HOW TO WAKE UP PATIENTS PROMPTLY FOLLOWING GENERAL ANESTHETICS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Two patients arrive simultaneously in the recovery room following general endotracheal anesthetics. One patient is unresponsive and requires an oral airway to maintain adequate respiration. In the next bed, the second patient is awake, comfortable and conversant. How can this be? It occurs because different anesthetists practice differently. Some can wake up patients promptly, and some cannot.

Aldrete Score Calculator - Definition | Aldrete score chart

Does it matter if a patient wakes up promptly after general anesthesia? It does. An awake, alert patient will have minimal airway or breathing problems. When it’s time to walk away from your patient in the recovery room, you’ll worry less if your patient is already talking to you and has minimal residual effects of general anesthesia. Whether the surgery was a radical neck dissection, a carotid endarterectomy, a laparotomy, or a facelift, it’s preferable to have your patient as awake as possible in the recovery room.

What can you do to assure your patients wake up promptly? A Pubmed search will give you little guidance. There’s a paucity of data or evidence in the medical literature on how to wake patients faster. You’ll find data on ultra-short acting drugs such as propofol and remifentanil. This data helps, but the skill of waking up a patient on demand is more an art than a science. Textbooks give you little advice. Anesthesiologist’s Manual of Surgical Procedures, (4th Edition, 2009), edited by Jaffe and Samuels, has an Appendix that lists Standard Adult Anesthetic Protocols, but there is little specific information on how to titrate the drugs to ensure a timely wakeup.

Based on 29 years of administering over 20,000 anesthetics, this is my advice on how to wake patients promptly from general anesthesia:

  1. Propofol. Use propofol for induction of anesthesia. You may or may not choose to infuse propofol during maintenance anesthesia (e.g. at a rate of 50 mcg/kg/min) but if you do, I recommend turning off the infusion at least 10 minutes before planned wakeup. This allows adequate time for the drug to redistribute and for serum propofol levels to decrease enough to avoid residual sleepiness.
  2. Sevoflurane. Sevoflurane is relatively insoluble and its effects wear off quickly when the drug is ventilated out of the lungs at the conclusion of surgery. I recommend a maintenance concentration of 1.5% inspired sevoflurane in most patients. I drop this concentration to 1% while the surgeon is applying the dressings. When the dressings are finished, I turn off the sevoflurane and continue ventilation to pump the sevoflurane out of the patient’s lungs and bloodstream. The expired concentration will usually drop to 0.2% within 5-10 minutes, a level at which most patients will open their eyes.
  3. Nitrous oxide. Unless there is a contraindication (e.g. laparoscopy or thoractomy) I recommend you use 50% nitrous oxide. It’s relatively insoluble, and adding nitrous oxide will permit you to utilize less sevoflurane. I recommend turning off nitrous oxide when the surgeon is applying the dressings at the end of the case, and turning the oxygen flow rate up to 10 liters/minute while maintaining ventilation to wash out the remaining nitrous oxide.
  4. Narcotics. Use narcotics sparingly and wisely. I see overzealous use of narcotics as a problem. Prior to inserting an endotracheal tube, it’s reasonable to administer 50 – 100 mcg of fentanyl to a healthy adult or 0 -50 mcg of fentanyl to a geriatric patient. A small dose serves to blunt the hemodynamic responses of tachycardia or hypertension associated with larynogoscopy and intubation. Bolusing 250 mcg of fentanyl prior to intubation is an unnecessary overdose. The use of ongoing doses of narcotics during an anesthetic depends on the amount of surgical stimulation and the anticipated amount of post-operative pain. You may administer intermittent increments of narcotic (I may give a 50-100 mcg dose of fentanyl every hour) but I recommend your final narcotic bolus be given no less than 30 minutes prior to the anticipated wakeup. Undesired high levels of narcotic at the conclusion of surgery contribute to oversedation and slow awakening. If your patient complains of pain at wakeup, further narcotic is titrated intravenously to control the pain. Your patient’s verbal responses are your best monitor regarding how much narcotic is needed. Your goal at wakeup should be to have adequate narcotic levels and effect, but no more narcotic than needed.
  5. Intra-tracheal lidocaine. I recommend spraying 4 ml of 4% lidocaine into the larynx and trachea at laryngoscopy prior to inserting the endotracheal tube. I can’t cite you any data, but it’s my impression that patients demonstrate less bucking on endotracheal tubes at awakening when lidocaine was sprayed into their tracheas. Less bucking enables you to decrease anesthetic levels further while the endotracheal tube is still in situ.
  6. Local anesthetics. Local anesthetics are your friends at the conclusion of surgery. If the surgeon is able to blunt post-operative pain with local anesthesia or if you are able to blunt post-operative pain with a neuroaxial block or a regional block, your patient will require zero or minimal intravenous narcotics, and your patient will wake up more quickly.
  7. Muscle relaxants. Use muscle relaxants sparingly. Nothing will slow a wakeup more than a patient in whom you cannot reverse the paralysis with a standard dose of neostigmine. This necessitates a delay in extubation until muscle strength returns. Muscle relaxation is necessary when you choose to insert an endotracheal tube at the beginning of an anesthetic, but many cases do not require paralysis for the duration of the surgery. When you must administer muscle relaxation throughout surgery, use a nerve stimulator and be careful not to abolish all twitch responses. Avoid long-acting paralyzing drugs such as pancuronium, as you will have difficulty reversing the paralysis if surgery concludes soon after you’ve administered a dose. Use rocuronium instead. Avoid administering a dose of rocuronium if you believe the surgery will conclude within the next 30 minutes—it may be difficult to reverse the paralysis, and this will delay wakeup.
  8. Laryngeal Mask Airway (LMA). When possible, substitute an LMA for an endotracheal tube. Wakeups will be smoother, muscle relaxants are unnecessary, and narcotic doses can be titrated with the aim of keeping the patient’s spontaneous respiratory rate between 15- 20 breaths per minute.
  9. Temperature monitoring and forced air warming. Cold is an anesthetic. Strive to keep your patient normothermic by using forced air warming. If your patient’s core temperature is low, wakeup will be delayed.

10. Consider remaining in the operating room after surgery until your patient is awake enough to respond to verbal commands. This is my practice, and I recommend it for safety reasons. In the operating room you have all your airway equipment, drugs, and suction at your fingertips. If an unexpected emergence event occurs, you’re prepared. If an unexpected emergence event occurs in an obtunded patient in the recovery room, your resuscitation equipment will not be as readily available. If your patient is responsive to verbal commands in the operating room, your patient will be wakeful on arrival in the recovery room.

Is this protocol a recipe? Yes, it is. You’ll have your own recipe, and your ingredients may vary from mine. You may choose to administer desflurane instead of sevoflurane. You may choose sufentanil, morphine, or meperidine instead of fentanyl. My advice still applies. Use as little narcotic as is necessary, and try not to administer intravenous narcotic during the last 30 minutes of surgery. If you use a remifentanil infusion, taper the infusion off early enough so the patient is wakeful at the conclusion of surgery.

The principles I’ve recommended here are time-tested and practical. Follow these guidelines and you’ll experience two heartwarming scenarios from time to time:  1) Patients in the recovery room will ask you, “You mean the surgery is done already? I can’t believe it,” and 2) Recovery room nurses will ask you, “Did this patient really have a general anesthetic?  She’s so awake!”

Your chest will swell with pride, and you’ll feel like an artist. Good luck.

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

DOES REPEATED GENERAL ANESTHESIA HARM THE BRAINS OF INFANTS AND YOUNG CHILDREN?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Recent scholarly publications have raised the question whether repeated exposure to general anesthesia is harmful to the developing brain in infants and young children.  Millions of children have surgery under general anesthesia each year. Is repeated exposure to general anesthesia safe for the developing brain of your child? Let’s look at the evidence.

pediatric anesthesia

In 2011, a retrospective Mayo Clinic study looked at the incidence of learning disabilities (LDs) in a cohort of children born in Olmsted County, Minnesota, from 1976 to 1982.  Among the 8,548 children analyzed, 350 of the children received general anesthesia before the age of 2.  A single exposure to general anesthesia was not associated with an increase in LDs, but children who had two or more anesthetics were at increased risk for LDs.  The study concluded that repeated exposure to anesthesia and surgery before the age of 2 was a significant independent risk factor for the later development of LDs.  The authors could not exclude the possibility that multiple exposures to anesthesia and surgery at an early age adversely affected human neurodevelopment with lasting consequences.

The same group of Mayo Clinic researchers looked at the incidence of attention-deficit/hyperactivity disorder (ADHD) in children born from 1976 to 1982 in Rochester, Minnesota.  Among the 5,357 children analyzed, 341 ADHD cases were identified.  For children with no exposure anesthesia before the age of 2 years, the cumulative incidence of ADHD at age 19 years was 7.3%  Exposure to multiple procedures requiring general anesthesia was associated with an increased cumulative incidence of ADHD of 17.9%. The authors concluded that children repeatedly exposed to procedures requiring general anesthesia before age 2 years were at increased risk for the later development of ADHD.

Anesthesia scientists decided to study this problem in mice.  In March 2013, researchers at Harvard and other hospitals exposed 6- and 60-day-old mice to various anesthetic regimens. The authors then determined the effects of the anesthesia on learning and memory function, and on the levels of proinflammatory chemicals such as cytokine interleukin-6 in the animals’ brains. The authors showed that anesthesia with 3% sevoflurane for 2 hours daily for 3 days induced cognitive impairment (i.e., unusually poor mental function) and neuroinflammation (i.e., elevated levels of brain inflammatory chemicals such as interleukin-6) in young but not in adult mice. Anesthesia with 3% sevoflurane for 2 hours daily for 1 day or 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation. Treatment with the non-steroidal anti-inflammatory (NSAID) drug ketorolac caused improvement in the sevoflurane-induced cognitive impairment. The authors concluded that anesthesia-induced cognitive impairment may depend on age, the specific anesthetic agent, and the number of exposures. The findings also suggested that cellular inflammation in the brain may be the basis for the problem of anesthesia-induced cognitive impairment, and that potential prevention and treatment strategies with NSAIDs may ultimately lead to safer anesthesia care and better postoperative outcomes for children.

The same Harvard research group assessed the effects of sevoflurane on brain function in pregnant mice, and on learning and memory in fetal and offspring mice. Pregnant mice were treated with 2.5% sevoflurane for 2 hours and 4.1% sevoflurane for 6 hours. Brain tissues of both fetal and offspring mice were harvested and immunohistochemistry tests were done to assess interleukin-6 and other brain inflammatory levels.  Learning and memory functions in the offspring mice was determined by using a water maze. The results showed that sevoflurane anesthesia in pregnant mice induced brain inflammation, evidenced by increased interleukin-6 levels in fetal and offspring mice.  Sevoflurane anesthesia also impaired learning and memory in offspring mice. The authors concluded that sevoflurane may induce detrimental effects in fetal and offspring mice, and that these findings should promote more studies to determine the neurotoxicity of anesthesia in the developing brain.

What does all this mean to you if your children need anesthesia and surgery?  Although further studies and further data will be forthcoming, the current information suggests that:  (1) if your child has one exposure to anesthesia, this may constitute no increased risk to their developing brain, and (2) repeated surgery and anesthetic exposure to sevoflurane may be harmful to the development of the brain of children under 2 years of age.  It would seem a wise choice to delay surgery until your child is older if at all possible.

What does all this mean to anesthesiologists?  We’ll be watching the literature for new publications on this topic, but in the meantime it seems prudent to avoid exposing newborns and young children to repeated anesthetics with sevoflurane.  Currently, sevoflurane is the anesthetic of choice when we put children to sleep with a mask induction, because sevoflurane smells pleasant and it works fast.  Children become unconscious within a minute or two.  After a child is asleep, it may be advisable to switch from sevoflurane to the alternative gas anesthetic desflurane, since the Harvard study on mice showed anesthesia with 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation.  A second alternative is to switch from sevoflurane to intravenous anesthetics alone, e.g., to utilize propofol and remifentanil infusions instead of sevoflurane.

The concept of pediatric anesthesia harming the developing brain was reviewed in the lay press in Time magazine in 2009.  The four articles I summarized above represent the most recent and detailed advances on this topic.  Stay tuned.  The issue of anesthetic risk to the developing brain will be closely scrutinized for years to come.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE TOP TEN MOST USEFUL ADVANCES AND THE FIVE MOST OVERRATED ADVANCES AFFECTING ANESTHESIA IN THE PAST 25 YEARS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

In 1986 the American Society of Anesthesiologists adopted pulse oximetry and end-tidal CO2 monitoring as standards of care.  These two monitors were our specialty’s major advances in the 1980’s, and made anesthesia safer for everyone. What are the most significant advances affecting anesthesia since that time? As a clinician in private practice, I’ve personally administered over 20,000 anesthetics in the past quarter century.  Based on my experience and observations, I’ve assembled my list of the Top Ten Most Useful Advances Affecting Anesthesia from 1987-2012.  I’ve also assembled my list of the Five Most Overrated Advances Affecting Anesthesia from 1987-2012.

THE TOP TEN MOST USEFUL ADVANCES AFFFECTING ANESTHESIA IN THE PAST 25 YEARS (1987- 2012):

#10. The cell phone (replacing the beeper).  Cell phones changed the world, and they changed anesthesia practice as well.  Before the cell phone, you’d get paged while driving home and have to search to find a payphone.  Cell phones allow you to be in constant contact with all the nurses and doctors involved in your patient’s care at all times.  No one should carry a beeper anymore.

#9. Ultrasound use in the operating room.  The ultrasound machine aids peripheral nerve blockade and catheter placement, and intravascular catheterization.  Nerve block procedures used to resemble “voodoo medicine,” as physicians stuck sharp needles into tissues in search of paresthesias and nerve stimulation.  Now we can see what we’re doing.

#8.  The video laryngoscope.  Surgeons have been using video cameras for decades.  We finally caught up.  Although there’s no need for a video laryngoscope on routine cases, the device is an invaluable tool for seeing around corners during difficult intubations.

#7.  Rocuronium.  Anesthesiologists long coveted a replacement for the side-effect-ridden depolarizing muscle relaxant succinylcholine.  Rocuronium is not as rapid in onset as succinylcholine, but it is the fastest non-depolarizer in our pharmaceutical drawer.  If you survey charts of private practice anesthesiologists, you’ll see rocuronium used 10:1 over any other relaxant.

#6.  Zofran.  The introduction of ondansetron and the 5-HT3 receptor blocking drugs gave anesthesiologists our first effective therapy to combat post-operative nausea and vomiting.

#5. The ASA Difficult Airway Algorithm.  Anesthesia and critical care medicine revolve around the mantra of “Airway-Breathing-Circulation.”  When the ASA published the Difficult Airway Algorithm in Anesthesiology in 1991, they validated a systematic approach to airway management and to the rescue of failed airway situations.  It’s an algorithm that we’ve all committed to memory, and anesthesia practice is safer as a result.

#4.  The internet.  The internet changed the world, and the Internet changed anesthesia practice as well.  With Internet access, clinicians are connected to all known published medical knowledge at all times.  Doctors have terrific memories, but no one remembers everything.  Now you can research any medical topic in seconds. Some academics opine that the use of electronic devices in the operating room is dangerous, akin to texting while driving.  Monitoring an anesthetized patient is significantly different to driving a car.  Much of O.R. monitoring is auditory.  We listen to the oximeter beep constantly, which confirms that our patient is well oxygenated.  A cacophony of alarms sound whenever vital signs vary from norms.  An anesthesia professional should never let any electronic device distract him or her from vigilant monitoring of the patient.

#3.  Sevoflurane.  Sevo is the volatile anesthetic of choice in community private practice, and is a remarkable improvement over its predecessors.  Sevoflurane is as insoluble as nitrous oxide, and its effect dissipates significantly faster than isoflurane.  Sevo has a pleasant smell, and it replaced halothane for mask inductions.

#2.  Propofol.  Propofol is wonderful hypnotic for induction and maintenance.   It produces a much faster wake-up than thiopental, and causes no nausea.  Propofol makes us all look good when recovery rooms are full of wide-awake, happy patients.

#1.  The Laryngeal Mask Airway.  What an advance the LMA was.  We used to insert endotracheal tubes for almost every general anesthesia case.  Endotracheal tubes necessitated laryngoscopy, muscle relaxation, and reversal of muscle relaxation.  LMA’s are now used for most extremity surgeries, many head and neck surgeries, and most ambulatory anesthetics.

THE FIVE MOST OVERRATED ADVANCES AFFECTING ANESTHESIA IN THE PAST 25 YEARS (1987-2012):

#5.   Office-based general anesthesia.  With the advent of propofol, every surgeon with a spare closet in their office became interested in doing surgery in that closet, and they want you to give general anesthesia there.  You can refuse, but if there is money to be earned, chances are some anesthesia colleague will step forward with their service.  Keeping office general anesthesia safe and at the standard of care takes careful planning regarding equipment, monitors, and emergency resuscitation protocols.  Another disadvantage is the lateral spread of staffing required when an anesthesia group is forced to cover solitary cases in multiple surgical offices at 7:30 a.m.  A high percentage of these remote sites will have no surgery after 11 a.m.

#4.  Remifentanil.  Remi was touted as the ultra-short-acting narcotic that paralleled the ultra-short hypnotic propofol.  The problem is that anesthesiologists want hypnotics to wear off fast, but are less interested in narcotics that wear off and don’t provide post-operative analgesia.  I see remi as a solid option for neuroanesthesia, but its usefulness in routine anesthetic cases is minimal.

#3.  Desflurane.  Desflurane suffers from not being as versatile a drug as sevoflurane.  It’s useless for mask inductions, causes airway irritation in spontaneously breathing patients, and causes tachycardia in high doses.  Stick with sevo.

#2.  The BIS Monitor.  Data never confirmed the value of this device to anesthesiologists, and it never gained popularity as a standard for avoiding awareness during surgery.

#1.  The electronic medical record.  Every facet of American society uses computers to manage information, so it was inevitable that medicine would follow. Federal law is mandating the adoption of EMRs.  But while you are clicking and clicking through hundreds of Epic EMR screens at Stanford just to finish one case, anesthesiologists in surgery centers just miles away are still documenting their medical records in minimal time by filling out 2 or 3 sheets of paper per case. Today’s EMRs are primitive renditions of what will follow. I’ve heard the price tag for the current EMR at our medical center approached $500 million.  How long will it take to recoup that magnitude of investment?  I know the EMR has never assisted me in caring for a patient’s Airway, Breathing, or Circulation in an acute care setting.  Managing difficulties with the EMR can easily distract from clinical care.  Is there any data that demonstrates an EMR’s value to anesthesiologists or perioperative physicians?

Your Top Ten List and Overrated Five List will differ from mine.  Feel free to communicate your opinions to me at rjnov@yahoo.com.

As we read this, hundreds of companies and individuals are working on new products.  Future Top Ten lists will boast a fresh generation of inventions to aid us in taking better care of our patients.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

FACTS FOR LAYPEOPLE: DRUGS ANESTHESIOLOGISTS ADMINISTER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

INTRAVENOUS MEDICATIONS:

1.  PROPOFOL.  Propofol is an intravenous sedative-hypnotic, and the most commonly used general anesthetic medication in the United States.  Because propofol can cause the patient to stop breathing, its use is restricted to physicians who are expert in the management of airway and breathing.  Propofol has ultra-fast onset and offset times, usually causing sleep within seconds of injection.  Because the drug is short-acting, it is often administered by a continuous intravenous drip or infusion When propofol is administered without other anesthetic drugs, the patient usually awakens within minutes of discontinuing the drug.  Propofol does not relieve pain, and most painful surgeries require additional medication(s).

2.  MIDAZOLAM (Brand name VERSED).  Midazolam is a short-acting anxiety-reducing drug of the Valium or benzodiazepine class.  Midazolam is commonly injected as the first drug to begin an anesthetic, because it gives patients a sense of calm, and often gives them amnesia for a period of minutes afterward.  Midazolam is a common drug given during sedation for colonoscopy procedures, because most patients have no awareness during the procedure, even though they are usually awake.

3.  NARCOTICS.  Most surgical procedures cause pain, and narcotic drugs are intravenous pain-relievers.  Commonly used narcotics are morphine, meperidine (brand name Demerol), fentanyl, and remifentanil.  Narcotics have the desired effect of dulling the brain’s perception of pain.  Narcotics cause sleepiness in higher doses, and have the common side-effect of nausea in some patients.  Morphine and Demerol are slower-onset, longer-lasting narcotics, while fentanyl and remifentanil are faster-onset, shorter-acting narcotics.

4.  PARALYZING DRUGS.  Some surgeries and anesthetics require the patient to be paralyzed, i.e. muscles must be rendered flaccid so that the patient can not move.  It is imperative that the patient be given adequate intravenous or inhaled anesthetic drugs first, so that the patient has no awareness that they can not move.  Commone paralyzing drugs are vecuronium, rocuronium, pancuronium, and succinylcholine.  Because paralyzing drugs cause the patient to stop breathing, their use is restricted to physicians who are expert in the management of airway and breathing.  Paralyzing drugs are used by anesthesia providers prior to the placement a breathing tube (endotracheal tube) into the patient’s windpipe (trachea).  Paralyzing drugs are used during certain surgical procedures in which the surgeon requires the patient’s muscles to be relaxed, for example, abdominal surgeries, some throat surgeries, and some surgeries inside the chest.

INHALED ANESTHETICS:

1.  POTENT INHALED ANESTHETICS.  Potent inhaled anesthetics include sevoflurane, isoflurane, and desflurane.  These drugs are liquids, administered via anesthesia vaporizers than turn them into inhaled gases.  They are usually administered in low concentrations (1% to 4% for sevoflurane, 1% to 2% for isoflurane, and 3% to 6% for desflurane), because sustained higher concentrations fo these drugs cause life-threatening depression of heart and breathing functions.  Because potent inhaled anesthetics can cause patients to stop breathing, their use is restricted to physicians who are expert in the management of airway and breathing.

2.  NITROUS OXIDE.  Nitrous oxide is a relatively weak inhaled anesthetic drug, usually administered in concentrations of 50% to 70%.  At these doses, nitrous oxide does cause significant sleepiness, but will not render the patient unconscious.  Nitrous oxide has the advantage of being a quick-onset, quick-offset drug, and it is non-expensive.  Because every patient must inhale a minimum of 21% oxygen, the maximum dose of nitrous oxide is 100 – 21, or 79%.  As a measure of safety, oxygen is usually administered at concentration of at least 30%, which is the reason why administered nitrous oxide concentrations rarely exceed 70%.

LOCAL ANESTHETICS:

1.  LIDOCAINE.  Lidocaine is injected into tissue to block pain at that site.  The onset of local anesthesia occurs within seconds, and the duration is short, usually less than one hour.  Lidocaine can be injected into the back during either a spinal anesthetic or an epidural anesthetic, to numb part of the patient’s body without causing unconsciousness.  Lidocaine can also be injected near major nerves, in what is called a nerve block.  Nerve blocks include injections to numb one arm, one leg, the hand, or the foot.

2. PROCAINE (Brand name Novocaine).  Although the term Novocaine is commonly heard, use of this drug has been largely abandoned, replaced by lidocaine instead.

3. BUPIVICAINE (Brand name Marcaine).  Bupivicaine is injected into tissue to block pain at that site.  The onset of local anesthesia occurs within minutes, and the duration is longer than lidocaine, usually from 2 – 6 hours, depending on the location of the injection.  Bupivicaine can be injected into the back during either a spinal anesthetic or an epidural anesthetic, to numb part of the patient’s body without causing unconsciousness.  Bupivicaine can also be injected near major nerves, in what is called a nerve block.  Nerve blocks include injections to numb one arm, one leg, the hand, or the foot.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited