of succinylcholine in young children.’ This letter was accepted for publication August 24,1992.” The article goes on to emphasize “the need for prompt and appropriate treatment should hyperkalemic arrest occur. This treatment involves the intravenous administration of calcium. With proper treatment, approximately 50% of patients have survived this catastrophic hyperkalemia.” The Black Box warning specifically states, “If cardiac arrest occurs immediately after succinylcholine administration, institute treatment for hyperkalemia (e.g., intravenous calcium, bicarbonate, glucose with insulin, hyperventilation).”

Despite the Black Box warning, how often is succinylcholine still used for non-emergency pediatric anesthetics in the United States? No one knows. I can attest that during a recent Quality Assurance review in the Northern California, I saw anesthetic records from a board-certified anesthesiologist who administered succinylcholine to a 14-year-old boy for elective ear surgery. I discussed this with the anesthesiologist, who was unaware they were doing anything dangerous.

There is an excellent alternative to the elective use of succinylcholine. For most cases, pediatric or adult, the muscle relaxant rocuronium is a superior alternative to succinylcholine. Succinylcholine is the IV muscle relaxant with the most rapid onset, but large doses (0.9 mg/kg) of rocuronium are nearly as rapid as succinylcholine, without any of succinylcholine’s risks.   Succinylcholine is also the IV muscle relaxant which wears off the fastest, but since the year 2015 FDA approval of the muscle relaxant reversal drug sugammadex (Bridion), an intubating dose of rocuronium can be rapidly reversed within 3 minutes by administering 16 mg/kg of sugammadex

Succinylcholine remains an important drug for the treatment of airway emergencies. I would never begin a general anesthetic if I did not have a vial of succinylcholine immediately available in case of an airway emergency. In addition, succinylcholine is important because it can be administered intramuscularly (in a patient who has no IV). For example, if a child is undergoing an inhalational induction of general anesthesia with sevoflurane vapor prior to a surgery, and the child suddenly goes into laryngospasm before any IV can be started, (this does occur, not uncommonly, and is a true emergency), the appropriate treatment is an intramuscular injection of 4 mg/kg of succinylcholine. The child will become paralyzed within minutes, and the anesthesiologist can then insert a life-saving breathing tube. (The mean onset of paralysis with 4 mg/kg intramuscular succinylcholine in children ages 1 to 10 ranges from 2.9 to 3.9 minutes.)

I’ve written about the advantages and risks of succinylcholine previously in the article, “Succinylcholine: Vital Drug or Obsolete Dinosaur?”  

I also refer you to the published article, “Is There Still a Role for Succinylcholine in Contemporary Clinical Practice?

The take home messages from this case study of a cardiac arrest during a pediatric tonsillectomy are:

  • If you’re an anesthesia provider, do not administer succinylcholine to a neonate, infant, child, or adolescent for an elective surgery. The Black Box warning on succinylcholine recommends to “reserve use in children for emergency intubation or need to immediately secure the airway.”
  • If you’re a parent, prior to your son or daughter’s surgery, be empowered to ask your child’s anesthesiologist if they’re aware of the Black Box warning on succinylcholine. 
  • Nobody wants a death brought on by an elective anesthetic.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

ARTIFICIAL INTELLIGENCE IN THE OPERATING ROOM . . . (THE PREMISE OF DOCTOR VITA) . . . DISCUSSED IN THE JOURNAL ANESTHESIOLOGY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
HAL from the movie 2001:A Space Odyssey

In 2004 I began writing Doctor Vita, a novel describing the encroachment of Artificial Intelligence (AI) into medical care. Fifteen years later, in 2019, Doctor Vita was published. The story described Artificial Intelligence in medicine as a perceived panacea that descended into a chaotic dystopian reality.

In recent years, engineers have developed closed-loop AI machines that can administer appropriate doses of anesthetics without human input, as described in The Washington Post article, “We Are Convinced the Machine Can Do Better Than Human Anesthesiologists.”

This month’s issue of Anesthesiology, our specialty’s leading journal, contains two studies on further incremental Artificial Intelligence in Medicine advances in the operating room. Both studies reveal machines that control a patient’s blood pressure automatically during surgery, by the administration of fluids and/or vasopressors (Joosten, et al. and Maheswari et al. 

Closed-loop anesthesia computer controllers for AI titration of anesthesia level

Two editorials accompany these publications. In the first editorial, titled “Computer-assisted Anesthesia Care: Avoiding the Highway to HAL,”  author Dr. David Story writes, “Among the cautionary tales of computer-assisted human activity, 2001:A Space Odyssey is a standout. On a journey to Jupiter, HAL the computer kills most of the crew, forcing the survivor to deactivate HAL. Like space travel, while computer-assisted health care has great potential it also contains the full Rumsfeld range of knowns and unknowns.” Dr. Story concludes his editorial with, “As our pilot counterparts are doing in aviation,anesthesiologists should anticipate training in crises while using computer-assisted technologies, as well as maintaining the skills to ‘fly’ manually.  . . . None of us wants to manage a deteriorating patient by trying to deactivate a malfunctioning computer-assisted anesthesia system, only to have it respond, ‘I’m sorry . . . I can’t do that.’

The second editorial in the same issue of Anesthesiology is titled “Back to the OR of the Future: How Do We Make It a Good One?”  Author Dr. Martin London writes, “The classic 1985 science fiction film Back to the Future transports the erstwhile protagonist (Marty McFly, played by a young Michael J. Fox) 30 years backwards into the past in the eccentric ‘Doc’ Brown’s custom DeLorean time machine, to deal with a series of comedic yet moral quandaries regarding his future existence. A notable quote by Doc Brown is, ‘The future is whatever you make it, so make it a good one.’  Dr. London goes on to say, “The use of artificial intelligence–derived controllers clearly signals a new era in intraoperative hemodynamic management. . . . It does seem inevitable that software control of hemodynamics and anesthetic depth will become routine. Thus, we might ask, ‘What happens to the operator/clinician involved?’ Will it be more appropriate for a busy anesthesiologist covering multiple operating rooms to be supervising the admittedly extreme scenario of ‘information technology experts’ ensuring the machines are functioning properly or actual healthcare providers monitoring the patient and not the machine? And what happens when the “computers go down”? Who will rush in to fill the gap? Will the process be ‘good’ or will it be ‘dystopic?’

Artificial intelligence in medicine is not the stuff of science fiction. AI in medicine is here. Will Artificial Intelligence in medicine assist doctors in compassionate care of their patients, or will AI present one more set of computers obstructing the relationships between healing professionals and those who need healing?

Medical journals like Anesthesiology reveal the future of medicine, as published data unfolds. A novel like Doctor Vita reveals a fictional future of medicine, based on the very trends that are going on today. 

Do you want a computer to care for you when your life is on the line? Do you want an algorithm, or a human, to be your doctor?  

Will you have a choice?

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

HOW THE INTERNET CHANGED ANESTHESIOLOGY FOREVER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Anesthesia is a hands-on specialty. We use our manual skills daily to place breathing tubes, insert intravenous and intra-arterial catheters, and place needles for spinal punctures, epidural catheters, and regional nerve blocks. The Merriam-Webster dictionary defines the internet as “an electronic communications network that connects computer networks and organizational computer facilities around the world.” This definition seems to have has very little to do with inserting breathing tubes, catheters, or needles, yet the internet changed anesthesiology forever.

The internet is the biggest change in anesthesiology since the FDA approvals of propofol in 1989, the laryngeal mask airway in 1991, and sevoflurane in 2002.

Picture this: your job requires you to spend the majority of your day in a windowless room with four other people. You cannot leave the room, and if you make a serious error in your work, someone can die. There is a telephone on the wall. You’re allowed to bring along a briefcase or a backpack. 

This was the description of the anesthesiology workplace prior to the internet. Vigilance regarding a sleeping patient’s vital signs was always paramount, but the constant effort to be vigilant could be mind-numbing. No one can stare at an ECG/oximeter/blood pressure monitor for hours without interruption. Anesthesiologists could chat with the surgeons and/or nurses, make an occasional phone call, and at times read materials they brought with them into the operating room. Major adverse events seldom occur during the middle of a general anesthetic of long duration on a healthy patient. A comparison would be a commercial pilot flying an airplane from San Francisco to New York. The flight lasts 5 hours, but there would likely be only minor adjustments in course or altitude during the middle 4 hours. Anesthesia is said to be “99% boredom and 15 panic,” because 99% of the time patients are stable, yet 1% of the time, especially at the beginning and the end of anesthetics, urgent or emergency circumstances could threaten the life of the patient.

Since the development of the internet, anesthesia practice has changed forever. Every hospital operating room is equipped with a computer connected to the internet. Every anesthesia provider carries a smartphone connected to the internet. Many anesthesia providers carry a laptop or a tablet in their briefcases. These devices enable an anesthesiologist to remain connected to the outside world during surgery. Let’s look at the specific ways the internet has changed anesthesia practice:  

Electronic Medical Record anesthesia intraoperative vital signs record
  • Electronic medical records (EMRs). Love it or hate it, the EMR is here to stay. The EMR requires a computer terminal and screen in every operating room, and every hospital operating room must be connected to the internet. A patient’s EMR combines information from previous clinic visits, emergency room visits, laboratory and test results, and all data from the preoperative, intraoperative, and postoperative course on the day of surgery. Anesthesiologists type information into the EMR multiple times during each case.
AN EXAMPLE PUBMED SEARCH SCREEN
  • Immediate access to medical search engines. A major advantage of internet connectivity is the ability to immediately research any medical question or problem. Abstracts of every published medical study are available on Pubmed. For those of us on the faculty of a university hospital, hundreds of medical textbooks are immediately available online as reference sources. The entire catalog of FDA-approved drugs is listed on the PDR (Physician’s Desk Reference) website, or on the PDR app on our smartphones. These are all invaluable tools which empower a physician anesthesiologist and improve care to every patient.  
  • Connectivity to other anesthesia providers is a third important advantage of the internet. We’re now able to immediately contact a colleague by cell phone, text message, or email if we have a question or a problem. In anesthesia care team models, in which a Certified Nurse Anesthetist (CRNA) is physically present in the operating room while being supervised by an attending physician anesthesiologist, the MD anesthesiologist can be summoned to return to the operating room in seconds if a problem arises. You can also imagine a future vision of telemedicine in which an experienced physician anesthesiologist, who lives many miles or time zones away, can supervise a CRNA or an inexperienced anesthesiologist performing in-person patient care via Zoom conferencing. 

A 2010 publication in the journal Anaesthesia and Intensive Care stated, “Experienced anesthetists are skilled at multi-tasking while maintaining situational awareness, but there are limits. Noise, interruptions and emotional arousal are detrimental to the cognitive performance of anesthetists. While limited reading during periods of low task load may not reduce vigilance, computer use introduces text-based activities that are more interactive and potentially more distracting.”

From what I observe of anesthesia practice in the year 2021, intermittent use of the internet during anesthesia duty is not uncommon. The windowless confines of the operating room are now connected to the world.

Further scholarly research regarding computers, tablets, cell phones, and internet use in the operating room will no doubt be forthcoming. Stay tuned.

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DYING UNDER GENERAL ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re an anesthesiologist and you’re contacted by a patient who is dying of cancer. He wants an end of life anesthetic so that he will be unconscious and die without pain and suffering. What do you do? Will you enable dying under general anesthesia?

A recent article from the United Kingdom discussed this topic of end of life anesthesia, otherwise known as “terminal anesthesia.” Terminal anesthesia refers to a situation when a patient has a terminal illness such as end-stage cancer and is suffering through their last days. They request to have a general anesthetic so they are unconscious throughout the process of dying under general anesthesia.

Is anyone doing terminal anesthesia anywhere? The Journal of Medical Ethics reported that in 2016, France passed a law granting terminally ill patients the right to continuous deep sedation until death. This right was proposed as an alternative to euthanasia and was presented as the ‘French response’ to problems at the end of life. The law draws a distinction between continuous deep sedation and euthanasia.” 

Euthanasia, or the ending of life through pharmacologic intervention, is illegal in the United States, the United Kingdom, and most nations. In the 1980s and 1990s, Dr. Jack Kevorkian of the United States  infamously created a euthanasia machine that injected lethal doses of sodium pentothal (a hypnotic sleep drug), potassium chloride (an overdose of potassium which caused cardiac arrest), and pancuronium (a paralyzing drug) into terminal patients who requested a pharmacologic suicide. Dr. Kevorkian was convicted of second degree murder, and served 8 years of a 10-to-25-year prison sentence.

Dr. Jack Kevorkian and his euthanasia machine

Dying patients may have an interest in terminal anesthesia. In a survey of 500 individuals in the United Kingdom regarding end-of-life options, 88% of the respondents said they would like the option of a general anesthetic if they were dying.  

What would terminal anesthesia look like? Medication(s) would be administered through an intravenous line to bring on unconsciousness without hastening death. These last three words are key, because terminal anesthesia is specifically not to be euthanasia. Terminal patients are frail, and their cardiac and respiratory systems will be sensitive to oversedation. Terminal anesthesia is not to directly stop the patient from breathing, stop their hearts from beating, or put them at risk from aspirating food into their lungs. The duration of the IV sedation/anesthesia must be maintained until the patient’s heart eventually stops because of their underlying terminal medical illness. Because of the danger of food aspiration into the windpipe (trachea), tube feedings to the stomach during the time of this terminal anesthetic would not be allowed. 

What drugs could be used for terminal anesthesia? Propofol (an IV hypnotic drug) and midazolam (an IV benzodiazepine also known as Versed) are the most likely agents. The initial infusion of these drugs must be gradual, because bolus doses of these powerful agents into the bloodstream of a frail, end of life patient, could easily halt their breathing and hasten death. No pulse oximetry or other monitors would be used, and the person administering the drug would not remain in constant attendance with the patient. These two facts—the lack of monitoring and the lack of being physically present to attend to the patient—are boldly in defiance of what anesthesiologists do when they administer general anesthesia to patients. The motto of the American Society of Anesthesiologists is “Vigilance.” Terminal anesthesia implies minimal vigilance, and for this reason I cannot imagine the practice being approved in the United States.

An April 2021 publication in the journal Anaesthesia disagrees. The authors describe end of life anesthesia as “an impending development for which the specialty should prepare.” Co-author Jaideep Pandit, MD, professor of anesthesia at Oxford University, said, “Ethically, it is the right thing to do to make this offer to dying patients where it is technically feasible and the literature says it is. The desire to be unconscious in times of great adversity is understandable—it isn’t surprising or wrong to want to be unconscious in adverse situations. We as physicians are here to help, and if we have the means to help and meet the patient’s desire and it is ethical to do so, then we should strive to make this option feasible.” This article described the first use of end of life anesthesia as occurring over 25 years ago: “The first description of using general anesthesia in end‐of‐life care was in 1995 by John Moyle, a consultant anesthetist and palliative care physician. Moyle recognized the limitations of conventional approaches . . . Moyle developed a protocol for infusing the then relatively new anesthetic agent propofol and described its use in two patients, who died peacefully after 4 and 9 days of continuous infusion. . . . Moyle and others recommended very slow intravenous infusion by a pump at a carefully titrated dose (e.g. just 5 mg.h‐1 vs. the 100–200 mg typically used as a bolus) The depth of anesthesia achieved was inadequate for a surgical procedure, but was ideal for an undisturbed dying patient.” 

A study from Sweden described their experience with propofol for end of life sedation. Two indications for using propofol were identified. The first was refractory nausea and vomiting, and the second was the need for palliative sedation due to refractory anxiety or agitation, with or without intractable pain. Monitoring of the patient was as follows: “During the first hour of treatment, the patients were checked repeatedly by both the nurse and the physician caring for the patient. Then, evaluation was performed after 2, 6, and 12 hours. These assessments were preferably made by the physician, but when symptom control had been established, the evaluation was made by the nurse. Patients on continuous treatment with propofol were thereafter evaluated at least twice daily by the nurse in addition to their daily routine care. The physician visited the patient at least once daily for evaluation.” The mean dose range of propofol during treatment was between 0.90 and 2.13 mg/kg/h, (or for an average 70-kilogram patient, between 70 and 150 mg of propofol per hour). The length of treatment with propofol varied between 2 hours and 44 days. The study reported “All but three patients died at the unit, and the median survival was 38 days, compared with the usual median survival of 14 days at the unit.” 

Euthanasia is illegal, but general anesthesia is legal. Could general anesthesia really be approved so that individuals do not have to experience the suffering of dying? What if the United States passed a law, similar to the 2016 law in France, that granted terminally ill patients the right to continuous deep sedation until death? Will this type of terminal sedation/anesthesia ever happen in the United States? It’s currently common to utilize anesthesia/deep sedation for patients who are on ventilators in an intensive care unit (ICU). If such a patient has an untreatable illness, they may die while they are in the ICU under deep sedation, but the application of terminal anesthesia outside of an ICU is not seen in the United States today.

There are other ethical, medicolegal and practical implications to utilizing terminal anesthesia. Who would give the IV sedation/general anesthesia? The Hippocratic Oath states, “I will not give a lethal drug to anyone if I am asked, nor will I advise such a plan,” so it’s unlikely any American physician would administer the anesthetic. Would the medical malpractice court system litigate that cases of terminal anesthesia were indeed euthanasia, and therefore illegal? If the American Society of Anesthesiologists opposed the idea, could continuous deep sedation at end-of-life ever come to fruition? What if some medical professional with a license to administer anesthesia decided to open up a practice of administering terminal anesthetics? Could such an individual collect cash payments or insurance payments for administering general anesthesia to patients who were on hospice, and thereby earn a large quantum of money for each case? 

Everyone fears dying, and no one wants to have a painful or torturous death. Expect to hear more discussion about this topic in years to come, but don’t expect physician anesthesiologists in the United States to prescribe or administer terminal anesthesia any time soon. 

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

WAS TIGER WOODS DRIVING UNDER THE INFLUENCE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Was Tiger Woods driving under the influence (DUI) on the morning of February 23rd, 2021 when he was injured in a single car accident? 

Perhaps his anesthesiologist knows. 

Tiger Woods underwent surgery at Harbor-UCLA Medical Center just hours after his single car rollover vehicle crash. Surgeons performed a pinning of a tibia (shin bone) fracture and pinning of an ankle fracture. Prior to administering an anesthetic, it would be important for the anesthesiologist to know the toxicology screen results in any patient who just survived such an accident. The anesthesiologist needs to know what other drugs, if any, were present in the patient’s system at the time of the crash, because this fact could influence anesthesia management. Drug use could mean central nervous system depressants (opioids, alcohol, sedatives, hypnotics, sleeping pills) or stimulants (cocaine, amphetamines). If sedative drugs were present, there can be a synergistic effect between the drugs and the anesthetic medications. If stimulant drugs were present, the patient may have tolerance and/or increased anesthetic dose requirements. 

A 2017 anesthesia study stated that “for optimal patient care through the perioperative period, it is critical to obtain information about patient drug use and other associated treatment in order to construct an appropriate anesthetic plan, including specific considerations during surgery, emergence, and in the post anesthesia care unit.” 

In a study from Nature, 1007 consecutive patients undergoing emergency surgery were screened for illicit drug use (IDU). Seventy-five patients (7.45%) were found to be positive for IDU, even though zero patients admitted a positive history of illicit drug use. Of the 75 patients, 50 tested positive for morphine, 22 tested positive for methamphetamine, 13 tested positive for ketamine, 6 tested positive for two drugs, and 2 tested positive for all three drugs. The study concluded, “Knowledge of illicit drug users (IDUs) is important because of the comorbidity related to drug use.”

Miller’s Anesthesia (9th edition, 2020, Chapter 31, Preoperative Evaluation, authored by Wijeysundera and Finlayson) states, “A patient with a history of current or previous alcohol or drug addiction presents special challenges for the perioperative team. . . . Addictive disease should be considered permanent even in patients who have had long periods of abstinence. . . . Substance abuse disorders are risk factors for poor outcomes in the perioperative setting.”

The 1996 Health Insurance Portability and Accountability Act (HIPAA) prohibits a patient’s doctors from divulging any private healthcare information (PHI) to anyone who is not caring for that patient. The anesthesiologists may know whether a motor vehicle accident patient was part of a DUI incident, but they will not release the results of such a tox screen to the press. 

The sheriff who arrived at the Woods crash scene stated there was no evidence that Woods was impaired or intoxicated at the time of the crash in Rolling Hills Estates, California. The police said they “did not issue a citation for Woods . . . To issue a ticket for reckless driving would require evidence that Woods had committed multiple violations before the crash, such as unsafe lane changes, or passing other cars unsafely, according to investigators. . . . Woods had no recollection of the collision, investigators said at the press conference.” 

I’m not a lawyer, but I presume that tox screen results could be subpoenaed if a crime had been committed. For example, if an automobile collides with a school bus and kills someone, then I presume the driver’s medical test results would be part of a criminal investigation. 

According to the forensic report, Tiger Woods was speeding as fast as 75 miles per hour, or more than 45 mph faster than the legal speed limit before his SUV crashed. Investigators said the accident was “the result of Woods driving in an unsafe manner for road conditions. . . . The evidence suggested the golfer didn’t brake or steer out of the emergency for nearly 400 feet after striking an eight-inch curb in the median.” 

Per Golfweek magazine: “forensic experts say the evidence suggests Woods was not conscious when he left his lane and kept going in a straight line before crashing. Instead of staying with the downhill road as it curved right, he went straight over the curb in the median to the left, hit a wooden sign and kept going in a straight line into opposing traffic lanes before leaving the road, hitting a tree and rolling over. Jonathan Cherney, an accident reconstruction expert and former police detective who walked the scene, told USA TODAY Sports it was ‘like a classic case of falling asleep behind the wheel, because the road curves and his vehicle goes straight.’ There were no skid marks on the road, Villanueva said. Instead, Woods’ Genesis SUV kept going straight for several hundred feet. Woods later told sheriff’s deputies he couldn’t remember how the crash occurred and didn’t remember even driving.” 

Per USA Today: “’The report doesn’t deal with the underlying cause of the crash,’ said Charles Schack, a former New Hampshire state police trooper who is now president of Crash Experts, which analyzes traffic accidents for law firms and insurance companies. ‘It addresses the data superficially with no apparent curiosity as to why Tiger drove for hundreds of feet without adjusting his steering, braking, or speed. Taking away the high-profile aspect of this crash and looking at the data and roadway, it appears that the driver made no attempt to follow the roadway during the moments leading to the crash. This is typical of a driver who was incapacitated due to a medical issue, falling asleep or being impaired.’” 

Can an individual take a sleep medication prescribed by a physician, such as Ambien, at nighttime and still have drowsiness from the medication which impairs their driving ability the next morning? Yes. In 2013 the Food and Drug Administration released the following Safety Communication regarding zolpidem (Ambien):

The U.S. Food and Drug Administration (FDA) is notifying the public of new information about zolpidem, a widely prescribed insomnia drug. FDA recommends that the bedtime dose be lowered because new data show that blood levels in some patients may be high enough the morning after use to impair activities that require alertness, including driving. Today’s announcement focuses on zolpidem products approved for bedtime use, which are marketed as generics and under the brand names Ambien, Ambien CR, Edluar, and Zolpimist.

FDA is also reminding the public that all drugs taken for insomnia can impair driving and activities that require alertness the morning after use. Drowsiness is already listed as a common side effect in the drug labels of all insomnia drugs, along with warnings that patients may still feel drowsy the day after taking these products. Patients who take insomnia drugs can experience impairment of mental alertness the morning after use, even if they feel fully awake. 

FDA urges health care professionals to caution all patients (men and women) who use these zolpidem products about the risks of next‐morning impairment for activities that require complete mental alertness, including driving. 

There appears to be a public safety concern that individuals who take Ambien for sleep may be impaired when driving a vehicle the following morning. 

Was Tiger Woods impaired on the morning of his single car accident? I don’t know, and it’s not my intent to accuse him in any way. I wish him a speedy and complete recovery, and hope we can all watch him play golf at a high level once again. The purpose of this column is to inform readers that: 1) anesthesiologists need to know the results of blood and/or urine toxicology screens before they are administer general anesthesia to an automobile trauma victim; 2) sleeping aids such as Ambien (zolpidem) carry an FDA warning that they can impair activities such as driving the morning after administration; and 3) HIPAA law prevents physicians from disclosing the medical records of patients to the media.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

A MORBIDLY OBESE PATIENT WITH MEAT STUCK IN HIS ESOPHAGUS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re the anesthesiologist on call on a Saturday night. A patient arrives at the Emergency Room complaining that he ate piece of steak one hour ago, and the meat got stuck in his throat. He is morbidly obese patient who stands six feet tall and weighs 350 pounds, for a BMI of 47.

The attending general surgeon wants to do an upper GI endoscopy to extract the piece of meat from the patient’s esophagus or push it through into the stomach. He’s called on you to do the anesthetic. 

What do you do?

You examine the patient and find he has a short neck, a small mouth, and a large tongue. You cannot see his soft palate at all, and you rate him as a Mallampati 4.

Mallampati Class IV airway

The patient is alert, and is an excellent historian. He cannot even swallow his saliva. He has no difficulty breathing or significant chest pain. His hospital chart shows no past anesthetics, and he has no medical problems except hypertension which is treated with lisinopril. His vital signs are normal, and his oxygen saturation is 96% on room air.You are six months out of anesthesia training and new to this hospital. The surgeon—a 60-year-old male with the brash confidence of General Patton—is an iconic and respected figure at this medical center. He wants to proceed at once. It’s 8 pm on a Saturday night. He requests “just a little sedation” so he can insert the endoscope past the gag reflex and into the esophagus.

You bring the patient into the endoscopy suite, attach the standard vital signs monitors, and administer oxygen via a Procedural Oxygen Mask (POM, made by Mercury Medical).

You administer 2 mg of Versed and 100 micrograms of fentanyl IV. The surgeon sprays Cetacaine into the patient’s mouth for topical anesthesia and inserts a bite block. After five minutes time the patient is still wide awake. The surgeon looks at you and says, “I need him a little deeper than this.” You administer another 1 mg of Versed and 50 micrograms of fentanyl. After another five minutes time, the patient is still wide awake. The surgeon looks at you and repeats, “I need him a little deeper than this.” He says this in an impatient condescending tone, and you feel pressured. You administer 50 mg of propofol, and the patient’s eyes begin to drift closed. The surgeon inserts the gastroscope, after which the patient coughs, gags, and vomits into his airway. His oxygen saturation which had been 100% quickly plummets to 75%. You move to the head of the bed, suction the patient’s mouth, and attempt bag-mask ventilation without success. His oxygen saturation drops to 60%. You reach for a Miller 3 laryngoscope and attempt to intubate the trachea, but you cannot visualize his vocal cords. You are panicked. The surgeon is screaming at you to do something. You tell the surgeon he needs to do a tracheostomy. In the meantime you insert a laryngeal mask airway into the patient’s throat, but are still unable to ventilate the lungs. The ECG rhythm converts to ventricular fibrillation, and you call a Code Blue.

After thirty minutes of CPR and ACLS, the patient is declared dead.

What went wrong here? A patient who walked into the hospital is now dead. The basic problem was that the anesthesiologist proceeded to deeply sedate a patient with a full stomach (a known aspiration risk) without first controlling the airway by inserting an endotracheal tube. This morbidly obese patient with a thick neck, a small mouth, and a large tongue was always going to be difficult to intubate, but a successful intubation was most likely to occur under controlled circumstances with the patient awake prior to any endoscopy. The issue of a domineering surgeon pushing an inexperienced anesthesia provider into doing the wrong anesthetic is a key problem. This can and does happen, and once the case has concluded with a bad outcome, that same surgeon will deny any culpability, step back and say “I don’t do anesthesia. The decisions and actions of the anesthesiologist caused the problem, not me.”

How should the anesthetic have been done? 

In a parallel universe, an experienced anesthesiologist would do the following:

  • Explain to the surgeon and the patient that the meat stuck in the esophagus presents a dire risk of aspiration into the lungs and loss of airway, and explain to them that the case must be done either entirely awake without sedation (unlikely to be successful), or as a general anesthetic with an endotracheal tube placed prior to any endoscopy intervention.
  • This case is best done in an operating room, rather than in an endoscopy suite.
  • The anesthesiologist will assemble all emergency airway equipment, including a Glidescope, a fiberoptic laryngoscope, the entire difficult airway cart, and the scalpel, bougie, tube equipment for an emergency cricothyrotomy. 
  • The anesthesiologist will likely call in a second pair of experienced hands, either a second anesthesiologist or perhaps the in-house emergency room physician most experienced with intubating patients.
  • A rapid sequence intubation with propofol, succinylcholine, and cricoid pressure is a possible approach, but runs the risk that if the airway is so difficult that the endotracheal tube cannot be passed on the first attempt, the patient will be difficult to ventilate, difficult to oxygenate, and the meat and saliva from the esophagus could aspirate into the airway, leading to a hypoxic emergency.
  • A safer approach is an awake oral intubation using a fiberoptic laryngoscope. The back of the operating room table is inclined upward into a sitting position. Topical anesthesia and local nerve blocks of the airway are performed. See the footnote below (referenced from Miller’s Anesthesia) for a detailed description of the airway anesthesia.A Moderate sedation with Versed and fentanyl is administered, but the patient is kept awake. There’s still a risk that the topical anesthesia will blunt the cough reflex if the patient regurgitates the meat, so suction and a MaGill forceps are immediately available.
  • The anesthesiologist inserts the fiberoptic scope through an endotracheal tube (ET tube) and advances the scope into the mouth until he or she is able to visualize the vocal cords. This can be difficult and may take time, but there is no acute emergency, so an unhurried approach is warranted. Once the fiberoptic scope is threaded through the vocal cords, the patient will most likely cough violently and will require some restraint by two individuals, one on each side of the bed. The ET tube is threaded over the scope quickly and the balloon on the ET tube is inflated. The tube is connected to the anesthesia machine circuit and end-tidal CO2 is confirmed. At this point an IV bolus of propofol and rocuronium is administered to induce general anesthesia. 
  • Once the ET tube is taped securely in place, the surgeon can position the patient as he desires for the upper GI endoscopy. Anesthesia is maintained with sevoflurane and oxygen. When the surgeon is finished, the patient is awakened using sugammadex as necessary to reverse the muscle relaxation. When the patient opens his eyes, he can be safely extubated.

What are the lessons to be learned from this case study?

  • Don’t be intimidated or pushed into an unsafe anesthesia plan. Do what you were trained to do in residency, and stick to safe anesthesia practice. If an adverse outcome occurs, claiming the surgeon made you do something unsafe will not help you one bit. You are in charge of all anesthesia decisions.
  • In anesthesia practice and all acute medicine care, you must manage Airway-Breathing-Circulation (A-B-C) in that order. Anesthesiologists are trained as airway experts, and for this reason we are the most vital acute care physicians in a medical emergency. The airway must managed first.
  • Take great care when anesthetizing a morbidly obese patient. They are at higher risk for anesthetic complications. They are also at greater risk for surgical and perioperative medical problems. See the lay press coverage in U.S. News and World Report, and also another post from this blog.
  • Maintain your skills in awake intubation. No anesthesiologist uses awake intubation often. For nearly every patient the appropriate sequence is to induce anesthesia first and intubate the trachea afterwards. But some patients: e.g. those with ankylosing spondylitis, congenital airway deformities like Treacher Collins syndrome, or certain patients with morbidly obesity or super morbidly obesity (BMI > 50), awake intubation is indicated. One of my professional partners, a former Senior Examiner for the American Board of Anesthesiologists, told me that during national anesthesia oral board examinations, when a patient presented with severe airway abnormalities for a surgical case, it was very common for successful examinees to state they would perform an awake intubation. Why? Because an awake intubation burns no bridges. The patient is unharmed by general anesthesia until the ET tube is already in place, and thus is unlikely to have a Cannot Intubate-Cannot Ventilate situation that can lead to life-threatening hypoxia. And as well, in an oral exam the examinee doesn’t have to actually perform the procedure—they only have to state they could do it successfully.
  • How do you maintain your skill in awake intubation? This is the tough question. When I was in residency training, Dr. Phil Larson, a former Chairman of Anesthesia at Stanford and former Editor-in-Chief of the journal Anesthesiology, taught us elective awake intubation on patients with normal airways, who did not require an awake intubation, so we could hone the skill. Each patient was sedated with IV narcotics. Local lidocaine nerve blocks were done, and an injection of local anesthetic was administered through the cricothyroid membrane, all prior to us performing the awake fiberoptic intubation successfully. Did this take extra time? It did. The intubation and anesthesia induction took ten minutes instead of one minute. Did the surgeons mind? They didn’t, because they respected Dr. Larson, they were glad an excellent anesthesiologist was attending to their cases, and they realized that nine minutes of time was no big deal. Am I recommending you do this in your practice? No, but in this age of the Glidescope, many anesthesiologists have forgotten how to utilize a fiberoptic intubation. I recommend you practice fiberoptic intubation on asleep patients, and maintain the skill.

You may need it to save someone’s life one day.

Footnote:

A. (From Chapter 44, Airway Management in Adults, Miller’s Anesthesia, Ninth edition, pp 1373-1412)  “Topical application of local anesthetic to the airway should, in most cases, be the primary anesthetic for awake airway management. Lidocaine is the most commonly used local anesthetic for awake airway management because of its rapid onset, high therapeutic index, and availability in a wide variety of preparations and concentrations. Benzocaine and Cetacaine (a topical application spray containing benzocaine, tetracaine, and butamben; Cetylite Industries, Pennsauken, NJ) provide excellent topical anesthesia of the airway, but their use is limited by the risk of methemoglobinemia, which can occur with as little as 1 to 2 seconds of spraying. . . .  A mixture of lidocaine 3% and phenylephrine 0.25%, which can be made by combining lidocaine 4% and phenylephrine 1% in a 3:1 ratio, has similar anesthetic and vasoconstrictive properties as topical cocaine and can be used as a substitute. Topical application of local anesthetic should primarily be focused on the base of the tongue (pressure receptors here act as the afferent component of the gag reflex), the oropharynx, the hypopharynx, and the laryngeal structures; anesthesia of the oral cavity is unnecessary. . . . Before topical application of local anesthetic to the airway, administration of an anticholinergic agent should be considered to aid in the drying of secretions, which helps improve both the effectiveness of the topical local anesthetic and visualization during laryngoscopy. Glycopyrrolate is usually preferred because it has less vagolytic effects than atropine at doses that inhibit secretions and does not cross the blood-brain barrier. It should be administered as early as possible to maximize its effectiveness. “. . . Oropharyngeal anesthesia can be achieved by the direct application of local anesthetic or by the use of an atomizer or nebulizer. Topical application of local anesthetic to the larynx can be achieved by directed atomization of a local anesthetic or by the  spray-as-you-go (SAYGO) method, which involves intermittently injecting local anesthetic through the suction port or working channel of a flexible intubation scope (FIS) or optical stylet, as it is advanced toward the trachea.“Topical application of local anesthetic to the airway mucosa using one or more of these methods is often sufficient. If supplemental anesthesia is required, then a variety of nerve blocks may be used. Three of the most useful are the glossopharyngeal nerve block, superior laryngeal nerve block, and translaryngeal block. The glossopharyngeal nerve supplies sensory innervation to the posterior third of the tongue, vallecula, the anterior surface of the epiglottis, and the posterior and lateral walls of the pharynx, and is the afferent pathway of the gag reflex. To block this nerve, the tongue is displaced medially, forming a gutter (glossogingival groove). A 25-gauge spinal needle is inserted at the base of the anterior tonsillar pillar, just lateral to the base of the tongue, to a depth of 0.5 cm. After negative aspiration for blood or air, 2 mL of 2% lidocaine is injected. The process is then repeated on the contralateral side. The same procedure can be performed noninvasively with cotton-tipped swabs soaked in 4% lidocaine; the swabs are held in place for 5 minutes.”     

*

*

popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE PHYSICIAN ANESTHESIOLOGIST JOB MARKET LOOKS EXCELLENT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The physician anesthesiologist job market looks excellent. Medical students, college pre-med students, and academically successful high school students, are you wondering if anesthesiology is a great career for you? The current demand for anesthesiologists is high. If you’re geographically mobile and willing to relocate to where the demand for anesthesiologists is maximal, you’ll have little problem securing a solid job.

Career Explorer reports, “There are currently an estimated 33,000 anesthesiologists in the United States. The anesthesiologist job market is expected to grow by 15.5% between 2016 and 2026.” Over the next 10 years, it is expected that America will need 6,200 anesthesiologists. That number is based on 5,100 additional anesthesiologists, and the retirement of 1,100 existing anesthesiologists.

Anesthesiology News reports a shortage in the anesthesia job market, which is fueling high job demand in the field.

The American Society of Anesthesiologists surveyed the job market in 2016. Their study reported: “At the time of the survey, almost all the (anesthesia resident) respondents had received job offers, with 97 percent having confirmed jobs. Among the geographic regions, percent of residents having a confirmed job ranged from a 93 percent (Midwest) to 100 percent (Northeast and West). Nationwide, a majority (55 percent) of residents were joining anesthesiology groups with plans to become a partner, while 45 percent accepted employed positions. The mean starting salary was $299,605 with a standard deviation of $77,000, reflecting considerable regional differences. Residents were asked to rank factors most important in choosing a job. The three most important factors included geography, job description and monetary compensation.” 

In just the past 7 days, I received the following unsolicited job offers via personal email. Seeing is believing, so peruse these requests for anesthesiologists and see what you think:

Here’s my advice:

Anesthesiology is a fascinating, challenging, adrenaline-charged career choice with a burgeoning job market. If you’re a student considering a career as a physician, The Anesthesia Consultant website strongly recommends a career as a physician anesthesiologist. For further information, I recommend the following columns from this blog:

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

THE TEN MOST SIGNIFICANT ADVANCES IN ANESTHESIOLOGY IN THE PAST DECADE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

What were the ten most significant advances in anesthesiology in the past decade, 2010 – 2020? Here are my picks:

  • Sugammadex. Sugammadex was FDA-approved in December 2015, and the practice of chemically paralyzing surgical patients and reversing their paralysis has been forever changed. For my non-medical readers, sugammadex is an intravenous drug which reverses the paralysis of rocuronium, the most commonly used anesthetic paralytic drug, in approximately one minute. Sugammadex replaced the decades-old practice of injecting a combination of neostigmine and glycopyrrolate to reverse paralysis. Neostigmine and glycopyrrolate were slow to act (a wait of up to nine minutes), and could not reverse paralysis if zero twitches were present on a nerve stimulator monitor. In addition, 16 mg/kg of sugammadex IV can reverse an intubating dose of rocuronium, which makes rocuronium more quickly reversible than succinylcholine for rapid sequence intubation. Sugammadex is not cheap (a cost of $100 per 200 mg vial), but since the availability of sugammadex, no anesthesia practitioner should ever have an awake and still-paralyzed patient at the conclusion of an anesthetic. A terrific advance. Five stars.
  • Use of Zoom. In the era of COVID, Zoom videoconferencing made person-to-person communication involving anesthesiologists possible. During the early days of the COVID outbreak, the American Society of Anesthesiologists was able to keep its members informed and educated via Zoom conferencing. At the present time, almost all anesthesia continuing medical education (CME) is conducted effectively via Zoom. I attend the Stanford anesthesia Grand Rounds each Monday morning via Zoom, and the educational value is as high as it was when I attended in person. Expect Zoom CME to continue as a major vector in the years to come. Although Zoom may adversely affect in-person attendance at medical meetings forever, I believe widespread videoconferencing education is a tremendous advance. Five stars.
  • The Stanford Anesthesia Emergency Manual. See this link.  The algorithms set out in the red laminated ring-bound Stanford Anesthesia Emergency Manual filled a fundamental need in acute care medicine. When perioperative emergencies arise, a delay in treatment can result in death or irreversible brain damage. The presence of this Stanford book of checklists assures that every operating room is equipped with the cognitive aids needed for standard of care treatment. The manual is available at https://emergencymanual.stanford.edu. The authors chose not to glean profits from the publication of the Stanford Emergency Manual, but instead made it available for physicians and nurses everywhere for free. Five stars.
  • Safer care. Anesthesia care has become safer and safer. Deaths and adverse outcomes continue to decrease because of improved monitoring, vigilance, education, and training. The Cleveland Clinic writes, “In the 1960s and 1970s, it wasn’t uncommon to have a death related to anesthesia in every one of every 10,000 or 20,000 patients. Now it’s more like one in every 200,000 patients—it’s very rare.” The continuing advances in anesthesia safety are a bellwether for other specialties, who must envy the progress made in anesthesiology quality assurance. The Anesthesia Patient Safety Foundation is a hub of all advances. Five stars.
  • Pubmed/Internet/the Cloud. This past decade saw an explosion of handheld mobile devices and phones, as well as an expansion in the use of the cloud and the internet. Anesthesiology benefited from these technological advances. Information regarding anesthesia care is immediately available to any anesthesia provider anywhere in the world, if they have internet access. The ability to do a Google search on any topic is outstanding and immediate. Pubmed is a National Library of Medicine website which catalogs an abstract on every medical publication. Pubmed is an essential tool for every physician who is investigating previously published medical knowledge. Five stars.
  • Closed loop TIVA (total intravenous anesthesia).  Anesthesiologists and pharmacologists have been working on the pharmacokinetics of automated administration of intravenous anesthetics for years. Utilizing EEG monitoring data (BIS monitor levels) to titrate the depth of anesthesia shows promise. For a typical anesthetic, TIVA requires more work than vapor anesthesia with sevoflurane, because the anesthesiologist must load a syringe with propofol and/or remifentanil, attach an infusion line, load the syringe into the infusion pump, and program the pump to the correct infusion rate. In contrast, a sevoflurane vaporizer is already loaded with liquid anesthetic, is easy to use, and merely requires the pushing of one button and turning of one dial. Closed loop TIVA is not in clinical use at this time, but you can expect that the future, anesthesia recipes will include automated sedation/anesthetic depth titration via computer administration. The TIVA research of the past ten years has paved the way for this advance. Three stars.

The ultrasound-guided regional anesthesia boom. In the past ten years the number of ultrasound guided regional anesthesia blocks has mushroomed. Regional nerve blocks decrease the need for postoperative narcotics. Evidence shows that ultrasound guidance reduces the incidence of vascular injury, local anesthetic systemic toxicity, pneumothorax and phrenic nerve block for interscalene blocks, but there has not been consistent evidence that ultrasound guidance is associated with a reduced incidence of nerve injury. The ultrasound-guided regional anesthesia boom has led to tens of thousands of additional nerve blocks, and an unfortunate fact is that a small but non-zero number of these patients develop permanent nerve damage in their arms or legs after their blocks. Regional anesthesia specialists who publish in the medical literature have made little effort to quantify or report these complications. Prospective data on nerve injuries is needed. Honest verbal informed consent to each patient before a nerve block is needed. See this link. Three stars.

Point of care ultrasound (POCUS). In recent years, anesthesiologists began to aim their ultrasound probes at the abdomen, thorax, and airway, to gain real-time information and immediate knowledge of the anatomy and pathology beneath the skin and to better manage and treat critically ill patients. POCUS is proving useful in trauma , chest examination, and pediatric anesthesia. Because POCUS is a recent development, the majority of anesthesiologists do not have the training, skills, or knowledge needed to use this new technique. Recent graduates of residency and fellowship programs will lead the way as the anesthesia workforce transitions toward mastery of POCUS. Three stars.

  • ASA Monitor/Dr. Steven Shafer. I list this development last, but my enthusiasm for the ASA Monitor and its Editor-in-Chief Steven Shafer is extremely high. The American Society of Anesthesiologists revamped their ASA Monitor publication into a monthly newsletter reporting up-to-date information regarding our specialty. The ASA hired Steven Shafer MD PhD as the editor. Dr. Shafer is a Professor of Anesthesiology at Stanford, and is an outstanding scientist, author, and humorist. I’ve known Steve for nearly forty years, since he was a medical student. He has authored more than 200 peer-reviewed publications in the field of anesthesiology, and was the Editor-in-Chief for Anesthesia and Analgesia from 2006-2016. Dr. Shafer possesses a razor-sharp intellect and a flippant sense of humor seldom seen in scientific writing. His lead editorial in each month’s issue of the ASA Monitor is required reading for every anesthesia professional. Dr. Shafer also personally authors a daily update on COVID research and statistics—a Google group which you can personally subscribe to as an email offering. See this link. Five stars.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

TOXIC MARIJUANA SYNDROME YOU’VE NEVER HEARD OF: CANNABINOID HYPEREMESIS SYNDROME

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Cannabinoid Hyperemesis Syndrome. Chances are you’ve never heard of it, but one of your patients, or someone you know, may develop this syndrome in the coming years. Cannabis use is common. According to The Washington Post, in 2017 more than half of American adults had tried marijuana at least once in their lives, and a total of 55 million Americans currently used the drug. This number approaches the total of 59 million cigarette smokers in America. Each year 2.6 million Americans become new cannabis users. The majority of marijuana users are male, earn under $50,000 a year, and lack a college degree. The 18–25 year old age group has the highest prevalence of marijuana use. 

Emesis is the medical word for vomiting. Hyperemesis means excessive vomiting. The number of people affected with Cannabinoid Hyperemesis Syndrome is estimated at about 2.7 million people in the United States per year. Cannabinoid Hyperemesis Syndrome (CHS) presents as a triad of chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. If the patient withholds the history of chronic cannabis use, it’s difficult to impossible to make the correct diagnosis. Despite months of cyclical symptoms and thousands of dollars of Emergency Room visits and lab tests, the syndrome may not be correctly diagnosed or treated.

Let’s look at a case study of CHS to learn how it may present, and why it is uncommonly recognized:

A 25-year-old male presents for a diagnostic upper gastrointestinal endoscopy. He has a three-month history of persistent nausea, vomiting, and weight loss. His laboratory tests and CT scans of his abdomen and chest are normal. He carries a presumptive diagnosis of GERD (gastroesophageal reflux disease), and treatment with anti-acid drugs such as proton-pump inhibitors and H2-blockers have not improved the symptoms. The young man has been afraid to eat because of nausea and retching. He has been unable to work, and his sleep has been significantly impaired. He has lost weight from 150 pounds to his current weight of 135 pounds. On exam he appears well. His vital signs are normal, and his abdominal exam is negative for tenderness. He is scheduled for general anesthesia for the endoscopy procedure. He was referred for the upper GI endoscopy by his primary care doctor, and the gastroenterologist has yet to meet the patient.

Twenty minutes before his procedure, the anesthesiologist asks the patient if he takes any medicine or drugs. “Only the stomach pills my doctor prescribed,” he replies. “They aren’t working at all. I also use marijuana to decrease the nausea, but it’s not working either.”

“How frequently do you use marijuana?” the anesthesiologist asks. 

“Promise not to tell my parents?” he says. “I use a vape pen about 8 – 10 times a day.” 

“For how long have you been doing that?”

“About five years. I’ve increased my use over the past few months, because it’s supposed to be helpful for nausea, but it’s not working anymore.”

The anesthesiologist excuses himself, and sets off to find the gastroenterologist scheduled to do the procedure.  The anesthesiologist shares the cannabis history, and the gastroenterologist immediately says, “No one ever told me this patient was a chronic marijuana user. This changes everything. His history is classic for Cannabinoid Hyperemesis Syndrome.”

The gastroenterologist interviews the patient and confirms the correct clinical diagnosis. The treatment is immediate cessation of marijuana use, and the endoscopy is cancelled.

One week after stopping all cannabis use, the patient’s symptoms have completely resolved. He is eating well without nausea or vomiting, and has gained back 8 pounds.

Cannabinoid Hyperemesis Syndrome was first described in 2004 in a series of 9 patients from Australia.  In all of the cases, chronic cannabis abuse preceded the onset of a cyclical vomiting illness. Stopping cannabis led to cessation of the vomiting in seven cases. Three cases did not abstain and continued to have recurrent vomiting. Three other cases rechallenged themselves after a period of abstinence and relapsed to the same illness. Two of these cases abstained again, and remain well. The third case did not abstain, and remained ill. The majority of the patients displayed abnormal washing behavior during episodes of active nausea, in which they took repeated hot showers or baths, which temporarily relieved their symptoms.

Δ9-tetrahydrocannabinol (THC) is the principle psychoactive compound in cannabis. There are two distinct cannabinoid receptors, CB1 and CB2, in the human body, located predominately in the central nervous system and also in the gastrointestinal tract. THC stays in the body for a prolonged time, with an elimination plasma half-life of 20–30 hours. THC accumulates within body fat, and body fat serves as a long-term storage site. Typically THC can be used for its antiemetic (anti-nausea) property, and has been used to blunt nausea in cancer chemotherapy patients. With chronic use THC can induce a paradoxical nausea-inducing effect by unknown mechanisms on the central nervous system and the gastrointestinal system, causing the Cannabinoid Hyperemesis Syndrome. Patients with Cannabinoid Hyperemesis Syndrome are chronic users of cannabis who likely have large lipid reservoir stores of THC. 

CHS patients are typically young adults with a long history of marijuana use. There is usually a delay of several years following the onset of the chronic marijuana habit before the onset of symptoms. CHS patients often remain misdiagnosed. Erroneous diagnoses considered included a broad range of conditions affecting the gastrointestinal tract. In one study the average duration of cannabis use prior to onset of the recurrent vomiting was 19.0 ± 3.4 years, and had an average of 7.1 ± 4.3 emergency room visits, 5.0 ± 2.7 clinic visits, and 3.1 ± 1.9 admissions for the CHS syndrome. Daily marijuana use was typical, often exceeding 3 – 5 times per day. 

The three phases of CHS are prodromal, hyperemetic, and recovery. In the prodromal phase patients develop early morning nausea, a fear of vomiting, and abdominal pain. The hyperemetic phase includes episodes of intense and persistent nausea and vomiting. Patients vomit profusely, and can vomit or retch multiple times per hour. In the original 2004 Australian study, 70% of patients reported weight loss of at least 5 kg (11 pounds). Symptomatic patients typically undergo extensive diagnostic work ups, including laboratory and imaging studies, which are all normal or nondiagnostic. The recovery phase can last for days, weeks, or months. It occurs after the cessation of cannabis consumption, and is associated with return to normal eating patterns and original body weight.

The diagnosis of CHS must be made entirely by clinical history. The history of extensive previous cannabis use is universal, but may be unrealized if the patient withholds the information for personal reasons. A Mayo Clinic study in 2012 which included 98 patients, was the largest study to date. Characteristics of the Mayo CHS patients are shown in this table:

The Mayo series of 98 CHS patients helped establish these  diagnostic criteria. These criteria include: 

  • Essential for diagnosis: Long-term cannabis use. 
  • Major features: Severe cyclic nausea and vomiting, Resolution with cannabis cessation, relief of symptoms with hot showers or baths, abdominal pain epigastric or periumbilical, weekly use of marijuana. 
  • Supportive features: age less than 50 years, weight loss of > 11 pounds (5 kg), morning predominance of symptoms, normal bowel habits, negative laboratory, radiographic, and endoscopic tests.

Acute medical treatment for severe CHS episodes includes IV fluids for dehydration and supportive care. Traditional anti-emetic drugs such as Zofran have been largely ineffective. The only reliable long term treatment is the cessation of cannabis. The percentage of patients who relapse has not been quantified to date. The case series data in the medical literature currently document that many of the patients who return to cannabis use have recurrent CHS.

Voters have legalized the recreational use of cannabis in 11 states (California, Colorado, Washington, Oregon, Nevada, Maine, Alaska, Michigan, Illinois, Massachusetts, and Vermont). Because cannabis was legalized through popular vote and not via the usual Food and Drug Administration (FDA) channels, the drug did not undergo government scrutiny regarding toxicities and long term health effects. I discussed this topic in an earlier column.  

Cannabinoid Hyperemesis Syndrome should be considered as a plausible diagnosis in anyone with recurrent severe vomiting and a strong history of cannabis abuse. 

Because of recent legalization of recreational and medical cannabis use in many states, expect the incidence of Cannabinoid Hyperemesis Syndrome to increase. If your patient, or someone you know and love, develops recurrent severe vomiting in the setting of a strong history of cannabis abuse, the diagnosis may very well be Cannabinoid Hyperemesis Syndrome. 

The good news is that once the diagnosis is made, the syndrome is curable with cannabis abstinence.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DSC04882_edited

QUALITY ASSURANCE IN ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
This image has an empty alt attribute; its file name is 2444107_orig.jpg

Case study #2020: A healthy 48-year-old woman is anesthetized for a hysterectomy. As the surgery is ending, her blood pressure skyrockets to 220/160 and her pulse rate rises to 165 beats per minute. She is resuscitated and transferred to the Intensive Care Unit (ICU).

What happened? The hospital’s Quality Assurance (QA) program, also known as a Quality Improvement (QI) program, is charged with investigating this adverse event.  

Mistakes happen in medicine.

In 1999 the Institute of Medicine published the landmark “To Err is Human” report, which described that adverse events occurred in 3 – 4% of all hospital admissions, and that over 50% of the adverse events were due to preventable medical errors. Approximately 10% of the adverse events led to deaths. The report estimated that 44,000 – 98,000 Americans died each year due to medical errors. The report estimated that medical errors were the 8th leading cause of death in the United States. The report recommended that instead of blaming individuals, to instead prevent future errors by designing safety into the system. 

My experience in Quality assurance/Quality improvement programs includes:

  • Stanford University Hospital QA Committee (Care Review Committee), 1997 – 2009
  • Stanford University Anesthesia QA Committee, 2002 – 2009, and
  • Waverley Surgery Center QI Committee (Chairman), 2002 – present.

The analysis of complications is one of the most interesting aspects of medicine. Every complication has an opening event, a story line, and a conclusion. Using Case study #2020 above, let’s trace through the steps involved in improving medical quality:

  1. CAPTURE THE CASES. The first task is to find out about all adverse events. This can be harder than it sounds. Ideally the involved MDs and nurses will fill out an Incident Report or an Adverse Event Report, which includes the details of what happened to their patient. But many clinicians are reluctant to hang out their dirty laundry, and it’s possible for adverse events to be hidden, buried, or ignored. This hampers care improvement. We can’t fix problems we haven’t identified. At a large hospital, Adverse Event Reports are digitally entered into a computer site. At a smaller facility such as a surgery center, Adverse Event Reports are filed on paper forms. In either case, once the case is captured, the QA system can analyze the event. Case study #2020: The attending surgeon and the operating room nurse each filed digital Adverse Event documents because of their patient’s extremely high blood pressure and heart rate, and her unplanned admission to the ICU.
  2. ANALYZE ADVERSE INCIDENT REPORTS FOR SIGNIFICANT NEGATIVE CLINICAL OUTCOMES, OR THE NEAR MISS OF A NEGATIVE OUTCOME. Some Adverse Events reports are more significant than others. Some reports reveal only minor issues such as prolonged post-operative nausea and vomiting, or a prolonged Post Anesthesia Care Unit stay. An MD or specially trained RN will sift through the stack of Adverse Event Reports and choose those problems which require attention. Case study #2020: The chairperson of the QA Committee notes the elevated BP and heart rate and the unplanned ICU admission, and flags this case for immediate committee evaluation.
  3. ROOT CAUSE ANALYSIS . . . RETRIEVE AND REVIEW ALL RELEVANT MEDICAL RECORDS FOR COMMITTEE: Root Cause Analysis (RCA) is an organized approach to ferreting out the causes for any adverse medical event. The goal of RCA is to find out what happened, why it happened, and what can be done to prevent it from happening again. After a hospital complication, all electronic medical records (EMRs) pertinent to the incident are reviewed to discern what happened. A time line is formulated, with the goal of finding a cause and effect relationship that led to the complication. The hospital EMR may be hundreds of pages long, depending on the complexity of the case. At an outpatient surgery center where medical records are usually kept on paper, the review process is faster and easier, as the entire case may be documented in twenty pertinent pages or less. Case #2020: Review of the case shows that the BP and heart rate increases occurred within minutes after the anesthesiologist administered an intravenous dose of the drug atropine.
  4. INTERVIEW THE CLINICIANS: Members of the committee are charged with interviewing the individuals present at the time of the complication. Case #2020: The surgeon, operating room nurse, and the anesthesiologist are interviewed. The initial interviews with the clinicians are done prior to the QA Committee meeting on the case, although key clinicians may be interviewed at the actual QA Committee meeting. The pertinent revelation was that the anesthesiologist administered an intravenous dose of 4 mg of Zofran, and charted that the dose was administered. After the case was over, he said he looked for the empty atropine ampoule, and discovered that it was instead an empty 1 mg epinephrine ampoule.
  5. ASSESS WHAT HAPPENED: In Case #2020: The unintended intravenous bolus injection of 1 mg of epinephrine into a stable patient caused life-threatening hypertension and elevated heart rate. Epinephrine is adrenaline, and a dose of 1 mg IV bolus is only appropriate if a patient is in cardiac arrest situation, such as ventricular fibrillation, asystole (flat line), or pulseless electrical activity. The administration of a wrong medicine by human error is called “syringe swap” or “ampoule swap.”  It’s a preventable human error. In this case the atropine and epinephrine ampoules were nearly identical in size, color, and shape. The two different ampoules were stored in the same drawer in the anesthesiologist’s drug cart, and the distance between the two storage areas was only 2 inches.
  6. REVIEW THE RELEVANT MEDICAL LITERATURE: Using PUBMED.com,     it’s easy to search for similar incidents in the medical literature. The committee found an example of the very same epinephrine ampoule swap occurring previously.  In this published case report, an epinephrine ampoule was erroneously injected instead of a similar appearing neostigmine ampoule at the conclusion of a hysterectomy. The patient had an immediate cardiac arrest. The patient survived, but required an ICU stay. The neostigmine and adrenaline ampoules were very similar and were stored in adjacent compartments in the anesthesia cart.
  7. THE QA COMMITTEE DISCUSSES THE CASE: The committee consists of MDs from multiple specialties. Case #2020: These MDs  discuss the case and the probable cause of the adverse event, and discuss possible system improvements to prevent repeat of the error in the future. These suggestions are based on the education, experience, and training of the committee members, as well as from input from the relevant medical literature. Note that the committee does not criticize or blame the anesthesiologist for making the error, and does not make a point of singling out the individual physician as the culprit. 
  8. MAKE SYSTEM CHANGES TO AVOID FUTURE SIMILAR COMPLICATIONS: Case #2020: The committee decides to remove all 1 mg  epinephrine ampoules from the readily accessible anesthesiologist drug drawers in all operating rooms, to prevent the inadvertent administration of another dangerous bolus of epinephrine when it could be mistaken for Zofran or any other drug. (Epinephrine is an important medication to be administered during cardiac arrests, allergic reactions, or for cardiac patients whose blood pressure is falling precipitously, so the medication must be available.) The committee recommends that the only formulation of epinephrine included in the anesthesia drug drawer be the clearly labeled cardiac arrest epinephrine bolus syringes, which are packaged in individual cardboard  boxes. The dangerous 1-milliliter epinephrine ampoules are moved out of the operating room. The recommended policy and procedure is for anesthesiologists to request the 1-milliliter ampoules to be retrieved for them from pharmacy storage, by the operating room nurse, only when needed. This is expected to be a rare occurrence.
  9. SOME PEER REVIEW OUTCOMES REQUIRE REPORTING TO THE CALIFORNIA STATE MEDICAL BOARD: QA/QI work is part of peer review, and cannot be subpoenaed during any legal malpractice litigation. In California, a QA investigation triggers a obligated report to the state Medical Board when the following may have occurred: (A) Incompetence, or gross or repeated deviation from the standard of care involving death or serious bodily injury to one or more patients, to the extent or in such a manner as to be dangerous or injurious to any person or to the public; (B) The use, prescribing, or administration to himself or herself of any controlled substance, or the use of any dangerous drug or of alcoholic beverages, to the extent or in such a manner as to be dangerous or injurious to the licentiate, any other person, or the public, or to the extent that such use impairs the ability of the licentiate to practice safely; (C) Repeated acts of clearly excessive prescribing, furnishing, or administering of controlled substances or repeated acts of prescribing, dispensing, or furnishing of controlled substances without a good faith effort prior examination of the patient and medical reason therefor; or (D) Sexual misconduct with one or more patients during a course of treatment or an examination
  10. ONGOING METRICS ARE TRENDED TO TRACK CHANGES IN COMPLICATION RATES: The QA Committee must collect follow up data to determine if the suggested system change improved future outcomes. If the data indicates worsening trends, then the committee will investigate and consider further Quality Improvement measures. Case #2020: for two years following the new epinephrine policy there were zero ampoules swaps involving epinephrine. In addition, zero other episodes of ampoule swap of any other drugs occurred. 

Mistakes happen. The role of a QA Committee is to prevent them from happening again. This method of making system changes so that Hazards are less likely to become Losses, is depicted in the Swiss Cheese model below:

The Swiss Cheese Model was originally designed to eliminate errors in the oil industry, and was later adopted by the airline industry. Visualize the pieces of Swiss Cheese as barriers between Hazards and Losses. Each single Swiss Cheese barrier isn’t perfect and isn’t sufficient to prevent a hazard. Each additional barrier is designed so that the error that penetrated through the first barrier is stopped by the second barrier. Designing different barriers at different stages of medical care, with different strengths and weaknesses, makes it more difficult for a Hazard (mistake) to lead to a Loss (serious injury or death). The Swiss Cheese model is designed to make it difficult for a straight line to exist from Hazard to Losses.

The Quality Assurance process is summarized in the article Overview of the Quality Assurance Movement in Health Care.  Hospitals and surgery centers in your area are following Quality Assurance processes similar to those discussed above, so that when you or your loved ones are admitted for medical care, the chances of a serious complication will be as close to zero as possible.

Note: The Anesthesia Patient Safety Foundation (APSF) is the national organization that deals with safety issues in anesthesiology practice. The monthly APSF newsletters are available online at https://www.apsf.org, and serve as valuable educational material for every anesthesiologist regarding safety issues in our specialty.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DSC04882_edited

SURGEON GENERAL, WHERE ART THOU?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Picture this: You’re a highly qualified, board-certified physician anesthesiologist with a Master’s Degree in Public Health from Berkeley. President Donald Trump appoints you to be the Surgeon General of the United States. Then the COVID-19 pandemic rears its head, and you can’t speak out regarding appropriate public health measures without crossing your President. Such is the plight of Dr. Jerome Adams, the 20th Surgeon General of the United States, stuck between supporting medical science or avoiding conflict the President he works for.

Dr. Adams is the first anesthesiologist to hold the office of Surgeon General when he was appointed in 2017. Dr. Adams’ area of public health expertise is the prevention and management of opioid abuse. In 2014 then-Governor of Indiana Mike Pence appointed Dr. Adams to be the Indiana Health Commissioner. Under Dr. Adams’ guidance, Indiana counties created syringe exchanges to contain the spread of AIDS throughout the state.

As an anesthesiologist, I’m a fan of Jerome Adams. We’re separated by only one degree: Dr. Adams is an acquaintance of Dr. Michael Champeau, who is the President of my anesthesia group in California. Dr. Adams is highly respected within the anesthesia world, and was a lead speaker at the 2019 American Society of Anesthesiologists National Meeting.

Dr. Adams was the subject of an article in The Washington Post on July 12, 2020, titled “Surgeon General Jerome Adams may be the nicest guy in the Trump Administration. But is that what America needs right now?” The article states, “Adams came to Washington three years ago to tackle another problem —  the raging opioid crisis — by drawing from a painful personal history with a brother who has struggled with substance abuse. Yet he has been thrust into the role of the pandemic surgeon general.” The article describes Jerome Adams as a fine man, experienced in tackling the opioid problem, but now confronted with the difficult public health reality of the coronavirus.

Most people don’t understand the office of the Surgeon General, a position often referred to as “The Nation’s Doctor.”The Surgeon General of the United States is the head of the United States Public Health Service Commissioned Corps, and is the leading spokesperson on matters of public health in the United States. In contrast, the Attorney General of the United States is the head of the United States Department of Justice, the chief lawyer of the United States government, and a member of the President’s Cabinet. Compared to the Attorney General, the Surgeon General has historically been an office with little power.

Dr. Adams’ legacy as Surgeon General will likely be clouded by our nation’s public health response to the COVID-19 virus. At the time of this writing, COVID case numbers and death rates are peaking in the United States, five months after the onset of the outbreak. Dr. Adams is in a precarious position: he was appointed to the office of Surgeon General by a President who has spent much of 2020 ignoring the advice of medical experts and advisors. If Dr. Adams publicly emphasizes the medical facts regarding battling the COVID pandemic (6-foot social distancing, wearing masks, avoiding crowded indoor settings) he risks contradicting the President who appointed him to the office. If Dr. Adams remains mute on the appropriate public health approach to battling the COVID pandemic, he risks marring his reputation as the lead public health officer in the United States.

Dr. Adams’ early response to the COVID pandemic in February 2020 included advice for the general public to not wear masks:

On Feb. 29, 2020, Adams tweeted: 

In an interview with “Fox & Friends” on March 2, 2020, Dr. Adams said: “One of the things (the general public) shouldn’t be doing is going out and buying masks. . . . It has not been proven to be effective in preventing the spread of coronavirus amongst the general public. . . . Folks who don’t know how to wear them properly tend to touch their faces a lot, and actually can increase the spread of coronavirus. You can increase your risk of getting it by wearing a mask if you are not a healthcare provider.”

This advice was contrary to the now-accepted public health strategy of requiring masks on everyone. The fact that the Surgeon General made the opposite recommendation in February 2020 was unfortunate. He meant well, as his advice was given at a time when there were inadequate amounts of PPE (personal protective equipment) for healthcare workers who were battling COVID on the hospital frontlines. Adams did not want an inadequate supply of masks to be redirected away from hospitals. When the public health recommendation later pivoted 180 degrees to wearing masks publicly, Adams’ February admonition seemed to have been bad advice.

In the spring of 2020, Adams appeared daily on television as part of President Trump’s Coronavirus Task Force, along with Dr. Anthony Fauci and Dr. Deborah Birx. When the Trump administration was facing criticisms about its COVID-19 response in hard-hit minority communities, Dr. Adams’ remarks at a April 10, 2020 daily press briefing were designed to address those concerns. Critics believed several comments made by Adams played into racial stereotypes. “Avoid alcohol, tobacco and drugs,” Adams said. He urged communities of color to “step up” to fight the disease. “We need you to do this, if not for yourself, then for your abuela. Do it for your granddaddy. Do it for your Big Mama. Do it for your Pop-Pop.” Representative Alexandria Ocasio-Cortez (Democrat-N.Y.) said the comments amplified claims about minority populations engaging in risky behaviors.

In the weeks following April 10th, 2020, Dr. Adams’ appearances with the Coronavirus Task Force became limited, and his role in COVID-19 public health policy was minimized.

The website of the Surgeon General (see above) has a paucity of information about the pandemic. There is one link for COVID-19 Updates. The website has general information about the Office of the Surgeon General (OSG), but very little medical information. There are links to Advisories on Marijuana and the Developing Brain, E-Cigarettes, and Naloxone and Opioid Overdose.

In the midst of the greatest public health crisis in one hundred years, the Surgeon General has remained—or the government has kept him—on the sidelines. At the current time the administration has distanced itself from both Dr. Fauci and Dr. Adams. The medical community sees this as unfortunate, as both physicians are respected and honest experts. 

Most Surgeons General have negligible legacies after their term is concluded. Notable past Surgeons General include:

Surgeon General Luther Terry MD (1961 – 1965), who was previously the Chief of General Medicine and Experimental Therapeutics at the National Heart Institute. Dr. Terry’s committee report issued on March 7, 1962 indicated that cigarette smoking was a cause of lung cancer and bronchitis, and probably a risk factor for cardiovascular disease as well.  

This report led to the familiar warning on all packages of cigarettes in the United States:

Surgeon General C. Everett Koop MD (1982-1989), was a pediatric surgeon from the University of Pennsylvania School of Medicine faculty. Dr. Koop released a paper which called for AIDS education in the early grades of elementary school, and he gave full support for using condoms for disease prevention. He also resisted pressure from the President Reagan to report that abortion was psychologically harmful to women. He believed abortion was a moral issue rather a public health issue.

Surgeon General Antonia Novello MD (1990-1993) was a pediatrician and the first female Surgeon General. She was a graduate of the University of Puerto Rico School of Medicine. 

Surgeon General Joycelyn Elders MD (1993-1994) is currently a professor emeritus of pediatrics at the University of Arkansas. Dr. Elders once spoke at a United Nations conference on AIDS, and when asked whether it would be appropriate to promote masturbation as a means of preventing young people from engaging in riskier forms of sexual activity she replied, “I think that it is part of human sexuality, and perhaps it should be taught.”  She was fired by President Bill Clinton that year.

What will Jerome Adams’ legacy be? We’ll only know after his term has ended and the chronicle of the COVID-19 pandemic is recorded into history books. As the top public health doctor in the United States at the time of our worst public health nightmare in a century, his feats, achievements, and non-achievements will be on the record for years to come. 

I support Dr. Jerome Adams, and urge him to use his platform, education, and experience to be a leader in America’s public health response to COVID-19.

Would President Trump fire his Surgeon General if Dr. Adams publicly disagreed with the President? Perhaps. But I believe Jerome Adams’ legacy will grow to the degree he speaks out on the side of medical science regarding the containment of the coronavirus, and to the degree the United States has a successful public health response to the COVID-19 pandemic.

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

DSC04882_edited
https://ricknovak.com

BLACK MAN DIES AFTER A CONFRONTATION WITH POLICE AND INJECTION OF THE ANESTHETIC KETAMINE BY PARAMEDICS. WHAT WENT WRONG?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
Elijah McClain

Elijah McClain was a 23-year-old Black man who was detained by police just after 10:30 pm on August 24, 2019 while on his way home from picking up an iced tea for his brother. The Aurora, Colorado Police Department received a call about a “suspicious person” wearing a mask and waving his hands. 

An account of the events of that night appeared on the website thecut.com:     

Elijah McClain

The 23-year-old had made a quick trip to the convenience store to pick up an iced tea for his brother. His sister later told a local ABC affiliate  that McClain was wearing an open-face ski mask because he “had anemia and would sometimes get cold.” And although he was unarmed, simply walking home and, his sister said, listening to music, police say “a struggle ensued.” One officer accused McClain of reaching for his gun, and one put him in a carotid hold, which involves an officer applying pressure to the side of a person’s neck in order to temporarily cut off blood flow to the brain. “Due to the level of physical force applied while restraining the subject and his agitated mental state,” officers then called Aurora First Responders, who “administered life-saving measures,”  according to a local NBC affiliate. Paramedics injected McClain with what they said was a “therapeutic” amount of ketamine to sedate him, while officers held him down.

McClain went into cardiac arrest on the way to the hospital, and was taken off life support on August 30. His family said at the time that he was brain dead, and covered in bruises. . . .

Elijah McClain in ICU

Body-cam footage of the arrest does exist, although the Aurora Department of Police did not release it to the public until late November, months after McClain’s death. In the footage, an officer can be heard admitting McClain had done nothing illegal prior to his arrest; another accuses McClain of reaching for one of their guns. McClain, meanwhile, can be heard asking the officers to stop, explaining that they started to arrest him as he was “stopping [his] music to listen.” He gasps that he cannot breathe. He tells them his name, says he has ID but no gun, and pleads that his house is “right there.” He sobs, and vomits, and apologizes: “I wasn’t trying to do that,” he says. “I just can’t breathe correctly.” One of the officers can also be heard threatening to set his dog on McClain if he “keep[s] messing around,” and claiming he exhibited an extreme show of strength when officers tried to pin back his arms. . . .

An autopsy initially listed McClain’s cause of death as “undetermined.”

McClain’s autopsy also raised questions. The Adams County Coroner announced in early November that it wasn’t clear whether his death had been an accident, or carotid hold–related homicide, or the result of natural causes. The coroner listed McClain’s cause of death as “undetermined,” but points to hemorrhaging in his neck and abrasions on different parts of his body. Noting that “an idiosyncratic drug reaction (an unexpected reaction to a drug even at a therapeutic level) cannot be ruled out” in reference to the ketamine dosage, the report’s wording seemed to pin responsibility on McClain himself.”

A July 3, 2020 story by NBC news described the ketamine administration in this case as follows: 

The officers took McClain to the ground using a carotid control hold, a type of chokehold meant to restrict blood to the brain to render a person unconscious. . . .

McClain “briefly went unconscious,” according to a report the local district attorney, Dave Young, completed last fall. McClain could also be heard in the police video telling the officers, “I can’t breathe, please,” and he vomited while he was on the ground.

A medic told officers that “when the ambulance gets here, we’re going to go ahead and give him some ketamine.”

The officers responded, “Sounds good,” and they told the medic that McClain appeared to be “on” something and that he had “incredible strength.”

An Aurora Fire Rescue medic injected McClain with 500 milligrams of ketamine, according to the district attorney’s report.

The coroner found that McClain’s death was due to “undetermined causes,” . . . The medic at the scene estimated that McClain weighed 220 pounds, Young’s report said. But the coroner said he was 5 feet, 6 inches tall and weighed 140 pounds.

According to documents shared by Aurora Fire Rescue, the standard dose of ketamine is 5 milligrams per each kilogram of a person’s weight. That would mean that instead of 500 milligrams of ketamine, McClain should have received about 320 milligrams.

The use of ketamine by Emergency Medical Technicians (EMT) was reviewed in the paper Prehospital Use of IM Ketamine for Sedation of Violent and Agitated Patients in the Western Journal of Emergency Medicine. Regarding the indications to use ketamine in the pre-hospital setting, the paper stated: “Violent and agitated patients pose a serious challenge for emergency medical services (EMS) personnel. Rapid control of these patients is paramount to successful prehospital evaluation and also for the safety of both the patient and crew. Sedation is often required for these patients, but the ideal choice of medication is not clear.” In this retrospective review of prehospital ketamine use, 50 of the 52 patients studied were rapidly sedated, and only three patients had negative side effects. But these three side effects were significant, including the requirement for an endotracheal tube (ETT) in two patients, and the requirement for bag valve mask (BVM) ventilation in one patient. ETT or BVM are indicated when airway or breathing cease to be adequate. The publication included the following algorithm to guide the pre-hospital usage of ketamine:

What probably happened to cause Elijah McClain’s death? 

As an anesthesiologist I’ve administered ketamine safely to hundreds of patients. It’s a potent drug but poses life-threatening risks if given by personnel who are not airway experts. I have no access to the medical records or police records from Elijah McClain’s death. But based on reading the media coverage, here’s my interpretation regarding the administration of ketamine to Elijah McClain:

Ketamine is a potent injectable drug used by anesthesiologists to provide sedation or general anesthesia. (Reference: Elsevier Clinical Key Monograph, Lane Medical Library online, Stanford University Medical Center) It can be injected via an intravenous line, or injected into a muscle (intramuscularly, or IM) as it was to Elijah McClain. Ketamine produces an anesthetic state characterized by profound pain relief with minimal depression of breathing. Ketamine brings on a trancelike state of unconsciousness, but also produces undesirable psychological reactions during awakening which are called emergence reactions. Common symptoms of emergence reactions are vivid dreams, a sense of floating out of body, and illusions which seem to be misinterpretations of a real, external sensory experience. (Reference: Miller’s Anesthesia, 9th edition, Chapter 23, Intravenous Anesthetics)

For anesthesiologists the primary indication intramuscular/IM ketamine is to induce general anesthesia in uncooperative patients, young children, or adolescents who will not remain still and allow the elective placement of an intravenous/IV catheter. An intramuscular injection of ketamine into the deltoid muscle of the shoulder or the quadraceps muscle of the thigh will bring on the onset of anesthesia in 3 to 5 minutes. Per the chart below, the general anesthesia induction dose of ketamine is 4-6 mg/kg when used IM:

Uses and Doses of Ketamine

From Reves JG, Glass P, Lubarsky DA, et al. Intravenous anesthetics. In: Miller RD, Eriksson LI, Fleischer LA, et al, eds.  Miller’s Anesthesia,  7th ed. Philadelphia: Churchill Livingstone; 2010: 719–768.

Induction of general anesthesia  ∗ 0.5-2 mg/kg IV  
4-6 mg/kg IM
Maintenance of general anesthesia0.5-1 mg/kg IV with N  2  O 50% in O  2  
15-45 μg/kg/min IV with N  2  O 50%-70% in O  
30-90 μg/kg/min IV without N  2  O
Sedation and analgesia0.2-0.8 mg/kg IV over 2-3 min
2-4 mg/kg IM
Preemptive or preventive analgesia0.15-0.25 mg/kg IV

McClain’s demise may have been caused by the effects of ketamine, combined with inadequate management/resuscitation of a ketamine-anesthetized adult by non-anesthesia professionals:

  1. McClain was not NPO prior to his anesthetic. Nothing by mouth (nil per os, or NPO) is the standard of care prior to elective surgery. Vomiting stomach contents after the induction of general anesthesia can lead to aspiration of these stomach contents into the windpipe and/or lungs, which can cause death. Patients for elective surgery who receive ketamine always have an empty stomach. It’s dangerous for a paramedic to induce general anesthesia in an individual who is not NPO, because any vomiting could obstruct the airway and breathing. According to Elsevier Clinical Key Monograph, Lane Medical Library online, Stanford University Medical Center: “Vomiting has been reported following ketamine administration. Intact laryngeal-pharyngeal reflexes may offer some protection, however the possibility of aspiration must be considered.”
  2. Ketamine causes increased airway secretions, and the accumulation of these secretions on the vocal cords can cause laryngospasm (the clamping of the vocal cords together which blocks off all airflow). Ketamine causes increased production of saliva and increased secretions in the trachea and bronchial passages. Drugs called antisialagogues which block the production of these excess secretions are routinely given together with ketamine to prevent this complication. Atropine is the treatment most commonly used, with glycopyrrolate being an alternative drug. Laryngospasm is the most feared complication of intramuscular ketamine sedation, and laryngospasm is more common in the presence of increased secretions. Laryngospasm causes immediate cessation of all airflow through the voice box and will cause death within minutes if not treated. Medical treatment of laryngospasm in this setting would be pharmacologic paralysis of the vocal cords using a drug named succinylcholine, followed rapid sequence induction (RSI) of anesthesia and endotracheal tube (ETT) placement.    
  3. An overdose of ketamine can impair respirations, and Elijah McClain received an overdose of ketamine. He weighed 140 pounds (64 kilograms). He received a dose of 500 mg, or 7.8 mg/kilogram. This exceeded the general anesthetic dose of 4 – 6 mg/kg for intramuscular use. Respiratory depression and apnea can occur after rapid administration or high doses of ketamine. (Reference: Elsevier Clinical Key Monograph, Lane Medical Library online, Stanford University Medical Center) An overdose of ketamine, administered by a non-anesthesiology professional, could lead to loss of airway and death if McClain stopped breathing and was not properly resuscitated by either bag valve mask (BVM) ventilation or ETT placement.

The mnemonic Airway-Breathing-Circulation, or A-B-C, describes the order of acute medical care to an emergency patient, and the failure of Airway or Breathing likely caused McClain’s death by one or more of the three possibilities listed above.

It’s possible that the police officer’s choke hold/carotid hold contributed to or caused McClain’s death as well. If this police maneuver obstructed blood flow to one or both carotid arteries, McClain was at risk of becoming unconscious from lack of oxygen to his brain. If the police maneuver obstructed his trachea/windpipe, then McClain was at risk to lose his airway and be unable to breathe.  

Was there any indication for the paramedics, accompanied by police officers, to induce general anesthesia to Elijah McClain under the circumstances above? Based on what has been published regarding of the facts of the case, I don’t think so.

This case received a modest amount national publicity when it occurred. Now, in the context of the amplified Black Lives Matter movement, the case has become very relevant. A Change.org petition demanding “Justice for Elijah McClain” has garnered nearly two million signatures. 

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

COMPUTER SCIENCE VS. MEDICAL SCHOOL

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997
Computer code
medical school

You’re a high school or college student with proficiency in science and math, and you’re wondering about your eventual career path. Two of the most ambitious career choices would be to go to medical school, or to go into some form of computer science/software/hardware engineering.

Which road is the correct road for you? 

It depends.

I’ve been a medical doctor for 40 years, practiced three different specialties, and worked on a top medical school faculty for 30 years. I understand the pathway of a medical career very well. I live and work in Silicon Valley. I have many friends and many patients who work in the tech/computer world, so I understand the life of a high tech career.

I have three sons, all of whom are skilled in science and math. I’ve discussed the pros and cons of being a physician with them since they were in elementary school, and they’ve observed my lifestyle. The career choices of my sons so far: one businessman, one computer scientist, and one 9th grader who is yet undecided (but leaning toward computer science).

Why are none of them pursuing medicine? They’ve listened to me and have made their own choices. What follows is the advice I give to young students skilled in science and mathematics who are trying to decide between medical school and a computer science career:

MEDICAL SCHOOL:

Positives:

  1. There is a high demand for MDs. You will have a job. As the Baby Boomer generation ages, they’re all requiring an increased level of health care intervention.
  2. You will be well paid. The average salary varies by specialty from $230,000/year for pediatrics to $480,000/year for orthopedic surgery.
  3. You’ll help people get healthy. That feels good. 
  4. Respect. Most people respect physicians.
  5. You can work into your 70s if you want to. There is minimal age discrimination.
  6. You’ll be a lifelong student. An emersion into medical knowledge makes you both an interested and interesting person your whole life. 

Negatives:

  1. Deferred gratification: it takes a long time to become an MD. You’ll be 30 years old at a minimum when you finish training. At that age you’ll have a negative net worth, and you’ll be financially years behind your friends who went to work immediately out of college
  2. You’ll work ong hours, including sleeping overnight in hospitals during your training. 80-hour work weeks are common.
  3. You’ll acquire significant debt that will take you many years to repay. An October 2019 report from the Association of American Medical Colleges stated that 73% of medical students graduate with a mean debt of $201,490 and 18% with a mean debt exceeding $300,000.
  4. Medicine isn’t what it was in the 1960s-2000s, when MDs hung out their own shingle, thrived in private practice, and had significant autonomy. At the present time many young MDs are settling for a salary as an employee of a large organization. 
  5. Burnout is a constant risk. Electronic medical records require a significant portion of your work time, you may be required to see patients in 10-minute production-pressure clinic visits, and you’ll be on call during nights and weekends. Answering phone calls or being summoned into the hospital at 3 a.m. gets old.

COMPUTER SCIENCE/SOFTWARE/HARDWARE ENGINEER

Positives:

  1. You’ll be employable right out of college at age 22, with a good salary. The average income for a computer scientist is listed as $84,796, with a range from $69,000 – $114,000.
  2. High demand exists. You’ll get a job.
  3. You’ll have less educational debt, because you only went to four years of school after high school.
  4. Many students find computer science challenging and interesting.
  5. Computer science is changing the world we live in.
  6. It’s possible to work from home.

Negatives:

  1. Your salary will likely max out at less than an MD would earn. 
  2. It can be a lonely work life—just you and your computer. Computer science is rarely described as a social job.
  3. It’s possible your job will age-out in later years as you compete with younger, cheaper graduates with the same degree.
  4. You’ll probably have little autonomy. Most computer scientists work as a cog in some giant company. Think Google, Facebook, Apple, or Amazon.
  5. Competition exists. It’s difficult to be accepted into computer science programs at quality colleges—but it’s not as competitive as medical school acceptance. 

Listing the pros and cons of each career as I’ve done above will not make your decision for you. I recommend you make the decision between computer science and medical school with your gut, based on the following thought process:

Computer science and medical school are two appealing careers for students with strong science and mathematics backgrounds, BUT THE TWO JOBS ARE SO DIFFERENT. Medical doctors take care of people. We listen to patients, we hold their hands, we comfort them, and we attempt to heal them. Computer scientists work with code, chips, software, or hardware. The emotional milieu of these two careers could not be more different. 

Search your heart and you’ll know whether you’d rather spend decades working with people, or whether you’d rather spend decades working in a tech job. Search your heart and you’ll know whether you’d rather spend decades in an operating room/clinic setting, or whether you’d rather spend decades staring at a computer.

Then follow your heart based on those two images, and you’ll wind up where you need to be.

If you’re a real go-getter, you can complete undergraduate training in computer science and then go to medical school. Reference my column on How to Make a Billion Dollars in Healthcare to learn why a combined degree might be the educational pathway of choice for super-ambitious science and math students.

Good luck!

*

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ANESTHESIOLOGY IN THE TIME OF COVID

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

On April 17, 2020 I delivered a lecture for InternetMedicine.com entitled “Anesthesiology in the Time of COVID.” The material covered is directed at both healthcare professionals and laypersons. You can access the lecture on YouTube at:

OUTLINE: 

  1. ICU/INTUBATING ANESTHESIA DUTY
  2. ANESTHESIA MACHINES as VENTILATORS
  3. RATIONING VENTILATORS, and the ICU SOFA SCORE
  4. BAY AREA VS NEW YORK. DIFFERENCES IN COVID RATES
  5. UNDEREMPLOYED ANESTHESIOLOGISTS NOW
  6. REOPENING ANESTHESIOLOGY AFTER THE SURGE

The lecture identifies the most famous anesthesiologist in the world, discusses highlights of the last three American Society of Anesthesiologists COVID Town Hall Zoom webinars, and looks forward to how currently underemployed anesthesiologists, who are waiting on the sidelines because of the COVID cancellations of elective surgery, can and will return to work safely in the near future.

Access the lecture here.

UNDEREMPLOYED: AMERICAN SURGEONS, ANESTHESIOLOGISTS AND NURSES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

During this COVID crisis, intensive care unit and emergency room doctors and nurses in hotspots like New York City have dangerous, exhausting jobs keeping coronavirus patients alive. But the American medical response to the COVID crisis is bimodal. A minority of doctors and nurses are saddled with these dangerous around-the-clock jobs battling the disease in ICUs and ERs. The majority of doctors and nurses are on the sidelines, waiting for a return to work, just like many other workers in the United States. 

This has especially affected surgical teams. COVID-19 is a terrible medical tragedy, but it is not a surgical disease. In the United States as a whole, surgery has ground to a halt. Surgeons, anesthesiologists, certified nurse anesthetists, and operating room nurses are barely working at all now, for the fourth consecutive week.

The Center for Medicare and Medicaid Services (CMS) issued an edict on March 18, 2020 that all elective surgery be cancelled. The logic was sound and was twofold: 1) to keep doctors, nurses, masks, gowns, ventilators, ICU beds and hospitals unused for non-urgent care, therefore freeing up these assets to fight the coronavirus pandemic; and 2) to keep healthcare workers away from each other in a social distancing strategy to stop the spread of the virus.

The shelter-in-place orders that shuttered the economy have sidelined workers in multiple industries: the airlines, resorts, cruise ships, arenas, concerts, churches, retail, education, sports, etc. You can add elective medical care to this list.

According to CMS, what kind of surgery can be done during this pandemic? The CMS document says to “postpone non-essential surgeries and other procedures. This document provides recommendations to limit those medical services that could be deferred, such as non-emergent, elective treatment, and preventive medical services for patients of all ages.” 

Ambulatory surgery centers have been almost entirely shut down. The document “Additional Guidance on the ASC Community’s COVID-19 Response” reads:

Examples of cases that might still need to proceed with surgery at this time include:

  • Acute infection
  • Acute trauma that would significantly worsen without surgery
  • Potential malignancy
  • Uncontrollable pain that would otherwise require a hospital admission
  • A condition where prognosis would significantly worsen with a delay in treatment

Greater that 95% of the surgical cases for my anesthesia group have been cancelled for four weeks running. A Bay Area contingent of the California Society of Anesthesiologists held a Zoom conference last week, and the majority of attendees voiced that they were not seeing COVID duty, but their anesthetic workload had plummeted. 

Should these surgical specialists be moved into roles fighting COVID? In Northern California there has been no need. The existing ICU beds, ventilators, and ICU/ER staffing has largely been adequate for the number of COVID patients. Elective surgery has been cancelled at the hospital I work at, Stanford University Hospital, per the CMS edict. According to the Internal Medicine Grand Rounds lecture from April 8, 2020, Stanford Hospital currently had only 13 COVID patients, with 5 of those in the ICU on ventilators. The total overall number of COVID deaths at Stanford Hospital as of April 8, 2020 was 2 patients, and there were 54 unused ICU beds. 

The cessation of elective surgery is a source of economic hardship for many medical entities, including healthcare companies, hospital systems, surgeons, anesthesia professionals, and nurses. We’re all waiting for elective, non-urgent surgery to resume when it’s safe for the medical personnel and for the patients. Expect this to occur when widespread testing tells us that the medical personnel and the patients either test negative for the COVID virus or positive for the COVID antibody. Everybody is waiting on the tests. We don’t need thousands of tests, we need millions of tests in the United States.

Unemployed and underemployed Americans from multiple industries, including healthcare, hope this widespread testing will happen within weeks from this date, not months.

LIFE AFTER THE PANDEMIC: 14 PREDICTED TRENDS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Eventually the peak of the COVID pandemic will ease off and the number of cases and death rates will plateau. What about life after the pandemic? Will everyone go back to living like they did in February 2020 before the crisis arrived?

No.

Remember how airline travel was forever changed after 9/11? We adapted to the TSA screening. We adjusted to taking off our shoes, belts, and removing toiletries and electronics before every flight. In a similar way, this COVID-19 event in American history will change the way we live.

I’m a busy anesthesiologist and internist. I’ve been reading opinions and data from infectious disease experts regarding the COVID crisis for weeks. I foresee 14 medically-related trends on life and medical care in America occurring after the pandemic, but before the vaccine is available. Pondering these issues will help us prepare to find solutions. Here they are:

Testing, testing, testing. As soon as COVID testing is widely available, you’ll see skyrocketing numbers of individuals being tested. A test for COVID infection is necessary to discern who actually has the disease and is contagious. When we do not have adequate diagnostics we are forced to social distance everyone blindly. We don’t know which febrile patients with a cough to quarantine. We don’t know which asymptomatic patients are carrying the COVID virus and are contagious. The availability of a COVID test which is a) accurate, b) mass-produced, and c) inexpensive, will be the first game changer. Scientists have also developed a test for COVID antibody, which diagnoses which individuals have previously had the infection. We don’t know for certain that these individuals are immune to reinfection, but scientists are hopeful that is the case. Once we know who has had the disease already (positive antibody test), or those who are currently not contagious for the virus (negative COVID virus test), we can divide our workforce into safe employees and quarantined employees. Then people can come out of shelter and trickle back to work. But because you could test negative for the virus and then become infected the next day, testing would have to be cheap enough and available enough to be repeated frequently.

Gathering of large numbers of people will continue to be discouraged or banned. That means music concerts, sporting events, movies, cruise ships, casinos, or churches full of hundreds or thousands of individuals will be an ongoing bad idea. Until you know that person next to you is COVID negative, you won’t want to be sitting two feet away from them. This issue will plague the entertainment and sporting industries until there is a vaccine which eliminates the disease.

Scant air travel. Do you really want to sit two feet away from multiple strangers for several hours without knowing they are COVID negative? The airline industries and the travel/vacation/resort industries will be severely curtailed until there is a vaccine, widespread testing, or a cure.

Continued high usage of videoconferencing, including telemedicine clinic visits and remote schooling. Most physicians never used Zoom or WebEx prior to the COVID shutdown. Now we’re all using some form of videoconferencing every day. It’s an excellent way to interact and conduct lectures, meetings, or patient interviews, although it limits the ability to perform physical examination of the patient. Most teachers never taught using videoconferencing prior to the COVID shutdown. Now many are using it every day. Zoom and its brethren will be a major part of American life for years to come.

Ongoing delays in elective medical care. The majority of my anesthetic practice deals with elective, non-emergency surgery. All elective surgery has stopped with the COVID crisis. When will it begin anew? See #1 above. When we know a surgical patient is COVID negative and the patients know that all the medical staff is COVID negative, we can proceed with non-urgent cases. What about in-person medical office visits? Physicians will want to know that patients are COVID negative or antibody positive. I see a model where a patient must either have a certificate that documents a positive COVID antibody test, or have a negative COVID test (done one day prior to surgery) before their non-urgent surgery can be done. Likewise for in-person clinic visits.

Concerns that COVID will resurge in the fall of 2020 and/or in the spring of 2021. This fear will keep our country’s leadership on edge until there is a vaccine which eliminates the disease. Social distancing edicts may be withdrawn this summer, but the fear of another surge in the autumn will keep the specter of shelter-in-place on every politician’s mind until they are assured it is not needed.

14-day quarantining for anyone who enters the U.S. from abroad should disappear once available COVID testing is available. Accurate testing before an individual boards an international flight will reveal the whether that incoming individual is contagious.

Voting by absentee ballot will be mandated, or at least be very prevalent. Why would America choose to convene thousands of individuals at voting booths or voting sites on November 3rd 2020, thereby increasing the risk of respiratory disease spread? I’ve voted absentee ballot for decades. I’m usually too busy at work to get to the polling location before it closes. Absentee voting is easy, takes far less time, and will be medically safer than traveling to polling locations.

Lawsuits will abound. American is a litigious country. Expect families who experienced a COVID death to look for someone to sue—someone who didn’t close their gym, didn’t close their music festival, or didn’t order shelter-in-place soon enough—because that delayed decision caused their family member to contract COVID and die.

Finger pointing like you’ve never seen. Every politician will look toward politicians in the other party and blame them for not acting quickly enough. We’re seeing some of this already, but it’s drowned out by the mortality going on. After the smoke settles look for amplified criticism directed towards China for not telling the world the crisis was coming, federal political leadership for not being prepared for the pandemic, governors for not shutting down their state soon enough, legislators for not sending enough money to all the unemployed citizens, etc.

Eventually we’ll all pay higher taxes to replace the money given away by the CARES (Coronavirus Aid, Relief, and Economic Security) Act, which is funding two trillion dollars to Americans who are not working due to the COVID medical crisis. It’s also possible there will be a CARES II and CARES III at some point in the future depending on the duration of the economic crisis. The aid is necessary and wise. We’ll all have to pay for it someday.

Ongoing financial problems for workers in the depressed industries of airlines, vacation/resorts, cruise ships, theme parks, hotels, entertainment, and arena/stadium based sporting leagues.

On a positive note, adequate federal stockpiles of both ventilators and personal protective equipment (PPE) will be readied for any future pandemics.

Again on a positive note, there will be increased federal funding regarding vigilance and preparation for future viral outbreaks.

If the present crisis was a Hollywood movie (e.g. Outbreak, Contagion, or The Andromeda Strain), scientists would find a cure just when things were looking most dire. Will the COVID-19 crisis end happily like a Hollywood screenplay? Will COVID just fade away as the weather gets warm again? Nobody knows. Many intelligent researchers around the world are working on medical therapies against the COVID-19 virus. I’m hopeful that a cure will come. 

Many intelligent researchers around the world are working on a vaccine against the COVID-19 virus. Dr. Anthony Fauci of the National Institutes of Health (NIH) estimates it will be 12-18 months before experts develop the ultimate game changer, a vaccine.  I’m hopeful and optimistic that a vaccine will come. 

President Trump expects the United States to reopen its economy “sooner than people think.” Experts disagree. See The New York Times story, U.S. is Nowhere Close to Reopening the Economy, Experts SayDr. Fauci states that “the United States might never get entirely back to where it was before the novel coronavirus outbreak, especially without a vaccine.” Until that time, I foresee the changes listed above. Don’t be surprised to see them arrive after the peak of the current pandemic is in our rear view mirror.

I welcome discussion from my readers as to their viewpoints and predictions on life in America after the pandemic.

WHEN IS THE END OF THE COVID SURGE IN YOUR STATE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

When is the end of the COVID surge in your state? It varies from state to state. 

This website shows projections of when the coronavirus surge will peak in your state, and when coronavirus cases will finally decline. The graph above is for the entire 50 states, and shows the peak of the surge on April 16th, with an estimated 2,644 deaths that day. The data is clearly displayed in a graph of the calendar date vs. total deaths for each of the 50 states.

On a morning when the Surgeon General stated, “This week will be like a ‘Pearl Harbor’ and a ‘9/11’ moment,” and a day after the President said, “there will be a lot of death,” what is the true estimate for where you live?  

There is considerable variation amongst the states. New York looks like this, with the peak projected for April 11th, with a peak of 852 deaths per day:

California, where I live, looks like this, with the peak coming later on April 28th, and with a lower peak of 119 deaths per day:

These graphs are a reality check. When I share them with friends, the first things I hear are, “Oh my, I’d better stay inside, because the amount of cases is still increasing daily,” and “Oh my, the whole curve doesn’t go away until well into late June. How long will I have to shelter in place?”

The good news is, every one of the graphs shows an eventual decline, when the peak of the pandemic will be over.

NUMBER OF HOSPITALIZED CORONAVIRUS PATIENTS IN SANTA CLARA COUNTY CALIFORNIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

SANTA CLARA COUNTY, CALIFORNIA

Questions I’m frequently asked are, “What is the coronavirus census in your hospital?” or “How full is your hospital with COVID patients?”

I work in Santa Clara County, California, in the San Francisco Bay Area. The six counties of the Bay Area were placed in shelter-at-home relatively early, on March 16th during the COVID-19 outbreak.

The answer to the hospital COVID-19 census question is shown in the graph below, available to the public as part of a video lecture on Coronavirus (COVID-19) Grand Rounds-Stanford Department of Medicine, posted on YouTube on April 1, 2020.

This data is from March 30, 2020. The magnified picture is fuzzy, but please squint hard and examine the three circles. The good news is the total numbers are not high. The first green circle highlights that Stanford Hospital had a total of 15 COVID patients, and there were only 8 COVID patients in the ICU. Regional Hospital in San Jose had the highest numbers, with a total of 38 COVID patients and 20 COVID patients in the ICU. The total for all nine hospitals listed in Santa Clara County was 154 COVID patients, with 72 COVID patients in the ICU. The population of Santa Clara County is 2 million.

These numbers are in contrast to the situation in New York City, where there are 11,739 COVID patients hospitalized. The population of New York City is 8.6 million.

Why are Santa Clara County’s numbers so low? Part of the reason is that the six counties of the San Francisco Bay Area, which includes Santa Clara County, ordered shelter-in-place early, on Monday March 16th, 2020.  

New York City ordered shelter in place on March 20th, 2020.

Another reason may be that California population is less dense than in New York City. Santa Clara County’s area is 1304 square miles, compared to 302 square miles for New York City. Most people in Santa Clara County live in houses. Open spaces abound between most residences. In New York City the populace lives in tighter quarters, with many residences in vertical apartments or condominiums. It’s likely easier to share virus contact in New York City. But no doubt there are other reasons for the magnitude of the outbreak in New York City which are not clear at this time.

From the White House, Dr. Deborah Birx praised California and Washington state for their prompt response to the COVID crisis, and commented that New York and New Jersey had lagged in their response.

Stay tuned, but right now in Santa Clara County, in the southern part of the San Francisco Bay Area, hospitalized COVID-19 numbers are magnitudes lower than New York City.

CORONAVIRUS AND THE SOFA SCORE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

When you read the words “coronavirus and the sofa score” during a period of shelter-in-place for COVID-19, your first thought will be “laying on a sofa watching Netflix.”

Wrong. SOFA is a medical metric called the SOFA score.

This column is about rationing of ICU care and ventilators. If/when hospital intensive care units (ICUs) become overwhelmed with too many coronavirus patients requiring ventilators, then ethical choices may need to be made. If there are “n” number of ventilators and “n+10” patients who need one, who gets a ventilator and who does not? Which patients have an excellent prognosis to live and which do not?

Will ICU beds and ventilators need to be rationed in the COVID-19 crisis?

In crisis areas like New York City and Italy’s Lombardy region, anxiety and fear abound. I’ve previously posted this video showing the stress at an Italian COVID-19 ward.

This week I was contacted by a reader in his 70s who had a history of heart disease. His anxiety regarding the coronavirus epidemic was so high he asked me if he purchased a ventilator for the local university hospital, could he be guaranteed it would be available for him if he needed it? 

What data are available specifically for COVID-19 to address the question of which patients will have the highest ICU mortality?

Fei Zhou, MD et al published a retrospective study regarding COVID-19 patients from the Wuhan, China area in the medical journal Lancet. 191 patients were included in this study. 137 were discharged and 54 died in hospital.

Zhou measured data on each patient at the time of admission to the ICU. He discovered that the odds of dying in the hospital increased with: 

A) increasing age, 

B) a D-dimer level exceeding 1 mcg/L on admission, and 

C) a higher SOFA score on admission to the ICU.

Of these three criteria:

  1. We’ve already heard that a higher age is a risk factor for dying from COVID-19. See chart above
  2. A high D-dimer level indicates that increased blood clotting is occurring. The D-dimer is not specific, and can correlate with a deep venous thrombosis, a pulmonary embolus, or other diagnoses which include increased blood clotting. 
  3. What is a SOFA score? Read below:

SOFA stands for Sequential Organ Failure Assessment, and it quantifies the extent of a patient’s organ function or failure in six different organ systems: the lungs (respiratory), the heart (cardiac), the kidney (renal), the brain (neurological), the liver (hepatic), and the blood clotting system (coagulation). It’s used to predict ICU mortality based on lab results and clinical data. The higher the score, the worse the prognosis.

Let’s look at how each organ system is rated, first for a normal person like yourself, and secondly for a sick COVID-19 patient in the ICU:

RESPIRATORY:

Lung or respiratory failure is the most common failing system in sick COVID-19 patients. The SOFA respiratory score is based on the ratio of:  your blood oxygen level (PaO2) divided by the percentage of oxygen that you’re breathing. Right now your blood oxygen level is approximately 90 mm Hg, and the percentage of oxygen in room air that you are breathing is 21%, or 0.21 as a decimal. Divide 90/0.21 = 428. From the chart above, you earn 0 points, which is good. A COVID-19 patient sick with pneumonia may have a low blood oxygen level of 50 mm Hg on 100% oxygen, or 1.0 as a decimal (100% oxygen is the most a ventilator can deliver). 50/1.0 = 50, which earns that patient a respiratory score of +4 points.

CARDIAC:

The cardiac score is based on how high or low your blood pressure is, and on what concentration of adrenaline-like medication is required to keep your blood pressure up to a safe level. The blood pressure metric used is the mean arterial pressure (MAP), which is your average blood pressure. Right now your blood pressure may be 120/80, which equates to a mean arterial pressure of 93. Because you require no medications to keep your mean blood pressure > 70, you earn 0 points. A sick COVID-19 patient with heart failure might require a high concentration of an epinephrine (adrenaline) drip to maintain their blood pressure. This would earn them a cardiac score of +4.

RENAL:

The renal score is based on now much urine a patient produces per day, or how high their blood creatinine level rises to. Normal urine output is at least of 0.5 milliliters/kilogram of body weight per hour. A 70 kilogram (154-pound) human makes a minimum of 840 milliliters of urine/day, which earns them 0 renal points. A sick COVID-19 ICU patient with renal failure may make less that 200 milliliters of urine per day, which earns them a renal score of +4 points.

LIVER:

The liver score is based on how high the bilirubin concentration is in the blood. Bilirubin increases as a liver fails. Your bilirubin is a normal concentration of 1.0 mg/dL, and you earn 0 points. A sick ICU patient with a failing liver may have a buildup of bilirubin in the blood. An elevation to a concentration of > 204 mg/dL earns them a liver score of +4 points.

NEUROLOGICAL:

The Glasgow Coma Scale (GCS) quantifies the level of consciousness. Because you are awake and reading this, let’s assume you have a perfect GCS of 15. This earns you 0 points. A comatose patient on a ventilator may have a score of < 6, which earns them a neurological score of +4 points.

COAGULATION:

The normal concentration of platelets in the bloodstream is > 150,000, or (150 X 103 microL), and if you’re normal individual you will earn a score of 0. A sick COVID-19 patient in the ICU may be bleeding for a variety of reasons, and be consuming platelets trying to cease bleeding. A low platelet count of (20 X 103 microL) earns them a coagulation score of +4 points.

Zhou wrote: “Older age, elevated D-dimer levels, and high SOFA score could help clinicians to identify at an early stage those patients with COVID-19 who have poor prognosis.” 

What about rationing ICU care? Will older age or a higher SOFA score on admission impact a rationing of ICU care, that is, will older patients or patients with a very high SOFA score be denied a ventilator or an ICU stay? Will famous people or rich people score the last ventilators? I am doubtful this will happen in the ethical practice of medicine in the United States. But if the number of ICU patients greatly exceeds the number of ICU beds with ventilators, difficult choices may have to be made. Some patients may receive ventilators while others are denied ventilators. The Zhou data supports the premise that older patients and those with elevated organ failure scores on admission to the ICU have a worse prognosis. If ethical decisions are made, these two numbers (as well as an elevated D-dimer level) may be criteria which guide these difficult decisions.

Further research and data collection on COVID-19 patients in the hospitals and ICUs will give more detailed answers to these questions. Stay tuned.

I refer you to a fine and pertinent article written by Dr. Robert Truog, of the Harvard Center for Bioethics, entitled, “The Toughest Triage – Allocating Ventilators in a Pandemic,” published in the New England Journal of Medicine March 23, 2020.

The April 1, 2020 issue of The New York Times discusses the issue of rationing ICU care in New York City.

The Atlantic explores the issue of rationing of care in the era of COVID-19 in this March 28,2020 article.

MAKING YOUR OWN REUSABLE N95 MASK . . . FOR HEALTHCARE WORKERS ON THE FRONT LINES AGAINST COVID-19

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Today’s post demonstrates making a reusable N95 mask from common inexpensive operating room supplies. I’m forwarding the link from Boston Children’s Hospital which instructs anesthesiologist, nurse anesthetist, emergency room, and intensive care unit colleagues, as well as emergency room and ICU nurses, how to make a virus-protective N95 mask if none is available at their hospital.

An N95 mask is essential gear to prevent our healthcare workers from being infected with when caring for COVID-19 patients. The video is posted here.

The required parts are an operating room anesthesia mask and a ventilator in-line bacterial/viral filter:

The mask assembly is held over your face with elastic straps. Instead of elastic straps, one could use anesthesia mask straps as pictured below:

Currently there is a dire shortage of N95 masks in the hospitals hardest hit by COVID-19. This makeshift N95 mask, as demonstrated here, can be an essential part of the personal protective equipment (PPE) needed by frontline healthcare workers during the COVID-19 pandemic.

VIDEO FROM AN ITALIAN HOSPITAL COVID-19 WARD

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Today I’m posting a link to a video from an Italian hospital COVID-19 ward. For those of you who may doubt the severity or the danger of this pandemic, please watch this video which illustrates the crisis in Italy, and what could occur in the United States in the weeks to come:

If you’re wondering if the American response to the COVID-19 threat is over-exaggerated, this video should convince you that every measure of social distancing, personal protective equipment for healthcare workers, and expansion of ventilator/ICU availability is warranted.

WORLDOMETER CORONAVIRUS . . . ENCOURAGING DATA FROM ASIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Today I’m forwarding a link to Worldometer Coronavirus, a valuable big data scoreboard for hour-by-hour numbers on the pandemic worldwide. Data from the United States shows an escalating case load, but the data from China and South Korea shows flattening of the case load curve already.

Does social distancing work? Check out these two graphs of the case rates in China and South Korea:

This is the first encouraging data I’ve seen regarding this pandemic. Chinese case numbers went from roughly 0 to 40,000 in nine days from January 22 to February 9th, then went from 40,000 to 80,000 in seventeen days from February 9th to February 28th. Remarkably, from February 28th to March 16th, over the course of seventeen days, the curve flattened in China. That’s exactly what we’re praying for in the United States. A similar flattening of the curve occurred in South Korea:

The total coronavirus cases in the United States are still increasing exponentially at this date as shown in the graph below. The United States is still on the upswinging portion of the case curve. We expect/hope our social distancing will bring about the same flattening of the case count curve that has already occurred in China and South Korea.

Total case data by country are listed below. The USA has the 8th highest number of cases to date. The encouraging information in this table is in the “NEW CASES” column, where CHINA and SOUTH KOREA have only 36 and 74 new cases, respectively. Most likely this is because of the social distancing measures put into place early in those countries.

Additional data from the United States as of today are copied below. This data is updated hour-by-hour on the Worldometer Coronavirus website:

If you read down this far, you’re flooded with information. If you follow Worldometer Coronavirus regularly, you’ll know exactly how the pandemic is progressing or fading. Worldometer Coronavirus is not on the App Store for your phone, but you can do this: a) open the Worldometer Coronavirus website on Safari on an iPhone; click on the SEND icon (the square with the upward arrow) at the bottom of the screen; and c) select ADD TO HOME SCREEN. This will enable you to follow Worldometer Coronavirus on your smartphone.

Remember how the case number curves flattened in China and South Korea, and be encouraged by the probability of the same eventually occurring in the United States in the weeks to come. Until that time, practice social distancing as advised by national health leadership.

Information is power. I hope you’ll be empowered to make the right choices for yourself and your family in these historic and difficult days.

CAN WEARING A FACE MASK SAVE YOUR LIFE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

During the COVID-19 pandemic we’ve been told not to wear a face mask if we don’t have viral symptoms.

Is this a mistake? Can a face mask save your life? I’m not talking about an N-95 mask, which blocks virus entry into your nose and mouth, and which are in short supply even for health care professionals during this pandemic, but a typical surgical mask, as pictured above.

Today I’m forwarding excellent information from a post by American viral specialist, James Robb MD, Fellow of the College of American Pathologists, a former Professor of Pathology at the University of California San Diego, and one of the first molecular virologists in the world to work on coronaviruses in the 1970s.

Dr. Robb is a proponent of individuals wearing surgical masks in public during a pandemic. He writes: 

“Stock up now with disposable surgical masks and use them to prevent you from touching your nose and/or mouth (We touch our nose/mouth 90X/day without knowing it!). This is the only way this virus can infect you – it is lung-specific. The mask will not prevent the virus in a direct sneeze from getting into your nose or mouth – it is only to keep you from touching your nose or mouth.

“The virus is on surfaces . . . This virus only has cell receptors for lung cells (it only infects your lungs). The only way for the virus to infect you is through your nose or mouth via your hands or an infected cough or sneeze onto or into your nose or mouth.”

This is a controversial recommendation. There are currently not enough surgical masks for everyone in the United States to be wearing one, but a face mask forms an effective blockade to an individual touching their own mouth and nose. The most common form of transmission of COVID-19 is likely autoinoculation of the virus from our hands to our nose, mouth, and eyes.

Dr. Jerome Adams, the Surgeon General of the United States, an anesthesiologist himself, and a professional I have tremendous respect for, tweeted this advice on February 29th, 2020:

“Seriously people- STOP BUYING MASKS! 
They are NOT effective in preventing general public from catching #Coronavirus, but if healthcare providers can’t get them to care for sick patients, it puts them and our communities at risk!”

It’s true that a typical surgical mask will not prevent you from inhaling the COVID-19 virus. And it’s also true that the medical teams in the United States need to have an adequate supply of surgical masks. But during this pandemic the facts are:  a) those doctors and nurses who are actually caring for or screening for coronavirus patients are wearing specialized N-95 masks, not regular surgical masks; and b) the need for surgical masks in the hospital has markedly declined because elective surgery in the United States is grinding to a halt during the current shutdown. Santa Clara County, where I practice in California, received a CDC recommendation that all elective and non-urgent surgical procedures be cancelled, and we are complying with this shutdown.

What if everyone in the United States started wearing a surgical mask all day? I’m not talking about an N-95 mask, which has twin elastic bands and forms a tight seal where the edges meet your skin. I’m talking about the looser version commonly worn in operating rooms. A tight N-95 mask is uncomfortable and will be often adjusted, necessitating multiple touching of the mask with your hands, which is could transmit the virus to the surface of the mask:

A looser fitting surgical mask is not uncomfortable, and is both a barrier to touch and a reminder not to touch one’s nose and mouth:

Is there any data that the barrier to touching their noses and mouths would slow the spread of COVID-19? No, there is no data, and there will not be anytime soon because no one has time to do such a study right now. But it’s common sense, as Dr. Robb recommends above, that preventing hand to face transmission is a vital part of curbing the spread of the virus.

On February 28th, 2020 a surgical colleague of mine who had just returned from Asia came to work and did surgery in one of our outpatient operating rooms here in California. One week later he was diagnosed with COVID-19 infection, and he was hospitalized. All the nurses, doctors, and techs who were present at work that day were placed on 14-day surveillance for the onset of COVID-19 symptoms, i.e. fever, cough, or shortness of breath. Sixteen days later, none of them have developed any symptoms of COVID-19. One of the reasons we attribute this positive outcome to is that all the doctors, nurses, and techs, as well as the infected surgeon, were wearing face masks. Almost no one will touch their nose and mouth if they are wearing a mask, and no one who is scrubbed in for surgery can touch their nose or mouth.

On March 12, 2020, in coverage of the COVID-19 pandemic, Time Magazine published an article Why Wearing a Face Mask is Encouraged in Asia, But Shunned in the U.S.” In Asia it became commonplace for individuals to wear face masks after the COVID-19 outbreak. They don’t have any data. They’re just worried.

We all should be worried at this point. If you cannot stop touching your mouth, nose, and face, and you can acquire a face mask, then consider wearing it. You don’t have to have a clean one each day. It’s not to prevent you from coughing on others, it’s to prevent you from touching your own face.

Is there any harm to wearing a face mask if you have one? I don’t think so. The benefit/risk ratio is high. Protect yourself and your family.

INFORMATION FROM THE BIOHUB PANEL on COVID-19, UCSF

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

I’m forwarding these excellent notes from the University of California San Francisco (UCSF) Medical Center on COVID-19. The most sobering data:

  • 40-70% of the US population will be infected over the next 12-18 months.  After that level you can start to get herd immunity.  Unlike flu this is entirely novel to humans, so there is no latent immunity in the global population.
  • We used their numbers to work out a guesstimate of deaths— indicating about 1.5 million Americans may die.  The panelists did not disagree with our estimate.  This compares to seasonal flu’s average of 50K Americans per year.  

  • Panelists
    • Joe DeRisi:  UCSF’s top infectious disease researcher.  Co-president of ChanZuckerberg BioHub (a joint venture involving UCSF / Berkeley / Stanford).  Co-inventor of the chip used in SARS epidemic.
    • Emily Crawford:  COVID task force director.  Focused on diagnostics
    • Cristina Tato:   Rapid Response Director.  Immunologist.  
    • Patrick Ayescue:   Leading outbreak response and surveillance.  Epidemiologist.  
    • Chaz Langelier:   UCSF Infectious Disease doctor

What’s below are essentially direct quotes from the panelists.  Sections bracketed are the few things that are not quotes.

  • Top takeaways 
    • At this point, we are past containment.  Containment is basically futile.  Our containment efforts won’t reduce the number who get infected in the U.S.  
    • Now we’re just trying to slow the spread, to help healthcare providers deal with the demand peak.  In other words, the goal of containment is to “flatten the curve,” to lower the peak of the surge of demand that will hit healthcare providers.  And to buy time, in hopes a drug can be developed. 
    • How many in the community already have the virus?  No one knows.
    • We are moving from containment to care.  
    • We in the US are currently where at where Italy was a week ago.  We see nothing to say we will be substantially different.
    • 40-70% of the US population will be infected over the next 12-18 months.  After that level you can start to get herd immunity.  Unlike flu this is entirely novel to humans, so there is no latent immunity in the global population.
    • [We used their numbers to work out a guesstimate of deaths— indicating about 1.5 million Americans may die.  The panelists did not disagree with our estimate.  This compares to seasonal flu’s average of 50K Americans per year.  Assume 50% of US population, that’s 160M people infected.  With 1% mortality rate that’s 1.6M Americans die over the next 12-18 months.]
      • The fatality rate is in the range of 10X flu.
      • This assumes no drug is found effective and made available.
    • The death rate varies hugely by age.  Over age 80 the mortality rate could be 10-15%.  [See chart by age Signe found at the top of this column.] 
    • Don’t know whether COVID-19 is seasonal but if is and subsides over the summer, it is likely to roar back in fall as the 1918 flu did
    • I can only tell you two things definitively.  Definitively it’s going to get worse before it gets better.  And we’ll be dealing with this for the next year at least.  Our lives are going to look different for the next year.
  • What should we do now?  What are you doing for your family?
    • Appears one can be infectious before being symptomatic.  We don’t know how infectious before symptomatic, but know that highest level of virus prevalence coincides with symptoms.  We currently think folks are infectious 2 days before through 14 days after onset of symptoms (T-2 to T+14 onset).
    • How long does the virus last?
      • On surfaces, best guess is 4-20 hours depending on surface type (maybe a few days) but still no consensus on this
      • The virus is very susceptible to common anti-bacterial cleaning agents:  bleach, hydrogen peroxide, alcohol-based.
    • Avoid concerts, movies, crowded places.
    • We have cancelled business travel.  
    • Do the basic hygiene, eg hand washing and avoiding touching face.
    • Stockpile your critical prescription medications.  Many pharma supply chains run through China.  Pharma companies usually hold 2-3 months of raw materials, so may run out given the disruption in China’s manufacturing. 
    • Pneumonia shot might be helpful.  Not preventative of COVID-19, but reduces your chance of being weakened, which makes COVID-19 more dangerous.
    • Get a flu shot next fall.  Not preventative of COVID-19, but reduces your chance of being weakened, which makes COVID-19 more dangerous.
    • We would say “Anyone over 60 stay at home unless it’s critical.” CDC toyed with idea of saying anyone over 60 not travel on commercial airlines.
    • We at UCSF are moving our “at-risk” parents back from nursing homes, etc. to their own homes.  Then are not letting them out of the house.  The other members of the family are washing hands the moment they come in.
    • Three routes of infection
      • Hand to mouth / face
      • Aerosol transmission
      • Fecal oral route

  • What if someone is sick?
    • If someone gets sick, have them stay home and socially isolate.  There is very little you can do at a hospital that you couldn’t do at home.  Most cases are mild.  But if they are old or have lung or cardio-vascular problems, read on.
    • If someone gets quite sick who is old (70+) or with lung or cardio-vascular problems, take them to the ER.
    • There is no accepted treatment for COVID-19.  The hospital will give supportive care (eg IV fluids, oxygen) to help you stay alive while your body fights the disease.  ie to prevent sepsis.
    • If someone gets sick who is high risk (eg is both old and has lung/cardio-vascular problems), you can try to get them enrolled for “compassionate use” of Remdesivir, a drug that is in clinical trial at San Francisco General and UCSF, and in China.  Need to find a doc there in order to ask to enroll.  Remdesivir is an anti-viral from Gilead that showed effectiveness against MERS in primates and is being tried against COVID-19.  If the trials succeed it might be available for next winter as production scales up far faster for drugs than for vaccines.  
    • Why is the fatality rate much higher for older adults?
      • Your immune system declines past age 50
      • Fatality rate tracks closely with “co-morbidity,” i.e. the presence of other conditions that compromise the patient’s hearth, especially respiratory or cardio-vascular illness.  These conditions are higher in older adults.   
      • Risk of pneumonia is higher in older adults.  
  • What about testing to know if someone has COVID-19?  
    • Bottom line, there is not enough testing capacity to be broadly useful.  Here’s why.
    • Currently, there is no way to determine what a person has other than a PCR test.  No other test can yet distinguish “COVID-19 from flu or from the other dozen respiratory bugs that are circulating”.
    • A Polymerase Chain Reaction (PCR) test can detect COVID-19’s RNA.  However they still don’t have confidence in the test’s specificity, ie they don’t know the rate of false negatives. 
    • The PCR test requires kits with reagents and requires clinical labs to process the kits. 
    • While the kits are becoming available, the lab capacity is not growing.  
    • The leading clinical lab firms, Quest and Labcore have capacity to process 1000 kits per day.  For the nation.
    • Expanding processing capacity takes “time, space, and equipment.”  And certification.   ie it won’t happen soon.
    • UCSF and UC Berkeley have donated their research labs to process kits.  But each has capacity to process only 20-40 kits per day.  And are not clinically certified.
    • Novel test methods are on the horizon, but not here now and won’t be at any scale to be useful for the present danger.
  • How well is society preparing for the impact?
    • Local hospitals are adding capacity as we speak.  UCSF’s Parnassus campus has erected “triage tents” in a parking lot.  They have converted a ward to “negative pressure” which is needed to contain the virus.  They are considering re-opening the shuttered Mt Zion facility.
    • If COVID-19 affected children then we would be seeing mass departures of families from cities.  But thankfully now we know that kids are not affected.
    • School closures are one the biggest societal impacts.  We need to be thoughtful before we close schools, especially elementary schools because of the knock-on effects.  If elementary kids are not in school then some hospital staff can’t come to work, which decreases hospital capacity at a time of surging demand for hospital services.  
    • Public Health systems are prepared to deal with short-term outbreaks that last for weeks, like an outbreak of meningitis.  They do not have the capacity to sustain for outbreaks that last for months.  Other solutions will have to be found.
    • What will we do to handle behavior changes that can last for months?
      • Many employees will need to make accommodations for elderly parents and those with underlying conditions and immune-suppressed.
      • Kids home due to school closures
    • Dr. DeRisi had to leave the meeting for a call with the governor’s office.  When he returned we asked what the call covered.  The epidemiological models the state is using to track and trigger action.  The state is planning at what point they will take certain actions.  ie what will trigger an order to cease any gatherings of over 1000 people.  
  • Where do you find reliable news?
    • The John Hopkins Center for Health Security site.   Which posts daily updates.  The site says you can sign up to receive a daily newsletter on COVID-19 by email.  
    • The New York Times is good on scientific accuracy.

  • Observations on China
    • Unlike during SARS, China’s scientists are publishing openly and accurately on COVID-19.  
    • While China’s early reports on incidence were clearly low, that seems to trace to their data management systems being overwhelmed, not to any bad intent.
    • Wuhan has 4.3 beds per thousand while US has 2.8 beds per thousand.  Wuhan built 2 additional hospitals in 2 weeks.  Even so, most patients were sent to gymnasiums to sleep on cots. 
    • Early on no one had info on COVID-19.  So China reacted in a way unique modern history, except in wartime.  
  • Every few years there seems another:  SARS, Ebola, MERS, H1N1, COVID-19.  Growing strains of antibiotic resistant bacteria.  Are we in the twilight of a century of medicine’s great triumph over infectious disease?
    • “We’ve been in a back and forth battle against viruses for a million years.”  
    • But it would sure help if every country would shut down their wet markets.  
    • As with many things, the worst impact of COVID-19 will likely be in the countries with the least resources, eg Africa.  See article on Wired magazine on sequencing of virus from Cambodia.

ROBOTIC ANESTHESIA REALLY IS COMING

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

The February 2020 edition of Anesthesiology, our specialty’s preeminent journal, published an article on robotic anesthesia.1

The accompanying editorial by Dr. Thomas Hemmerling was titled “Robots Will Perform Anesthesia in the Near Future.2 The author wrote: 

I have no doubt that closed-loop (i.e. robotic) anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”

The primary study by Joosten1 looked at the performance of multiple closed-loop systems for administration of anesthesia in 90 patients undergoing major noncardiac surgery in a single center in Belgium. The conclusion of the study was that the automated system outperformed manual control, as there was minimal but significantly better cognitive function in the patients one week after surgery when the closed loop control was used. 

A BIS monitor

The depth of anesthesia was measured using a BIS (bispectral index) monitor. A BIS electrode was applied to each patient’s forehead and temporal regions to capture the frontal electroencephalogram (EEG) from the brain. 

three Base Primea infusion pumps

In the closed-loop (automated, or robotic) group, two infusion pumps were used to deliver target-controlled intravenous infusions of the hypnotic drug propofol and the narcotic remifentanil, in order to maintain BIS values between 40 and 60. BIS values between 40 and 60 have been shown to correlate with adequate anesthesia depth.

In his editorial, Dr. Hemmerling wrote:

“Robotic anesthesia, defined as anesthesia delivered by an automated control system, will soon be available. It is my opinion that closed loop devices will become available in the United States . . .  

One of the changes our profession has gone through is an ever-increasing demand to multitask, be it by running more than one operating room, or by simultaneously performing administrative or teaching tasks. In addition, the number of parameters to monitor has also increased. It is therefore not surprising that one of the common denominators of studies comparing closed loop control versus manual control is the finding that humans change a given target infusion rate far less frequently than closed loop devices do.

I have no doubt that the practice of running more than one operating room, common in the United States but less so elsewhere, will soon be an international standard. Closed loop devices will allow us to maintain a high standard of quality independent from the amount of physical presence.

Robotic anesthesia delivered in Washington by Dr. Smith would essentially be the same as robotic anesthesia performed in Chicago by Dr. Miller. . . . 

I think technology will advance similar to what we have seen and see in the car manufacturing industry. First, there was manual transmission, then automatic transmission, double clutch systems, navigation systems, all sorts of safety assist systems…soon, there will be self-driving cars.

How will we do anesthesia in the future? It is 2030 and I am scheduled to supervise anesthesia for a 40-yr-old patient undergoing laparoscopic cholecystectomy.

In the operating room, I tell my robot—let’s call it A-bot—about the surgery, the patient, and the type of anesthesia I would like performed. “Can I get a propofol, remifentanil-based anesthesia? Can we target 45 as a Bispectral Index? A-bot, can you maintain mean arterial pressure around 65? Can you maintain cardiac index during surgery of more than 2.5 l · min–1 · m–2? A-bot, I would like to use rocuronium, bolus application is good enough, but please keep neuromuscular blockade lower than 25% at all times. Please choose a respiratory rate of 12 and adjust tidal volumes to maintain end-tidal carbon dioxide of 32 mmHg in 50% air! Let’s provide preemptive analgesia using morphine and ketorolac—usual dosages, A-bot, you know.”

A-bot answers: “Sure will, Tom—you keep me informed about surgical progress?”

“Yep.”

When I look at all the literature, including the fine work by Joosten et al.,1  I have no doubt that closed loop anesthesia is at least as good as the best human anesthesia. And that, for me, would be good enough to use it every day.”2

In 2019 I wrote an editorial that robotic anesthesia was coming.3 And as I wrote the novel Doctor Vita 4 over a 15-year span from 2004-2019, I became more and more convinced of the role technology will play, for better or for worse, in replacing the human element in patient care. The premise of the novel is valid.

Will artificial intelligence in medicine provide the world with healthcare workers who work simply by plugging them in? Will some form of Doctor Vita populate future operating rooms?

An editor in the world’s leading anesthesia journal has predicted it. 

References:

  1. Joosten, A, Rinehart, J, et al. Anesthetic management using multiple closed-loop systems and delayed neurocognitive recovery: A randomized controlled trial. Anesthesiology. 2020; 132:253–66.
  2. Hemmerling TM. Robots will perform anesthesia in the near future. Anesthesiology 2020: 132:219-220.
  3. Novak R. “Artificial Intelligence in Anesthesia and Perioperative Medicine is Coming.” EC Anaesthesia 5.5 (2019): 112- 114. 
  4. Novak R. Doctor Vita. All Things That Matter Press, 2019.




*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?






LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ROBOT SURGERY . . . A VIEW FROM THE ANESTHESIOLOGY COCKPIT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Almost every anesthesiologist in America has experience with surgery using the da Vinci robot system. Is robot surgery a miraculous futuristic device that advances surgery to a higher plain? Or is it an expensive gadget for hospitals and surgeons to market and attract potential patients?

To answer these questions let’s first review some history. Until the 1990s most abdominal surgery was done through an open incision. To remove a gall bladder or an appendix, the surgeon made an incision into the abdomen, inserted his hands and instruments, cut out the tissue under direct vision, and then sewed the abdomen together again. A gall bladder incision might be five inches long. An appendix incision might be 2½ inches long. The surgical times were short—a private practice surgeon could complete an open gall bladder surgery in 30 – 40 minutes, or an open appendectomy in 20 – 25 minutes. A disadvantage was that the patient had pain from the incision, and the recovery time was days to weeks before the patient could return to normal activities.

Laparoscopy

Enter laparoscopy, a true major advance in surgery. The first video laparoscopic gall bladder resection (cholecystectomy)  was performed in 1987. A quantum advance occurred in the 1990s when video laparoscopic surgery became widespread. Laparoscopy required only small incisions in the abdomen, through which slender instruments were inserted. The interior of the abdomen was insufflated (blown up like a balloon) and one of the slender instruments held a camera. The image of the inside of the abdomen was visualized on a video screen while the surgeon manipulated instruments seen on that two-dimensional view. My colleague and Stanford clinical faculty member Camran Nezhat, the author of multiple textbooks on the topic, was a leading pioneer in the development of video laparoscopy. Laparoscopic surgery took longer than open surgery—a laparoscopic gall bladder or laparoscopic appendectomy usually lasted about twice as long as an open surgery—but the significant advantage was the lack of a painful open incision, which led to significantly less postoperative pain and a shorter postoperative recovery time. Many patients could be discharged the same day as their surgery, and most returned to normal activities sooner than if they had open surgery.  Video laparoscopy surgical equipment and the longer operating times were increased expenses, but the advantages of outpatient surgery and quicker recovery made the new technique the standard of care for many surgeries within the abdomen.

Anesthesia for laparoscopy was similar to the anesthetic for open abdominal surgery. Patients were asleep and paralyzed, and their breathing is done by a ventilator. The laparoscopy patient had a tense abdomen—it was essentially a balloon full of carbon dioxide—that usually required smaller volume breaths from the ventilator, but in most ways the two anesthetics were alike. 

da Vinci robot

Using the da Vinci robot for abdominal surgery is an extension of laparoscopic techniques, but the instruments are connected to robot arms rather than held by surgeons. The da Vinci surgeon sits at a console in the corner of the operating room, with his back to the patient and his face in a 3-D viewer, which gives a high-definition, magnified view of the surgical site. Assistant surgeon(s) and techs stand at the patient’s side, watch the surgery on video screens, and assist during the operation. The surgeon manipulates handles on the da Vinci device, which move the instruments within the patient’s body. The three-dimensional view within the abdomen is superior to a two-dimensional view on a video screen. I’ve personally had the opportunity to look through the 3-D viewer into the abdomen, and it’s a remarkable phenomenon. It’s as if you were a microscopic insect inside the patient, and looking around at the intestines, liver, arteries and veins that surround you. Another touted advantage of the robot is the ability for the surgeon to make precise movements via the robot’s mechanism. 

surgeon (at left) with his back to the operating room table and patient

The non-profit SRI (Stanford Research Institute) developed the early da Vinci system in the late 1980s with funding from the National Institutes of Health. The system was thought to have promise in allowing surgeons to operate remotely on surgeons wounded on battlefields. (When you read on you’ll realize how improbable this application would be.) 

In the 1990s, John Freund negotiated an option to acquire SRI’s intellectual property, and started a company named Intuitive Surgical Devices, Inc. The company’s prototype was ready for clinical testing in 1997. In 2000 the Federal Drug Administration (FDA) approved use of the da Vinci Surgical System for laparoscopic surgery, and Intuitive raised $46 million in an initial public offering. One year later the FDA approved use of the system for prostate surgery. In subsequent years the FDA approved the system for thoracoscopic surgery, cardiac procedures, and gynecologic procedures.

The da Vinci Surgical System spread slowly at first. Sixty hospitals in the United States used the system in 2002, but this number grew to 431 hospitals by 2014. Approximately 1,500 United States  hospitals now have the da Vinci Surgical System, according to Modern Healthcare. The system costs approximately $2 million, and there are costs for maintenance and for the non-reusable instruments held by the arms during surgery. A robotic surgery generally costs anywhere from $3,000 to $6,000 more than traditional laparoscopic surgery.  In 2016 Healthline wrote, “To justify its price — roughly 10 times that of a traditional laparoscopic surgery — da Vinci would need to do a lot better overall.” 

For abdominal surgery, use of the robot is as follows: The assembled robot is draped in sterile plastic and positioned distant to the patient, while the anesthesiologist induces general anesthesia and inserts an endotracheal breathing tube into the patient’s windpipe. The circulating nurse then preps the patient’s abdomen with antiseptic solution and the scrub tech surrounds the patient’s abdomen with sterile drapes. The surgeons insert a trocar to inflate the abdomen with carbon dioxide gas, and then make the incisions required for the insertion of the instruments into the patient’s body. When the robot is finally moved in over the patient and the instruments are connected to the robot arms, the anesthesiologist has limited access to the patient’s head, neck, and chest, due to the size, breadth and girth of the robot. The anesthesiologist’s station is within 4 – 6 feet of the patient’s head. At least one surgical assistant and one scrub tech stand at the patient’s side throughout the surgery. At a university teaching hospital, this number could be significantly greater. 

anesthesiologist (at right) during robotic surgery

The anesthetic for robotic abdominal surgery is no different than the technique for laparoscopy, except for one important feature. Robotic surgeries take longer than the same surgery done via traditional laparoscopy—a fact that makes most robotic procedures tedious for anesthesia personnel. Robot surgeries take up more of an operating room’s most precious resource—time. Hospital operating room resources—nurses, techs, orderlies, and administrative staff—are paid by the hour. Longer surgeries mean longer staffing hours and greater expense.

Do anesthesiologists prefer, enjoy, or feel challenged by these robotic surgery cases? In a word—no. There is little that is unique or challenging after one has done a few of these cases. In general anesthesiologists prefer surgery that is fast, efficient, safe, and effective.

1248 papers on “robot surgery” in 2019 to date

What does the world’s medical literature have to say about robotic surgery? When I entered the keywords “robot surgery, 2019” into the Pubmed search engine today, I discovered 1,248 papers published on robot surgery in the first 11 months of 2019. This is an exceptionally large number of publications. Robot surgery is a hot topic in the community of academic surgery. Multiple surgical specialties, including general, gynecology, cardiac, thoracic, cancer, and head and neck surgeons, are writing about their experiences with the da Vinci robot. You’ll find individual case reports, series of cases, meta-analyses, and comparison of current outcomes/complications to historical controls. 

Pertinent studies include the following:

Gall bladder surgery: In a 2019 study in the American Journal of Surgery, a national databank review of gall bladder resections (cholecystectomy) showed that the direct cost of robotic cholecystectomy was significantly higher than laparoscopic cholecystectomy, with no added benefit. The conclusion of the study was that “routine use of the robotic platform for cholecystectomy should be discouraged until costs are reduced.” 

Prostatectomy: A randomized controlled trial compared robotic surgery with open surgery for patients with localized prostate cancer, and showed that both robotic and open surgery achieved similar results in terms of key quality of life indicators at three months. 

Kidney surgery: A study published in the Journal of the American Medical Association (JAMA) showed the percentage of radical nephrectomies using the robot increased from 1.5% in 2003 to 27.0% in 2015. There were no significant differences between robot-assisted vs laparoscopic radical nephrectomy in major postoperative complications. The robot-assisted procedures had both longer operating times and higher direct hospital costs. 

Gynecology: The mortality in benign minimally invasive gynecologic surgery was low, and the mortality for laparoscopic vs robotic approaches was similar. 

Rectal surgery: JAMA publication showed that for patients with rectal carcinoma, robot-assisted laparoscopic surgery did not significantly reduce the risk of conversion to open laparotomy, when compared with conventional laparoscopic surgery. These findings suggested that robot-assisted laparoscopic surgery did not confer an advantage in rectal cancer resection. 

What will be the future direction of robotic surgery? Currently Intuitive Surgical and the da Vinci Surgical System have a monopoly. No other company has any significant market share. In 2017 Intuitive Surgical had $3.12 billion in total revenue, with a net income of $660 million. Their stock price is currently $549/share, up 300% from $178/share in January of 2016. The volume of robotic surgeries continues despite a paucity of published data that robotic surgery is any better. The cost of these procedures is high, and most hospitals are losing money on robot cases. Hospital executives seem to see the robot as a loss leader. No administrator wants to lead an old-fashioned hospital that doesn’t have a robot, while their competitor hospital across town is advertising robotic surgery on the side of buses traveling down Main Street.

Robotic surgery is a technology looking for a reason to exist, and a solution looking for a problem. Robotic surgery is not nearly the advance that laparoscopy was. Technology is pervasive and is changing healthcare. Enter any hospital today and you’ll see doctors and nurses peering into computer screens. They are pointing, clicking, entering information, and typing in findings on their patients. Where are the patients? Often they’re looking at the backs of these same doctors and nurses who are sitting at the computer terminals. Medicine, as I was taught in the 20th Century, was a profession dedicated to caring for and healing people. Modern medicine is increasingly pushing the hands of doctors and nurses toward keyboards and gadgets.

a doctor charting on electronic medical records
a da Vinci surgeon at work

The surgeon with his face in a robot console’s 3-D viewer, while his back is to his patient, is a powerful metaphor for the technologic trend in medical care. I believe patients want to see our faces, and we need to look into their eyes. I doubt that great American physicians from our past—William Osler, Harvey Cushing, the Mayo Brothers, or Norm Shumway—would be fans of robotic surgery.


*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?




LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

ANESTHESIOLOGISTS, DON’T BE AFRAID TO CUT INTO A PATIENT’S NECK

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

You’re an anesthesiologist. You’ve lost the airway on your obese anesthetized gynecology patient, your multiple attempts to intubate the trachea have failed, you cannot mask ventilate the patient, and insertion of a laryngeal mask airway did not help. Your patient’s skin and lips are purple and you are terrified. What do you do?

  1. Call a surgeon stat to do a tracheostomy
  2. Ask the gynecologist to cut an airway into the patient’s neck
  3. Keep trying to intubate the trachea yourself
  4. Insert a needle into the cricothyroid membrane, and begin jet ventilation
  5. Cut an airway into the neck yourself.

A study in the October 2019 issue of Anesthesiology showed that when a “can’t intubate, can’t oxygenate” crisis occurred, there were delays finding someone prepared to cut a surgical airway into the front of the neck in time to save the patient’s life. The study looked at malpractice closed claims and found: 1) Outcomes remained poor in malpractice closed claims related to difficult tracheal intubation; 2) The incidence of brain damage or death at induction of anesthesia was 5.5 times greater in the years 2000 – 2012 than in the years 1993 – 1999; 3) Inadequate planning and judgement errors contributed to the bad outcomes; and 4) Delays in placing a surgical airway during “can’t intubate, can’t oxygenate” emergencies were a major issue.

A closed claims study is akin to a large mortality and morbidity (M & M) conference. A closed claims study tells us which complications led to malpractice settlements. Each malpractice closed claim marks a negligent practice which caused an adverse outcome.

I’d like to focus on one specific aspect of this important study: anesthesiologists need to lose their reluctance to cut a surgical airway into a patient’s neck in a “can’t intubate, can’t oxygenate” airway emergency. A surgical airway is an invasive airway via the front of the patient’s neck into their trachea. Waiting for a surgeon to cut a surgical airway, or fearing to cut a surgical airway yourself, could cost your patient his or her life. Delay or failure in placing a surgical airway was described in 10 of the specific 12 cases listed in the Appendix of this Anesthesiology closed claims study, as follows:

Case 1: “Eventually a surgical airway was performed after the patient arrested.”

Case 2: “A surgical airway was performed after the patient arrested.”

Case 3: “The surgeon was called to the room to perform an emergency surgical airway, but there were not any instruments available in the room. The patient sustained anoxic brain injury and later died.”

Case 4: “Ventilation was difficult and the patient arrested. The surgeon arrived and attempted to perform an emergency surgical airway, at which time the anesthesiologist successfully intubated the patient’s trachea as the hematoma was drained. The patient was resuscitated but later died of anoxic brain damage.”

Case 5: “The anesthesiologist asked the surgeon to perform an emergency cricothyrotomy. However, the surgeon insisted that an electrocautery to be set up first. Nine minutes after cardiac arrest, a surgical airway was secured by the surgeon. The patient was resuscitated but remained in a persistent vegetative state.”

Case 6: “An ear-nose-throat surgeon was called to perform a surgical airway, who suggested a supraglottic airway be inserted instead. After the supraglottic airway was placed, the patient became impossible to ventilate and went into cardiac arrest. The surgical airway was placed with some difficulty. The patient sustained severe hypoxic brain and died.”

Case 8: “The surgeon performed a cricothyrotomy after the patient had marked bradycardia and hypotension.”

Case 10: “A surgeon was called to place a cricothyrotomy. The patient was resuscitated but had severe anoxic brain damage and died.”

Case 11: “Multiple intubation attempts and supraglottic airway insertion were made for more than an hour before a surgical airway was performed. At that time, the patient was asystolic and had a tension pneumothorax. The patient died.”

Case 12: “The patient had a hypoxic cardiac arrest. The surgeon arrived 22 min after induction and secured an emergency surgical airway. The patient was resuscitated but sustained hypoxic brain damage requiring assistance with activities of daily living.”

It’s tragic that 10 of the 12 listed cases involved delayed or failed front of neck access to the airway. In an editorial in the same issue of Anesthesiology, authors Takashi and Hillman wrote, “Decision to provide a surgical airway was frequently delayed by repeated attempts at tracheal intubation, anesthesia care providers being hesitant to initiate surgical procedures, or surgeons being reluctant to perform tracheostomy or simply not available.”

The American Society of Anesthesiologists Difficult Airway Algorithm, shown below, clearly describes invasive airway (i.e. surgical airway) access via the front of the neck when attempts to intubate the trachea and oxygenate the patient both fail.

“Can’t intubate, can’t oxygenate” events are rare, but they do occur with a published incidence of 1 in 50,000 anesthetics, per the fourth national audit project in the United Kingdom.  

The brain can be permanently damaged following episodes in which the brain sees no oxygen for five minutes or longer.

Approaches to front of neck access include either cannula techniques or surgical techniques, with significant differences:

Cannula Technique:

This involves inserting a large bore IV catheter through the cricothyroid membrane.

Because the lumen of a 14-gauge IV catheter is small, ventilation requires a high-pressure jet oxygen delivery system. In a publication from 2016, the failure rate with cannula techniques was 42% in “can’t intubate, can’t oxygenate” emergencies. Failure can occur because of kinking, malposition, or displacement of the needle/cannula. Because of the high failure rates, use of the cannula technique is discouraged.

Surgical Technique:

Most surgeons are trained to perform tracheostomies during their residencies, but when a “can’t intubate, can’t oxygenate” emergency occurs, tracheostomy is not the preferred procedure.

Tracheostomy – tube is inserted between tracheal rings

  Cricothyroidotomy, a technique which is faster and requires less surgical skill, can be performed by anesthesiologists, and is the preferred procedure.

In a cricothyroidotomy, the cricothyroid membrane is divided by a surgical incision made with a wide scalpel (#10 scalpel).

a cricothyrotomy is inserted in the cricothyroid space, cephalic to the trachea

Using the scalpel, bougie, tube (SBT) technique,

a bougie is inserted into the trachea through the incision. A lubricated 6.0 mm cuffed endotracheal tube is advanced over the bougie into the trachea, and the bougie is removed as demonstrated in this video link: 

This technique has been specifically endorsed in the United Kingdom in the algorithm from their Difficult Airway Society.  The British Difficult Airway Society guideline for a Can’t Intubate, Can’t Oxygenate crisis follows: 

How to train anesthesiologists to perform SBT cricothyroidotomy:

Are anesthesiologists trained to perform cricothyroidotomy? Not really. Even though the procedure is the last safety valve on the Difficult Airway Algorithm, most anesthesiologists have minimal or no experience in this life-saving procedure. How can we train anesthesiologists to perform cricothyroidotomies? 

In my residency in the 1980s we were trained to do cricothyroid injections of cocaine prior to awake fiberoptic intubation procedures. Each resident performed dozens of these injections, and I became extremely comfortable locating and piercing the cricothyroid membrane with a needle. In 35 years and 25,000+ anesthetics, I’ve never needed to place a surgical airway through that same membrane, but I feel confident I could do so with the scalpel, bougie, tube technique. 

The problem is that most anesthesiologists have never had to perform this front of neck access procedure on a patient. The stakes are high, because there is little time for failure. After several minutes of “can’t intubate, can’t oxygenate,” someone needs to take a scalpel to the cricothyroid membrane. That someone can and often should be the anesthesiologist.

In the October 2013 American Society of Anesthesiologists Monitor we read, “Perhaps the most important problem encountered in “can’t intubate, can’t oxygenate”  is a delay in recognition or institution of emergency airway management. . . . While someone clearly needs to make the decision to obtain a surgical airway, both the surgeons and the anesthesiologist may feel uncomfortable in this role. Retrospective studies, including closed claims analysis, demonstrate that most patients are already in cardiac arrest before emergency invasive airway attempts are performed. While decisive and timely action is clearly needed, the decision to pursue a surgical airway is not an easy one; . . . In fact, there is little legal risk from a surgical airway attempt – no matter how messy – if the patient survives, but enormous liability if the procedure is not attempted.”

In a study from Great Britain, 104 anaesthetists received a structured training session on performing cricothyrotomy. These anaesthetists then took part individually in a simulated “can’t intubate, can’t oxygenate” event using simulation and airway models, to evaluate how well they could perform front‐of‐neck access techniques. First‐pass tracheal tube placement was obtained in 101 out of the 104 cricothyroidotomies (p = 0.31). They concluded that anaesthetists can be trained to perform surgical front of neck access to an acceptable level of competence and speed via simulator training

What needs to happen? Anesthesiology residents need to be trained to do front of neck access, and they need to be trained not to delay if the procedure is indicated. This training needs to be a requirement for all anesthesia professionals. Mid-career anesthesiologists pay for weekend Continuing Medical Education courses on subjects such as ultrasound-directed regional blocks or transesphogeal echocardiography. While these topics are important, they are not life-saving skills such as front of neck access. Anesthesiologists in training, practicing anesthesiologists, and Certified Registered Nurse Anesthetists (CRNAs) must receive hands-on education on performing front of neck access, as well as the reasoning behind not delaying the procedure. 

You’re an anesthesiologist or a CRNA. What should you do now?

  1. Familiarize yourself with the anatomy of the cricothyroid membrane on each of your patients.
  2. Have a scalpel, bougie, tube kit containing a #10 scalpel, a bougie, and a #6 cuffed endotracheal tube included with each difficult airway cart at each facility you anesthetize at.
  3. I now carry a scalpel, bougie, tube kit in my briefcase which I take with me every day at work. In the current model of private practice in California, where we work at multiple different freestanding surgery centers and surgeon offices, this is a reliable means to assure that I have front of neck access equipment with me wherever I anesthetize patients.
  4. Review and rehearse the anatomy and skills necessary to perform front of neck surgical cricothyroidotomy.
  5. Work to avoid “can’t intubate, can’t oxygenate” events. Evaluate each airway prior to surgery. If a significant concern exists regarding a difficult intubation, a difficult mask ventilation, or difficult front of neck access, use your judgment and perform an awake intubation. Securing an airway prior to anesthesia induction is a reliable way to avoid “can’t intubate, can’t oxygenate” disasters.

The closed claims study on difficult tracheal intubation in the October 2019 issue of Anesthesiology should serve as a bellwether for our profession. The practices of waiting for surgeons to arrive to do front of neck access, or of anesthesiologists delaying front of neck access in a “can’t intubate, can’t oxygenate” emergency must cease. Emergency front of neck access must be a core skill that all anesthesiologists are both willing and able to perform when a patient is turning purple before their eyes. 

We owe it to our patients to be ready to save their lives.


*

*
The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?
The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 178/108?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?




LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited