ROBOTIC ANESTHESIA 

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

How soon will we see robotic anesthesia in our hospitals and surgery centers? In the past three decades the high-tech revolution introduced the internet, the laptop computer, the iPhone, Google, and global positioning satellites. Most of these discoveries originated in Silicon Valley, just miles outside Stanford University Hospital where I’ve been working for the past 42 years. Our medical world inside the hospital has changed more slowly. We’ve seen advances in noninvasive surgery, fiberoptic scopes, transplantation science, cancer therapeutics, and mega healthcare delivery companies. But what’s new in anesthesia the last 30 years? Relatively little. The Glidescope, sugammadex, ultrasound-guided blocks, and the time-consuming Electronic Medical Record arrived, but we typically administer the same medications, use the same airway tubes, and watch the same vital signs monitors as we did in the 1990s. 

Why have there been no new anesthetics? Let me tell you a story: A former Stanford Chairman of Anesthesiology and friend of mine left the university in 2006 to become a pharmaceutical company executive, first at Novartis and then at AstraZeneca. Ten years ago, when I asked him what new anesthesia drugs were in the pipeline, he answered, “None, and there probably will be very few new ones. The drugs you have now are inexpensive generic drugs, and they work very well. The research and development costs to bring a new anesthetic drug to market are prohibitively expensive, and unless that new drug is markedly better, it will not push the inexpensive generic drugs out of use.”

Is the same true for anesthesia devices? Are proposed anesthetic robots too expensive to design, test, and manufacture? Can they be brought to market to assist current anesthesia providers? Can they be brought to market to replace any anesthesia providers? Keep these economic questions in mind as we review the current science of robotic anesthesia.

vanished and vanishing jobs

Jobs have already disappeared in many industries. ATMs replaced bank tellers. Automated garbage trucks replaced garbage men. In the near future automated cars and trucks will replace drivers. In medicine, computerized artificial intelligence for the analysis of digital images is superior to the human eye, placing the jobs of radiologists, pathologists, and dermatologists in peril. 

Will we live to see anesthesiologists replaced by technology? The following three pictures depict fictional anesthesia robots:

fictional medical robots

But this is what real anesthesia robots look like:

real anesthesia robots

An outline of the types of robotic anesthesia is as follows:

  1. PHARMACOLOGIC ROBOTS
  2. MECHANICAL ROBOTS PERFORMING PROCEDURES
  3. DECISION SUPPORT ROBOTS

  1. PHARMACOLOGIC ROBOTS:

In 2012 a United States national marketing firm contacted me to seek my opinion regarding an automated device to infuse propofol. The device was the Sedasys®-Computer-Assisted Personalized Sedation System, developed by Johnson and Johnson/Ethicon. The system incorporated an automated propofol infusion device, along with standard ASA monitors, including end-tidal CO2, into a device to be used to provide conscious sedation for GI endoscopy.

The SEDASYS system

The Sedasys unit infused an initial dose of propofol (typically 30 – 50 mg in young patients) over 3 minutes, and then began a maintenance infusion of propofol at a pre-programmed rate (usually 50 mcg/kg/min).  If the monitors detected signs of over-sedation, that is, falling oxygen saturation, depressed respiratory rate, or a failure of the end-tidal CO2 curve, then the propofol infusion was stopped automatically.  In addition, the machine talked to the patient, and at intervals asked the patient to squeeze a hand-held gripper device.  If the patient was non-responsive and did not squeeze, the propofol infusion was automatically stopped.

The planned strategy was to have gastroenterologists complete a weekend educational course to learn: that Sedasys was not appropriate if the patient is ASA 3 or 4 or had severe medical problems; that Sedasys was not appropriate if the patient had risk factors such as morbid obesity, a difficult airway, or sleep apnea; and gastroenterologists were taught the airway skills of chin lift, jaw thrust, oral airway use, nasal airway use, and bag-mask ventilation. 

I did not recommend the device be FDA-approved, as I saw the potential of inappropriate patients with obesity or sleep apnea slipping through the screening process, as well as the risk that an over-sedated patient could lose their airway and the gastroenterologist would not be able to rescue them, seeing as propofol has no reversal agent. 

With only one prospective clinical trial, the United States Food and Drug Administration did approve the device in 2013. There was limited clinical use of Sedasys, and Ethicon announced in March 2016 that it was pulling Sedasys from the market. 

The failure of Sedasys was attributed to three factors:

  1. If a patient became too “light” during a procedure, the Sedasys system was not capable of increasing the depth of the sedation.
  2. Both patients and endoscopists expected deep general anesthesia, not moderate sedation. 
  3. Gastroenterologists were ill-equipped to shoulder the responsibility of general anesthesia and airway management. 

From the failure of Sedasys it was clear that further refinement in technology and drug use was needed. That refinement was the development of closed-loop devices. A closed-loop control system is a set of mechanical or electronic devices that automatically regulates a process variable to a desired state or set point without human interaction. The cruise-control on your automobile is an example of closed-loop feedback control of driving speed.

In anesthesia, closed-loop devices can infuse the medications propofol and remifentanil, with the rate of the infusions guided by a bispectral (BIS) monitor of EEG (electroencephalography) activity.  Propofol is an ultra-short-acting hypnotic drug, and remifentanil is an ultra-short-acting narcotic. Administered together, these drugs induce total intravenous anesthesia (TIVA).

A closed-loop system can infuse these two drugs automatically. A BIS monitor calculates a score between 0 and 100 for the patient’s level of unconsciousness, with a score of 100 corresponding to wide awake and 0 corresponding to a flat EEG. A score of 40 – 60 is considered an optimal amount of anesthesia depth. A computer controls the infusion rates of two automated infusion pumps containing propofol and remifentanil. The infusion rates depend on whether the measured BIS score is higher or lower than the 40- 60 range. Researchers in Vancouver, Canada expanded this technology into a device called the iControl-RP, where the initials RP stand for remifentanil and propofol. In addition to the BIS monitor, the iControl-RP monitored the vital signs of blood oxygen level, heart rate, respiratory rate, and blood pressure to determine how much anesthesia to deliver.

iControl-RP robot

In a single-blind randomized study published in Anesthesiology in 2015, 42 patients were randomized to the closed-loop iControl-RP group or to a manual group. The results showed the percentage of time with BIS40-60 was greater in the closed-loop group (87%) vs. the manual group (72%). The number of perioperative adverse events and the length of stay in the postanesthesia care unit were similar. The conclusion of the study was that automated control of hypnosis and analgesia guided by the BIS was clinically feasible.

This study led to an article in the The Washington Post in 2015,  in which one of the machine’s co-developers, Dr. Mark Ansermino said, “We are convinced the machine can do better than human anesthesiologists.” The device had been used on 250 patients at that time. The iControl-RP team struggled to find a corporate backer for its project. Dr. Ansermino told The Washington Post, “Most big companies view this as too risky.” He believed a device like this was inevitable. “I think eventually this will happen,” Ansermino said, “whether we like it or not.”

A second pharmacologic robot named McSleepy used three syringe pumps to control the three components of general anesthesia (hypnosis, analgesia, and neuromuscular block) in an automated closed-loop anesthesia drug delivery system. Each component had specific monitoring: BIS; AnalgoScore (an-AL-go-score = a pain score derived from the heart rate and mean arterial pressure) which was used as the control variable to titrate the effective dose of remifentanil; and the train of four (TOF), which was a measure of the twitch strength of a muscle when its peripheral nerve was electrically stimulated.

McSleepy robot

A 2013 study in the British Journal of Anaesthesia  looked at 186 patients managed by McSleepy, in which the McSleepy system showed better control of hypnosis than manually administered anesthesia (see graphs below). 

The control of depth of anesthesia under McSleepy (blue) or manual (green)

The McSleepy system also showed faster extubation times than manually administered anaesthesia. 

A second McSleepy study in the British Journal of Anaesthesia in 2013 showed an application in telemedicine.  The remote control of general anesthetics was successfully performed between two different countries (Canada and Italy). Twenty patients underwent elective thyroid surgeries, with a master-computer in Montreal and a slave-computer in Pisa, demonstrating the feasibility of remote telemedicine control of anesthesia administration.

II.  MECHANICAL ANESTHESIA ROBOTS

Ma’s mask ventilation robot

The first example is a machine designed to provide mask ventilation, as described in the paper “Novel Anesthesia Airway Management Robot for Robot Assisted Non-invasive Positive Pressure Mask Ventilation,” Published by Dr. Ma et al, from China. Ma designed a robot equipped with two snake arms and a mask-fastening mechanism to facilitate trachea airway management for anesthesia. (PIC) The two snake arms were designed to lift a patient’s jaw. The mask-fastening mechanism was used to fasten and hold the mask onto a patient’s face. A joystick control unit managed both the lifting and fastening force. To date this system has not been used on humans, but the device was proposed as a method to perform non-invasive mask positive pressure ventilation via a robotic system.

The Kepler Intubating System

In 2012 Dr. Hemmerling at McGill University in Montreal published a paper in Current Opinions in Anaesthesiology, describing the Kepler Intubation System. The Kepler Intubation System consisted of a remote-control joystick and intubation cockpit, linked to a standard videolaryngoscope via a robotic arm. (PIC) Ninety intubations were performed on a mannequin with this device. The first group of 30 intubations was performed with the operator in direct view of the mannequin. The second group of 30 intubations was performed with the operator unable to see the mannequin. The third group of 30 intubations were performed via semiautomated intubations during which the robotic system replayed a tracing of a previously recorded intubation maneuver. All intubations were successful on the first attempt, with the average intubation times between 41 and 51 seconds for all three groups. The study concluded that a robotic intubation system can complete successful remote intubation within 40 to 60 seconds.

The Magellan Nerve Block System

In 2013 Dr. Hemmerling published the study “First Robotic Ultrasound-Guided Nerve Blocks in Humans Using the Magellan System” in Anesthesia & Analgesia. The Magellan system consisted of three main components: a joystick, a robotic arm, and a software control system. After localization of the sciatic nerve by ultrasound, 35 ml of bupivacaine 0.25% was injected by the robot. Thirteen patients were enrolled. The nerve blocks were successful in all patients. The nerve performance time was 164 seconds by the robotic system, and 189 seconds by a human practitioner. The Magellan System was the first robotic ultrasound-guided nerve block system tested on humans.  

III.  DECISION SUPPORT ROBOTS

A decision-support robot can recognize a crucial clinical situation that requires human intervention and, when allowed by the attending clinician, may administer treatment. It seems likely that cognitive robots which follow algorithms can increase patient safety.

In August 2021 Dr. Alexandre Joosten, an anesthesia professor in Brussels, Belgium and Paris, France, published “Computer-assisted Individualized Hemodynamic Management Reduces Intraoperative Hypotension in Intermediate- and High-risk Surgery: A Randomized Controlled Trial” in Anesthesiology.  This study tested the hypothesis that computer-assisted hemodynamic management could reduce intraoperative low blood pressure in patients undergoing intermediate- to high-risk surgery. This prospective randomized single-blinded study included 38 patients undergoing abdominal or orthopedic surgery. All patients had an indwelling radial arterial catheter to monitor blood pressure continuously. A closed-loop system titrated a norepinephrine infusion based on the blood pressure, and a second separate decision support system infused mini-fluid challenges when low blood pressures were recorded. Results showed the time of intraoperative hypotension was 1.2% in the computer-assisted group compared to 21.5% in the manually adjusted goal-directed therapy group (P < 0.001). The incidence of minor postoperative complications was the same between groups (42 vs. 58%; P = 0.330). The mean stroke volume index and cardiac index were both significantly higher in the computer-assisted group than in the manually adjusted goal-directed therapy group (P < 0.001). The study’s conclusion was that this closed-loop system resulted in a significant decrease in the percentage of intraoperative time with a low mean arterial pressure.

VOICE-ACTIVATED DEVICES

Voice-activated devices are gaining traction in healthcare. The story “Amazon’s Alexa Is Now a Healthcare Provider” was published by Medscape on February 17, 2022.

Alexa at bedside

The article described how thousands of Alexa-enabled devices are in use in hundreds of hospitals in America. Amazon’s Alexa functions as a digital personal assistant whose voice-powered innovation connects patients with their healthcare team members. Patients who are confined to bed can use their voice to communicate directly to a nurse’s smartphone. An Alexa device is positioned near the bed at Cedars-Sinai Medical Center in Los Angeles, making it easy to call for nursing help. (PIC) Alexa can also connect healthcare providers to their patients. Doctors or nurses can appear virtually in a patient’s room on the Alexa Show’s video screen and assess the needs of that patient. I expect voice-activation to link healthcare providers with medical robots in the future.

PROBLEMS WITH ROBOTS REPLACING ANESTHESIA

The medical publications referenced above demonstrate that robotic anesthesia devices exist, yet none of them are in common use at this time. The current and proposed robotic devices are only small steps toward replacing anesthesiologists, because anesthetizing patients requires far more expertise than merely titrating drug levels or performing a solitary mechanical procedure. 

Anesthesia management consists of a wide variety of skills:

  • preoperative assessment of a patient’s medical problems 
  • successful mask ventilation of an unconscious patient (in most cases) followed by placement of an airway tube
  • diagnosis and treatment of any medical complication that occurs as a result of the anesthesia or the surgical procedure
  • removal of the airway tube at the conclusion of most surgeries, and 
  • the diagnosis and treatment of postoperative medical complications

Successful robotic anesthesia devices may eventually eliminate the repetitive aspects of anesthesia management. You may see robots assisting anesthesia providers in the coming decades, depending on the economic viability of the technology. 

Will the intrusion of a robot into anesthesia care be a welcome event? When you’re a patient, do you desire a caring, empathetic human attending to you, or do you desire an algorithm? 

Or in the future, will you desire both?

*

*

The most popular posts for laypeople on The Anesthesia Consultant include:
How Long Will It Take To Wake Up From General Anesthesia?
Why Did Take Me So Long To Wake From General Anesthesia?
Will I Have a Breathing Tube During Anesthesia?
What Are the Common Anesthesia Medications?
How Safe is Anesthesia in the 21st Century?
Will I Be Nauseated After General Anesthesia?
What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:
10 Trends for the Future of Anesthesia
Should You Cancel Anesthesia for a Potassium Level of 3.6?
12 Important Things to Know as You Near the End of Your Anesthesia Training
Should You Cancel Surgery For a Blood Pressure = 170/99?
Advice For Passing the Anesthesia Oral Board Exams
What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

READ ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM.

ROBOT ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board-certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
email rjnov@yahoo.com
phone 650-465-5997

Will robots replace anesthesiologists? I am the Medical Director of a surgery center in California that does 5,000 gastroenterology endoscopies per year.  In 2013 a national marketing firm contacted me to seek my opinion regarding an automated device to infuse propofol. The device was envisioned as a tool for gastroenterologist/nursing teams to use to administer propofol safely for endoscopy procedures on ASA class I – II patients.

The marketing firm could not reveal the name of the device, but I believe it was probably the SEDASYS®-Computer-Assisted Personalized Sedation System, developed by the Ethicon Endo-Surgery, Inc., a division of Johnson and Johnson.  The SEDASYS System is a computer-assisted personalized sedation system integrating propofol delivery with patient monitoring. The system incorporates standard ASA monitors, including end-tidal CO2, into an automated propofol infusion device.

The SEDASYS system is marketed as a device to provide conscious sedation.  It will not provide deep sedation or general anesthesia.

Based on pharmacokinetic algorithms, the SEDASYS infuses an initial dose of propofol (typically 30- 50 mg in young patients, or a smaller dose in older patients) over 3 minutes, and then begins a maintenance infusion of propofol at a pre-programmed rate (usually 50 mcg/kg/min).  If the monitors detect signs of over- sedation, e.g. falling oxygen saturation, depressed respiratory rate, or a failure of the end-tidal CO2 curve, the propofol infusion is stopped automatically.  In addition, the machine talks to the patient, and at intervals asks the patient to squeeze a hand-held gripper device.  If the patient is non-responsive and does not squeeze, the propofol infusion is automatically stopped.

As of February, 2013, the SEDASYS system was not FDA approved. On May 3, 2013, Ethicon Endo-Surgery, Inc. announced that the Food and Drug Administration (FDA) granted Premarket Approval for the SEDASYS® system, a computer-assisted personalized sedation system.  SEDASYS® is indicated “for the intravenous administration of 1 percent (10 milligrams/milliliters) propofol injectable emulsion for the initiation and maintenance of minimal to moderate sedation, as identified by the American Society of Anesthesiologists Continuum of Depth of Sedation, in adult patients (American Society of Anesthesiologists physical status I or II) undergoing colonoscopy and esophagoduodenoscopy procedures.”  News reports indicate that SEDASYS® is expected to be introduced on a limited basis beginning in 2014.

Steve Shaffer, M.D., Ph.D., Stanford Adjunct Professor, editor-in-chief of Anesthesia & Analgesia, and Professor of Anesthesiology at Columbia University, worked with Ethicon since 2003 on the design, development and testing of the SEDASYS System both as an investigator and as chair of the company’s anesthesia advisory panel.

Dr. Shafer has been quoted as saying, “The SEDASYS provides an opportunity for anesthesiologists to set up ultra-high throughput gastrointestinal endoscopy services, improve patient safety, patient satisfaction, endoscopist satisfaction and reduce the cost per procedure.” (Gastroenterology and Endoscopy News, November 2010, 61:11)

In Ethicon’s pivotal study supporting SEDASYS, 1,000 ASA class I to III adults had routine colonoscopy or esophagogastroduodenoscopy, and were randomized to either sedation with the SEDASYS System (SED) or sedation with each site’s current standard of care (CSC) i.e. benzodiazepine/opioid combination.  The reference for this study is Gastrointest Endosc. 2011 Apr;73(4):765-72. Computer-assisted personalized sedation for upper endoscopy and colonoscopy: a comparative, multicenter randomized study. Pambianco DJ, Vargo JJ, Pruitt RE, Hardi R, Martin JF.

In this study, 496 patients were randomized to SED and 504 were randomized to CSC. The area under the curve of oxygen desaturation was significantly lower for SED (23.6 s·%) than for CSC (88.0 s·%; P = .028), providing evidence that SEDASYS provided less over-sedation than current standard of care with benzodiazepine/opioid.  SEDASYS patients were significantly more satisfied than CSC patients (P = .007). Clinician satisfaction was greater with SED than with CSC (P < .001). SED patients recovered faster than CSC patients (P < .001). The incidence of adverse events was 5.8% in the SED group and 8.7% in the CSC group.

Donald E. Martin, MD, associate dean for administration at Pennsylvania State Hershey College of Medicine and chair of the Section on Clinical Care at the American Society of Anesthesiologists (ASA), expressed concerns about the safety of the device.  Dr. Martin (Gastroenterology and Endoscopy News, November 2010, 61:11) was quoted as saying, “SEDASYS is requested to provide minimal to moderate sedation and yet the device is designed to administer propofol in doses known to produce general anesthesia.”

Dr. Martin added that studies to date have shown that some patients who had  propofol administered by SEDASYS experienced unconsciousness or respiratory depression (Digestion 2010;82:127-129, Maurer WG, Philip BK.). In the largest prospective, randomized trial evaluating the safety of the device compared with the current standard of care, five patients (1%) experienced general anesthesia with SEDASYS. The ASA also voiced concern that SEDASYS could be used in conditions that do not comply with the black box warning in the propofol label, namely that propofol “should be administered only by persons trained in the administration of general anesthesia and not involved in the conduct of the surgical/diagnostic procedure.”

Anesthetists, emergency room doctors, and trauma helicopter nurses are trained in the administration of general anesthesia. Gastroenterologists and endoscopy nurses are almost never experts in airway management.  For this reason, propofol anesthetics for endoscopy are currently the domain of anesthesiologists and nurse anesthetists.

In my phone conversation regarding the automated propofol-infusion system, I told the marketing company’s representative that in my opinion a machine that infused propofol without an airway expert present could be unsafe.  The marketing consultant responded that in parts of the Northeastern United States, including New York City, many GI endoscopies are done with the assistance of an anesthesia provider administering propofol.  If SEDASYS were to be approved, the devices could replace anesthesiologists.

In the current fee-for-service model of anesthesia billing, anesthesiologists and CRNA’s bill insurance companies or Medicare for their professional time.  If machines replace anesthesiologists and CRNA’s, the anesthesia team cannot send a fee-for-service bill for professional time.  The marketing consultant foresaw that with the advent of ObamaCare and Accountable Care Organizations, if a health care organization is paid a global fee to take care of a population rather than being paid a fee-for-service sum, then perhaps the cheapest way to administer propofol sedation for GI endoscopy would be to replace anesthesia providers with SEDASYS machines.

A planned strategy is to have gastroenterologists complete an educational course that would educate them on several issues.  Key elements of the course would be: 1) anesthesiologists are required if deep sedation is required, 2) SEDASYS is not appropriate if the patient is ASA 3 or 4 or has severe medical problems, 3) SEDASYS is not appropriate if the patient has risk factors such as morbid obesity, difficult airway, or sleep apnea, and 4) airway skills are to be taught in the simulation portion of the training.  Specific skills are chin life, jaw thrust, oral airway use, nasal airway use, and bag-mask ventilation.  Endotracheal intubation and LMA insertion are not to be part of the class.  If the endoscopist cannot complete the procedure with moderate sedation, the procedure is to be cancelled and rescheduled with an anesthesia provider giving deep IV sedation.

Some anesthesiologists are concerned about being pushed out of their jobs by nurse anesthetists.  It may be that some anesthesiologists will be pushed out of their jobs by machines.

I’ve been told that the marketing plan for SEDASYS is for the manufacturer to give the machine to a busy medical facility, and to only charge for the disposable items needed for each case. The disposable items would cost $50 per case. In our surgery center, where we do 5,000 cases per year, this would be an added cost of $25,000 per year. There would be no significant savings, because we do not use anesthesiologists for most gastroenterology sedation.

There have been other forays into robotic anesthesia, including:

1) The Kepler Intubation System (KIS) intubating robot, designed to utilized video laryngoscopy and a robotic arm to place an endotracheal tube (Curr Opin Anaesthesiol. 2012 Oct 25. Robotic anesthesia: not the realm of science fiction any more. Hemmerling TM, Terrasini N. Departments of Anesthesia, McGill University),

2) The McSleepy intravenous sedation machine, designed to administer propofol, narcotic, and muscle relaxant to patients to control hypnosis, analgesia, and muscle relaxation. (Curr Opin Anaesthesiol. 2012 Dec;25(6):736-42. Robotic anesthesia: not the realm of science fiction any more. Hemmerling TM, Terrasini N.)

3) The use of the DaVinci surgical robot to perform regional anesthetic blockade. (Anesth Analg. 2010 Sep;111(3):813-6. Epub 2010 Jun 25. Technical communication: robot-assisted regional anesthesia: a simulated demonstration. Tighe PJ, Badiyan SJ, Luria I, Boezaart AP, Parekattil S.).

4) The use of the Magellan robot to place peripheral nerve blocks (Anesthesiology News, 2012, 38:8)

Each of these applications may someday lead to the performance of anesthesia by an anesthesiologist at geographical distance from the patient.  In an era where 17% of the Gross National Product of the United States is already being spent on health care, one can question the logic of building expensive technology to perform routine tasks like I.V. sedation, endotracheal intubation, or regional block placement.  The new inventions are futuristic and interesting, but a DaVinci surgical robot costs $1.8 million, and who knows what any of these anesthesia robots would sell for?  The devices seem more inflationary than helpful at this point.

Will robots replace anesthesiologists?  Inventors are edging in that direction.  I would watch the peer-reviewed anesthesia journals for data that validates the utility and safety of any of these futuristic advances.

It will be a long time before anyone invents a machine or a robot that can perform mask ventilation.  SEDASYS is designed for conscious sedation, not deep sedation or general anesthesia.  Anyone or anything that administers general anesthesia without expertise in mask ventilation and all facets of airway management is courting disaster.

NOTE: In March of 2016, Johnson & Johnson announced that they were going to stop selling the SEDASYS system due to slow sales and company-wide cost cutting. The concept of Robot Anesthesia will have to wait for some future development, if ever, if it is to ever become an important part of the marketplace.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited