ROBOT ANESTHESIA II

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Are anesthesiologists on the verge of being replaced by a new robot? In a word, “No.” The new device being discussed is the iControl-RP anesthesia robot.

THE iCONTROL-RP ANESTHESIA ROBOT

On May 15, 2015, the Washington Post published a story titled, “We Are Convinced the Machine Can Do Better Than Human Anesthesiologists.”

In recent years there have been significant advances in the automated delivery of the intravenous anesthetic drugs propofol and remifentanil. (Orliaguet GA, Feasibility of closed-loop titration of propofol and remifentanil guided by the bispectral monitor in pediatric and adolescent patients: a prospective randomized study, Anesthesiology 2015 Apr;122(4):759-67). Propofol is an ultra-short-acting hypnotic drug that causes sleep. Remifentanil is an ultra-short-acting narcotic that relieves pain. Administered together, these drugs induce what is referred to as Total Intravenous Anesthesia, or TIVA. Total Intravenous Anesthesia is a technique anesthesiologists use when they choose to avoid using inhaled gases such as sevoflurane and nitrous oxide. Anesthesiologists administer TIVA by adjusting the flow rates on two separate infusion pumps, one infusion pump containing each drug.

A closed-loop system is a machine that infuses these drugs automatically. These systems include several essential items: The first is a processed electroencephalogram (EEG) such as a bi-spectral monitor (BIS monitor) attached to the patient’s forehead which records a neurologic measure of how asleep the patient is. The BIS monitor calculates a score between 0 and 100 for the patient’s level of unconsciousness, with a score of 100 corresponding to wide awake and 0 corresponding to a flat EEG. A score of 40 – 60 is considered an optimal amount of anesthesia depth. The second and third essential items of a closed-loop automated system are two automated infusion pumps containing propofol and remifentanil. A computer controls the infusion rate of a higher or lower amount of these drugs, depending on whether the measured BIS score is higher or lower than the 40- 60 range.

Researchers in Canada have expanded this technology into a device they call the iControl-RP, which is in clinical trials at the University of British Columbia. The iControl-RP is a closed-loop system which makes its own decisions. The initials RP stand for the two drugs being titrated: remifentanil and propofol. In addition to monitoring the patient’s EEG level of consciousness (via a BIS monitor device called NeuroSENSE), this new device monitors traditional vital signs such as blood oxygen levels, heart rate, respiratory rate, and blood pressure, to determine how much anesthesia to deliver.

Per published information on their research protocol, the iControl-RP allows either remifentanil or propofol to be operated in any of three modes: (1) closed-loop control based on feedback from the EEG as measured by the NeuroSENSE; (2) target-controlled infusion (TCI), based on previously-described pharmacokinetic and pharmacodynamic models; and (3) conventional manual infusion, which requires a weight-based dose setting. (Reference: Closed-loop Control of Anesthesia: Controlled Delivery of Remifentanil and Propofol Dates, Status, Enrollment Verified by: Fraser Health, August 2014, First Received: January 15, 2013, Last Updated: March 5, 2015, Phase: N/A, Start Date: February 2013, Overall Status: Recruiting, Estimated Enrollment: 150).

In Phase 1 of the iControl-RP testing involving 50 study subjects, propofol will be administered in closed-loop mode and a remifentanil infusion will be administered based on a target-controlled infusion. In phase 2 involving 100 study subjects, both propofol and remifentanil will be administered in closed-loop mode. The investigators aim to demonstrate that closed-loop control of anesthesia and analgesia based on EEG feedback is clinically feasible.

In both phases, an anesthesiologist will monitor the patient as per routine practice and have the ability to modify the anesthetic or analgesic drugs being administered. That is, he or she will be able to adjust the target depth of hypnosis, adjust the target effect site concentration for remifentanil, immediately switch to manual control of either infusion, administer a bolus dose, or immediately stop the infusion of either drug. iControl-RP is connected to the NeuroSENSE EEG monitor, the two infusion pumps for separately controlled propofol and remifentanil administration, and the operating room patient vital signs monitor. A user interface allows the anesthesiologist to set the target EEG depth level, switch between modes of operation (manual, target-controlled infusion, or closed-loop), and set manual infusion rates or target effect-site concentrations for either drug as required.

Per the article in the Washington Post. (Todd C. Frankel, Washington Post, May 15, 2015), one of the machine’s co-developers Mark Ansermino, MD said, “We are convinced the machine can do better than human anesthesiologists.” The iControl-RP has been used to induce deep sedation in adults and children undergoing general surgery. The device had been used on 250 patients so far.

Why is this robotic device only a small step toward replacing anesthesiologists?

A critical realization is that anesthetizing patients requires far more skill than merely titrating two drug levels. Every patient requires (1) preoperative assessment of all medical problems from the history, physical exam, and laboratory evaluation of each individual patient, so that the anesthesiologist can plan and prescribe the appropriate anesthesia type; (2) placement of an intravenous line through which the TIVA drugs may be administered; (3) mask ventilation of an unconscious patient (in most cases), followed by placement of an airway tube to control the delivery of oxygen and ventilation in and out of the patient’s lungs; (4) observation of all vital monitors during surgery, with the aim of directing the diagnosis and treatment of any complication that occurs as a result of anesthesia or the surgical procedure; (5) removal of the airway tube at the conclusion of most surgeries, and (6) the diagnosis and treatment of any complication in the newly awake patient following the anesthetic.

In the future, closed-loop titration of drugs may lessen an anesthesiologist’s workload and free him or her for other activities. In the distant future, closed-loop titration of drugs may free a solitary anesthesiologist to initiate and monitor multiple anesthetics simultaneously from a control booth via multiple video screens and interface displays. But the handling of all tasks (1) – (6) by an automated robotic device is still the stuff of science fiction. The Washington Post article said an early role for the machine could be in war zones or remote areas where an anesthesiologist is unavailable. One could conjecture that a closed-loop anesthesia system may be used to facilitate surgery in outer space some day as well.

In either case, an anesthesiologist or some other highly-trained medical professional will still be required on site to achieve tasks (1) – (6).

The iControl-RP has not been approved by the U.S. Food and Drug Administration.

The iControl-RP team has struggled to find a corporate backer for its project. Dr. Ansermino, the anesthesiologist inventor in Vancouver, told the Washington Post, “Most big companies view this as too risky,” but he believed a device like this was inevitable. “I think eventually this will happen,” Ansermino told the Washington Post, “whether we like it or not.”

That may be, but I suspect companies are risk averse regarding the iControl-RP because investment is guided by analysts and physicians who must consider the practical applications and risks of any new medical device. The issues of leaving (1) – (6) up to a robotic device are impractical at best, and dangerous to the patient at worse.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

WILL YOU HAVE A BREATHING TUBE DOWN YOUR THROAT DURING YOUR SURGERY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

One of the most common questions I hear from patients immediately prior to their surgical anesthetic is, “Will I have a breathing tube down my throat during anesthesia?”

The answer is: “It depends.”

placing anesthesia breathing tube

Let’s answer this question for some common surgeries:

KNEE ARTHROSCOPY: Common knee arthroscopy procedures are meniscectomies and anterior cruciate ligament reconstructions. Anesthetic options include general anesthesia, regional anesthesia, or local anesthesia. Most knee arthroscopies are performed under a general anesthetic, in which the anesthesiologist injects propofol into your intravenous line to make you fall asleep. After you’re asleep, the most common airway tube used for knee arthroscopy is a laryngeal mask airway (LMA). The LMA in inserted into your mouth, behind your tongue and past your uvula, to a depth just superior to your voice box. The majority of patients will breath on their own during surgery. The LMA keeps you from snoring or having significant obstruction of your airway passages. In select patients, including very obese patients, an endotracheal tube (ETT) will be inserted instead of an LMA. The ETT requires the anesthesiologist to look directly into your voice box and insert the tube through and past your vocal cords. With either the LMA or the ETT, you’ll be asleep and will have no awareness of the airway tube except for a sore throat after surgery. A lesser number of knee arthroscopies are performed under a regional anesthetic which does not require a breathing tube. The regional anesthetic options include a blockade of the femoral nerve located in your groin or numbing the entire lower half of your body with a spinal or epidural anesthetic injected into your low back. A small number of knee arthroscopies are done with local anesthesia injected into your knee joint, in combination with intravenous sedative medications into your IV. Why are most knee arthroscopies performed with general anesthesia, which typically requires an airway tube? Because in an anesthesiologist’s hands, an airway tube is a common intervention with an acceptable risk profile. A light general anesthetic is a simpler anesthetic than a femoral nerve block, a spinal, or an epidural anesthetic.

Laryngeal Mask Airway (LMA)

Endotracheal Tube (ETT)

NOSE AND THROAT SURGERIES SUCH AS TONSILLECTOMY AND RHINOPLASTY: Almost all nose and throat surgeries require an airway tube, so anesthetic gases and oxygen can be ventilated in and out through your windpipe safely during the time the surgeon is working on these breathing passages.

ABDOMINAL SURGERIES, INCLUDING LAPAROSCOPY: Almost all intra-abdominal surgeries require an airway tube to guarantee adequate ventilation of anesthetic gases and oxygen in and out of your lungs while the surgeon works inside your abdomen.

CHEST SURGERIES AND OPEN HEART SURGERIES: Almost all intra-thoracic surgeries require an airway tube to guarantee adequate ventilation of anesthetic gases and oxygen in and out of your lungs while the surgeon works inside your chest.

TOTAL KNEE REPLACEMENT AND TOTAL HIP REPLACEMENT: The majority of total knee and hip replacement surgeries are performed using spinal, epidural and/or nerve block anesthesia anesthesia to block pain to the lower half of the body. The anesthesiologist often chooses to supplement the regional anesthesia with intravenous sedation, or supplement with a general anesthetic which requires an airway tube. Why add sedation or general anesthesia to the regional block anesthesia? It’s simple: most patients have zero interest in being awake while they listen to the surgeon saw through their knee joint or hammer their new total hip into place.

CATARACT SURGERY: Cataract surgery is usually performed using numbing local anesthetic eye drop medications. Patients are wake or mildly sedated, and no airway tube is used.

COLONOSCOPY OR STOMACH ENDOSCOPY: These procedures are performed under intravenous sedation and almost never require an airway tube.

HAND OR FOOT SURGERIES: The anesthesiologist will choose the simplest anesthetic that suffices. Sometimes the choice is local anesthesia, with or without intravenous sedation. Sometimes the choice will be a regional nerve block to numb the extremity, with or without intravenous sedation. Many times the choice will be a general anesthetic, often with an airway tube. An LMA is used more frequently than an ETT.

CESAREAN SECTION: The preferred anesthetic is a spinal or epidural block which leaves the mother awake and alert to bond with her newborn immediately after childbirth. If the Cesarean section is an urgent emergency performed because of maternal bleeding or fetal distress, and there is inadequate time to insert a spinal or epidural local anesthetic into the mother’s lower back, a general anesthetic will be performed. An ETT is always used.

PEDIATRIC SURGERIES: Tonsillectomies are a common procedure and require a breathing tube as described above. Placement of pressure ventilation tubes into a child’s ears requires general anesthetic gases to be delivered via facemask only, and no airway tube is required. Almost all pediatric surgeries require general anesthesia. Infants, toddlers, and children need to be unconscious during surgery, for emotional reasons, because their parents are not present. The majority of pediatric general anesthetics require an airway tube.

CONCLUSIONS: The safe placement of airway tubes for multiple of types of surgeries, in patients varying from newborns to 100-year-olds, is one of the reasons physician anesthesiologists train for many years.

Prior to surgery, some patients are alarmed at the notion of such a breathing tube invading their body. They fear they’ll be awake during the placement of the breathing tube, or that they’ll choke on the breathing tube.

Be reassured that almost every breathing tube is placed after your unconsciousness is assured, and breathing tubes are removed prior to your return to consciousness. A sore throat afterward is common, but be reassured this is a minor complaint that will clear in a few days.

If you have any questions, be sure to discuss them with your own physician anesthesiologist when you meet him or her prior to your surgical procedure.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

THE TOP 10 MOST STRESSFUL JOBS IN AMERICA versus THE TOP 10 MOST STRESSFUL SITUATIONS IN ANESTHESIOLOGY PRACTICE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Anesthesia has been described as 99% boredom and 1% panic. Is anesthesiology one of America’s most stressful jobs? Not according to prominent Internet media sources.

Careercast.com listed the Top 10 Most Stressful Jobs in America in 2015, and those jobs were:

  1. Firefighter
  2. Enlisted Military Personnel
  3. Military General
  4. Airline Pilot
  5. Police Officer
  6. Actor
  7. Broadcaster
  8. Event Coordinator
  9. Photo Journalist
  10. Newspaper Reporter.

ABCnews.go.com listed the Top 10 Most Stressful Jobs in America in 2014, and those jobs were:

  1. Working Parents
  2. Deployed Military Personnel
  3. Police Officer
  4. Teacher
  5. Medical Professionals (The article highlighted surgeons for their need to constantly focus, psychiatrists for their need to intently listen, dentists for being on their feet all day, and interns for their lack of sleep).
  6. Emergency Personnel (The article highlighted firefighters and emergency medical technicians).
  7. Pilots and Air Traffic Controllers
  8. Newspaper Reporters
  9. Corporate Executive
  10. Miner

Salary.com listed the Top 10 Most Stressful Jobs in America, and those jobs were:

  1. Military Personnel
  2. Surgeon
  3. Firefighter
  4. Commercial Airline Pilot
  5. Police Officer
  6. Registered Nurse in an Emergency Room
  7. Emergency Dispatch Personnel
  8. Newspaper Reporter
  9. Social Worker
  10. Teacher

“Anesthesiologist” is absent from every list. This is a public relations failure for our specialty. The challenges and stressors anesthesia professionals face every day are seemingly unknown to the media and the populace.

I’ll admit there are pressures involved with being a taxi driver, a news reporter, a photo journalist, an events coordinator, or a public relations executive. Being a working parent is a challenge, although in Northern California where I live millions of adults are working parents because both husbands and wives have to work to pay hefty Bay Area living expenses. But none of these jobs involve the risk and possibility of their clients dying each and every day.

Every surgical patient requires the utmost in vigilance from their physician anesthesiologist in order to prevent life-threatening disturbances of Airway-Breathing-Circulation. The public perceives surgeons as holding patients’ life in their skilled hands, and they are correct. But most surgeons spend the majority of their work time in clinics and on hospital wards attending to pre-operative and post-operative patients. On the 1 – 3 days a week most surgeons spend operating, they are joined in the operating room by anesthesiologists who attend to surgical patients’ lives every day.

Surgeons in trauma, cardiac, neurologic, abdominal, chest, vascular, pediatric, or microsurgery specialties have intense pressure during their hours in the operating room, but each time they don their sterile gloves and hold a scalpel, an anesthesiologist is there working with them.

What follows is my own personal “Top 10 Most Stressful” list, a list of the Most Stressful Anesthesia Situations based on my thirty years of anesthesia practice. Anesthesia practice has been described as 99% boredom and 1% panic, (http://theanesthesiaconsultant.com/is-anesthesia-99-boredom-and-1-panic) and the 1% panic times can be frightening. Read through this list. I believe it will convince you that the job of an anesthesiologist deserves to be on everyone’s Top 10 Most Stressful Jobs list.

TOP 10 MOST STRESSFUL SITUATIONS IN AN ANESTHESIOLOGIST’S JOB

  1. Emergency general anesthesia in a morbidly obese patient. Picture a 350-pound man with a bellyful of beer and pizza, who needs an emergency general anesthetic. When a patient with a Body Mass Index (BMI) > 40 needs to be put to sleep urgently, it’s dangerous. Oxygen reserves are low in a morbidly obese patient, and if the anesthesiologist is unable to place an endotracheal tube safely, there’s a genuine risk of hypoxic brain damage or cardiac arrest within minutes.
  1. Liver transplantation. Picture a patient ill with cirrhosis and end-stage-liver-failure who needs a complex 10 to 20-hour-long abdominal surgery, a surgery whichfrequently demands massive transfusion equal to one blood volume (5 liters) or more. These cases are maximally stressful in both intensity and duration.
  1. An emergency Cesarean section under general anesthesia in the wee hours of the morning. Picture a 3 a.m. emergency general anesthetic on a pregnant woman whose fetus is having cardiac decelerations (a risky slow heart rate pattern). The anesthesiologist needs to get the woman to sleep within minutes so the baby can be delivered by the obstetrician. Pregnant women have full stomachs and can have difficult airway because of weight changes and body habitus changes of term pregnancy. If the anesthesiologist mismanages the airway during emergency induction of anesthesia, both the mother and the child’s life are in danger from lack of oxygen within minutes.
  1. Acute epiglottitis in a child. Picture an 11-month-old boy crowing for every strained breath because the infection of acute epiglottis has caused swelling of his upper airway passage. These children arrive at the Emergency Room lethargic, gasping for breath, and turning blue. Safe anesthetic management requires urgently anesthetizing the child with inhaled sevoflurane, inserting an intravenous line, and placing a tracheal breathing tube before the child’s airway shuts down. A head and neck surgeon must be present to perform an emergency tracheostomy should the airway management by the anesthesiologist fails.
  1. Any emergency surgery on a newborn baby. Picture a one-pound newborn premature infant with a congenital defect that is a threat to his or her life. This defect may be a diaphragmatic hernia (the child’s intestines are herniated into the chest), an omphalocele (the child’s intestines are protruding from the anterior abdominal wall, spina bifida (a sac connected to the child’s spinal cord canal is open the air through a defect in the back), or a severe congenital heart disorder such as a transposition of the great vessels (the major blood vessels: the aorta, the vena cavas and the pulmonary artery, are attached to the heart in the wrong locations). Anesthetizing a patient this small for surgeries this big requires the utmost in skill and nerve.
  1. Acute anaphylaxis. Picture a patient’s blood pressure suddenly dropping to near zero and their airway passages constricting in a severe acute asthmatic attack. Immediate diagnosis is paramount, because intravenous epinephrine therapy will reverse most anaphylactic insults, and no other treatment is likely to be effective.
  1. Malignant Hyperthermia. Picture an emergency where an anesthetized patient’s temperature unexpectedly rises to over 104 degrees Fahrenheit due to hypermetabolic acidotic chemical changes in the patient’s skeletal muscles. The disease requires rapid diagnosis and treatment with the antidote dantrolene, as well as acute medical measures to decrease temperature, acidosis, and high blood potassium levels which can otherwise be fatal.
  1. An intraoperative myocardial infarction (heart attack). Picture an anesthetized 60-year-old patient who develops a sudden drop in their blood pressure due to failed pumping of their heart. This can occur because of an occluded coronary artery or a severe abnormal rhythm of their heart. Otherwise known as cardiogenic shock, this syndrome can lead to cardiac arrest unless the heart is supported with the precise correct amount of medications to increase the pumping function or improve the arrhythmia.
  1. Any massive trauma patient with injuries both to their airway and to their major vessels. Picture a motorcycle accident victim with a bloodied, smashed-in face and a blood pressure of near zero due to hemorrhage. The placement of an airway tube can be extremely difficult because of the altered anatomy of the head and neck, and the management of the circulation is urgent because of the empty heart and great vessels secondary to acute bleeding.
  1. The syndrome of “can’t intubate, can’t ventilate.” You’re the anesthesiologist. Picture any patient to whom you’ve just induced anesthesia, and your attempt to insert the tracheal breathing tube is impossible due to the patient’s anatomy. Next you attempt to ventilate oxygen into the patient’s lungs via a mask and bag, and you discover that you are unable to ventilate any adequate amount of oxygen. The beep-beep-beep of the oxygen saturation monitor is registering progressively lower notes, and the oximeter alarms as the patient’s oxygen saturation drops below 90%. If repeated attempts at intubation and ventilation fail and the patient’s oxygen saturation drops below 85-90% and remains low, the patient will incur hypoxic brain damage within 3 – 5 minutes. This situation is the worst-case scenario that every anesthesia professional must avoid if possible. If it does occur, the anesthesia professional or a surgical colleague must be ready and prepared to insert a surgical airway (cricothyroidotomy or tracheostomy) into the neck before enough time passes to cause irreversible brain damage.

So goes my list of Top 10 List of Stressful Anesthesia situations. If you’re an anesthesia professional, what other cases would you include on the list? Which cases would you delete? How many of these situations have you personally experienced?

This Top 10 Stressful Situations in Anesthesiology list should be enough to convince you that “Anesthesiologist” belongs on everyone’s Most Stressful Jobs list.

I would reassemble the Top 10 List of Most Stressful Jobs to be as follows:

The Anesthesia Consultant’s List of Top 10 Most Stressful Jobs

  1. Enlisted military personnel
  2. Military general in wartime
  3. Police Officer
  4. Firefighter
  5. Anesthesiologist
  6. Surgeon
  7. Emergency Room Physician
  8. Airline Pilot
  9. Air Traffic Controller
  10. Corporate Chief Executive Officer

HOW DO YOU START A PEDIATRIC ANESTHETIC WITHOUT A SECOND ANESTHESIOLOGIST?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case: In your first week in community practice post-residency and fellowship, you’re scheduled to anesthetize a 4-year-old for a tonsillectomy. You’ll start the anesthetic without an attending or a second anesthesiologist. How do you start a pediatric anesthetic alone?

 

Discussion: During residency it’s standard to initiate pediatric cases with an attending at your right hand to mentor and assist you through the induction of anesthesia. The second pair of hands is critical—one of you manages the airway for the inhalation induction, and the second anesthesiologist starts the IV. In community practice you’ll have to manage all this yourself.

A significant percentage of pediatric anesthetics are performed in regional hospitals and surgery centers rather than in pediatric tertiary hospitals. How does the community practice of pediatric anesthesia differ from pediatric anesthesia in residency?

In community practice you’ll likely telephone the parents the night prior to surgery to discuss the anesthetic. It’s uncommon for a 4-year-old and his family to visit any pre-anesthesia clinic. You’ll take a history over the phone from the parents, explain the basics of anesthetic care, and answer any questions they have.

On the morning of surgery you’ll meet the parents and the child. It’s likely you’ll prescribe an oral midazolam premedication. You’ll set up your operating room with appropriate sized pediatric equipment, heeding the M-A-I-D-S mnemonic for Machine and Monitors-Airway-IV-Drugs-Suction.

What about a request from the mother and/or father to accompany the child into the operating room? This author advises against bringing parents into the O.R. Instead premedicate the child to minimize the emotional trauma of separation from the parent(s), and explain that the duration of time from when they hand you their child to when the gas mask is applied will only be a few minutes.

It’s common to induce anesthesia with the child in a sitting position. The one most important monitor you can place prior to induction is the pulse oximeter. Once unconsciousness is attained, the child is laid supine and a pretracheal stethoscope, the ECG leads, and the blood pressure cuff are applied. If you’re not using a pretracheal stethoscope during mask inductions, let me recommend it to you. No other monitor gives you immediate information on the patency of the airway like the stethoscope does. You can remedy partial or total airway obstruction more promptly than if you wait for oxygen desaturation or end-tidal CO2 changes.

Most children have an easy airway and require no more than occasional positive airway pressure via the mask to keep spontaneous ventilation open. Young children scheduled for tonsillectomy sometimes carry the diagnosis of obstructive sleep apnea (OSA) based on a clinical history of snoring, noisy breathing, or daytime somnolence. It’s uncommon for these patients to have a formal sleep study to document OSA. OSA children may have more challenging airways and have an increased incidence of partial airway obstruction during inhalation induction.

In residency I was taught to supplement the potent volatile anesthetic (halothane in decades past) with 50-70% nitrous oxide. Because the blood:gas partition coefficient of sevoflurane is 0.65, comparable to nitrous oxide’s 0.45, anesthetic induction with sevoflurane alone is nearly as fast as sevoflurane-nitrous oxide. The addition of nitrous oxide to the induction mix is unnecessary, and using an FIO2 of 1.0 affords an extra cushion of oxygen reservoir if the airway is difficult or if the airway is lost.

How will you start the IV after induction? There are several options: 1) You can ask the surgeon or a nurse to start the IV. In my experience, neither surgeons nor O.R. nurses are as skilled in starting pediatric IV’s as an anesthesiologist is, so I don’t recommend this plan; 2) You can ask the surgeon or the O.R. nurse to hold the mask and manage the airway while you start the IV. This option is safe if the airway is easy and you trust the airway skills of the other individual; 3) You can stand at your normal anesthesia position, hold the mask over the patient’s airway with your left hand, and ask the nurse to bend the patient’s left arm back toward you. The nurse tourniquets the patient’s arm at the wrist, and with your right hand you perform a one-handed IV start in the back of the patient’s left hand; 4) The option I feel most comfortable with is to fit mask straps behind the patient’s head, and secure the mask in place with the four straps after the patient is fully anesthetized (when their eyes have returned to a conjugate gaze). While the straps hold the mask in place, you listen to the patient’s breathing via the pretracheal stethoscope to assure yourself that the airway is patent. Then move to the left-hand side of the table and start the IV in the child’s left arm. The typical length of time away from the airway should be less than one minute. If the child has no obvious veins, fit the automated blood pressure cuff (in stat mode) on top of the tourniquet on the upper arm. The BP cuff is a superior tourniquet and the inflated cuff makes it easier to find a suitable vein.

Once the IV is in place, proceed with intubating the patient. In community practice the surgical duration of tonsillectomies can be very short, so the choice of muscle relaxant is important. Succinylcholine carries a black box warning for non-emergent use in children, and should not be used for elective intubation. You can: 1) administer rocuronium and later reverse the paralysis with neostigmine plus atropine; 2) administer a dose of propofol, e.g. 2 mg/kg, which blunts airway reflexes enough to allow excellent intubating conditions in most patients; or 3) you can do perform two laryngoscopies, the first to inject 1 ml of 4% lidocaine from a laryngotracheal anesthesia (LTA) kit, and another 30 seconds later to place the endotracheal tube in the now-anesthetized trachea. Some anesthesiologist/surgeon teams prefer an LMA rather than an endotracheal tube. LMA use for tonsillectomy is not routine in our practice, but one advantage is that an LMA does not require paralysis for insertion.

What if you’re working alone and your patient develops acute oxygen desaturation with airway obstruction and/or laryngospasm during inhalation induction before any IV has been placed? What do you do?

If you anesthetize enough children you will have this experience, and it can be frightening. The immediate management is to inject succinylcholine 4 mg/kg plus atropine 0.02 mg/kg intramuscularly, usually into the deltoid. Then you do your best to improve mask ventilation using an oral airway or LMA if necessary. The oxygen saturation may dip below 90% for a short period of time while you wait for the onset of the intramuscular paralysis. Once muscle relaxation is achieved, ventilation should be successful and the oxygen saturation will climb to a safe level. The trachea can then be intubated, and an IV can be started following the intubation.

If such a desaturation occurs, should you cancel the case? It depends. I’d recommend cancelling the case if: 1) the duration of the oxygen saturation was so prolonged that you are worried about hypoxic brain damage; or 2) gastric contents are present in the airway and you are concerned with possible pulmonary aspiration.

Working pediatric cases alone is rewarding as well as stressful. Nothing in my practice brings me as much joy as walking into the waiting room following a pediatric case to inform parents their child is awake and safe. The parents are relieved, and watching the mother-child reunion minutes later in the Post Anesthesia Care Unit is a heart-warming experience.

Not all anesthesiologists will choose to do pediatric cases during their post-residency career. If you will be anesthetizing children alone in community practice, it’s a good idea toward the end of your anesthesia residency or fellowship to ask your pediatric anesthesia attending keep their hands off during induction, so you can hone your skills managing both the airway and IV. That way you’ll be ready and capable of inducing a child alone after you leave training.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

AIRWAY LAWSUITS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

At weddings you’ll often hear a Bible verse that reads, “And now these three remain: faith, hope and love. But the greatest of these is love.” (1 Corinthians 13:13) A parallel verse in the bible of acute care medicine would read, “Emergencies are managed by airway, breathing, and circulation. But the greatest of these is airway.” The objective of this column is to help you avoid airway lawsuits.

 

Every health care professional learns the mantra of airway-breathing-circulation. Anesthesiologists are the undisputed champions of airway management. This column is to alert you that avoiding even one airway disaster during your career is vital.

Following my first deposition in a medical-legal case years ago, I was descending in the elevator and a man in a suit asked me what I was doing in the building that day. I told him I’d just testified as an expert witness. He asked me what my specialty was, and I told him I was an anesthesiologist. The whistled through his teeth and smirked. “Anesthesia,” he said, “Huge settlements!”

I’ve consulted on many medical malpractice cases which involved death or brain damage, and airway mishaps were the most common etiology. It’s possible for death or brain damage to occur secondary to cardiac problems (e.g. shock due to heart attacks or hypovolemia), or breathing problems (e.g. acute bronchospasm or a tension pneumothorax), but most deaths or brain damage involved airway problems. Included are failed intubations of the trachea, cannot-intubate-cannot-ventilate situations, botched tracheostomies, inadvertent or premature extubations, aspiration of gastric contents into unprotected airways, or airways lost during sedation by non-anesthesia professionals.

Google the keywords “anesthesia malpractice settlement,” and you’ll find multiple high-profile anesthesia closed claims, most of them related to airway disasters. Examples from such a Google search include:

  1. The Chicago Daily Law Bulletin featured a multimillion-dollar verdict secured by the family of a woman who died after being improperly anesthetized for hip surgery. The anesthesiologist settled prior to trial, resulting in the family being awarded a total of $11.475 million for medical negligence. The 61-year-old mother and wife was hospitalized in Chicago for elective hip replacement surgery.  Because of a prior bad experience with the insertion of a breathing tube for general anesthesia, she requested a spinal anesthetic. Her anesthesiologist had trouble inserting a needle for the spinal anesthesia, so he went ahead with general anesthesia. The anesthesiologist was then unable, after several attempts, to insert the breathing tube. He planned to breathe for her through a mask and let her wake up to breathe on her own.  A second anesthesiologist came into the room and decided to attempt the intubation. He tried but was also unsuccessful. Finally, a third anesthesiologist came into the operating room and tried inserting the breathing tube several times. He too was unsuccessful. All of the attempts at inserting the tube caused the tissues in her airway to swell shut, blocking off oxygen and causing cardiac arrest. She suffered severe brain damage and died.
  2. $20 Million Verdict Reached in Medical Malpractice Lawsuit Against Anesthesiologist. A jury returned a $20 million verdict in an anesthesia medical malpractice lawsuit filed by the family of a woman who died during surgery when bile entered her lungs. The wrongful death lawsuit alleged that the anesthetists failed to identify that the victim had risk factors for breathing fluid into her lungs, despite the information being available in her medical record. The victim was preparing to receive exploratory surgery to determine the cause of severe stomach pains when she received the anesthesia. Once anesthetized, she began breathing bile into her lungs. She then later died. The jury awarded $20 million in favor of the plaintiff.
  3. A $35 million medical malpractice settlement was matched by only one other as the largest settlement for a malpractice case in Illinois, and the most ever paid by the County of Cook for a settlement of a personal injury case. The client, a 28-year-old woman, suffered severe brain damage from the deprivation of oxygen resulting from the failure of an anesthesiologist to properly secure an intubation tube. The client, immediately following the occurrence, was in a persistent vegetative state from which the likelihood of recovery was virtually nil. Miraculously, she regained much of her cognitive functioning, although still suffering from significant physiological deficits requiring attendant care for the rest of her life.
  4. Anesthesia Death Results in $2 Million Settlement: 36-Year-Old Man Dies From Anesthesia Mishap Following Elective Hernia Repair Surgery. The plaintiff’s decedent was a 36-year-old man who died secondary to respiratory complications following an elective hernia repair. During the pre-operative anesthesia evaluation, the defendant noted the patient had never been intubated and had required a tracheostomy for a previous surgery. The defendant decided to administer general endotracheal anesthesia with rapid sequence induction. The surgery itself was without incident. Following extubation, the patient began to have difficulty breathing. The patient desaturated. The surgeon was called back to the OR to perform  a tracheostomy, however, there was no improvement in the patient’s oxygenation and he continued to have asystole. Subsequently, he went into respiratory arrest and coded. The code and CPR were unsuccessful, and the patient was pronounced dead.

Per Miller’s Anesthesia, failure to secure a patent airway can result in hypoxic brain injury or death in only a few minutes. Analysis of the American Society of Anesthesiologists (ASA) Closed Claims Project database shows that the development of an airway emergency increases the odds of death or brain damage by 15-fold. Although the proportion of claims attributable to airway-related complications has decreased over the past thirty years since the adoption of pulse oximetry, end-tidal-CO2 monitoring, and the ASA Difficult Airway Algorithm, airway complications are still the second-most common cause of malpractice claims. (Miller’s Anesthesia, Chapter 55, Management of the Adult Airway, 2014).

In 2005, in the ASA-published Management of the Difficult Airway: A Closed Claims Analysis (Petersen GN, et al, Anesthesiology 2005; 103:33–9), the authors examined 179 claims for difficult airway management between 1985 and 1999. The timing of the difficult airway claims was: 67% upon induction, 15% during surgery, 12% at extubation, and 5% during recovery. Death or brain damage during induction of anesthesia decreased 35% in 1993–1999 compared with 1985–1992, but death or brain damage from difficult airway management during the maintenance, emergence, and recovery periods did not decrease during this second period. There is no denominator to compare with the numerator of the number of closed claims, so the prevalence of airway disasters was unknown.

Awake intubation is touted as the best strategy for elective management of the difficult airway for surgical patients. Fiberoptic scope intubation of the trachea in an awake, spontaneously ventilating patient is the gold standard for the management of the difficult airway. (Miller’s Anesthesia, Chapter 55, Management of the Adult Airway, 2014). Awake intubation is a useful tool to avert airway disaster on the oral anesthesiology board examination. Dr. Michael Champeau, one of my partners, has been an American Board of Anesthesiology Senior Examiner for over two decades. He tells me that oral board examinees choose awake intubation for nearly every difficult airway. This is wise–it’s hard to harm a patient who is awake and breathing on their own. Is the same strategy as easily implemented outside of the examination room? In actual clinical practice, an awake intubation may be a tougher sell. Awake intubations are time-consuming, require patience and understanding from the surgical team, and can be unpleasant to a patient who will be conscious until the endotracheal tube reaches the trachea–an event which can cause marked coughing, gagging, hypertension and tachycardia in an under-anesthetized person. As anesthesia providers, we perform hundreds of asleep intubations per year, and only a very small number of awake intubations. Inertia exists pushing anesthesia providers to go ahead and inject the propofol on most patients, rather than to take the time to topically anesthetize the airway and perform an awake intubation. But if you’ve ever lost the airway on induction and wound up with a “cannot intubate-cannot ventilate” patient, you’ll understand the wisdom in opting for an awake intubation on a difficult airway patient.

I refer you to Chapter 55 of Miller’s Anesthesia for a detailed treatise on the assessment and management of airways, which is beyond the scope of this column. In addition to the reading of Chapter 55, I offer the following clinical pearls based on my 30 years of practice and my experience at reviewing malpractice cases involving airway tragedies:

  1. Become skilled at assessing each patient’s airway prior to anesthesia induction. Pertinent information may be in the old chart or the patient’s oral history as well as in the physical examination. Red flags include: previous reports of difficulty passing a breathing tube, a previous tracheostomy scar, morbid obesity, a full beard, a receding mandible, inability to fully open the mouth, rigidity of the cervical spine, airway tumors or masses, or congenital airway deformities.
  2. Learn the ASA Difficult Algorithm and be prepared to follow it. (asahq.org/…/ASAHQ/…/standards-guidelines/practice-guidelines-for- management-of-the-difficult-airway.pdf‎).
  3. Become skilled with all critical airway skills, particularly mask ventilation, standard laryngoscopy, video laryngoscopy, placement of a laryngeal mask airway (LMA), fiberoptic intubation through an LMA, and awake fiberoptic laryngoscopy.
  4. Read the airway strategy recommended in the Appendix to Richard Jaffe’s Anesthesiologist’s Manual of Surgical Procedures, an approach which utilizes a cascade of the three critical skills of (A)standard laryngoscopy, (B)video laryngoscopy, and (C)fiberoptic intubation through an LMA. For a concise summary of this approach read my column Avoiding Airway Disasters in Anesthesia (http://theanesthesiaconsultant.com/2014/03/14/avoiding-airway-disasters-in-anesthesia).
  5. If you seriously ponder whether awake intubation is indicated, you probably should perform one. You don’t want to wind up with a hypoxic patient, anesthetized and paralyzed, who you can neither intubate nor ventilate.
  6. If you’re concerned about a difficult intubation or a difficult mask ventilation, get help before you begin the case. Enlist a second anesthesia provider to assist you with the induction/intubation.
  7. Take great care when you remove an airway tube on any patient with a difficult airway. Don’t extubate until vital signs are normal, the patient is awake, the patient opens their eyes, and the patient is demonstrating effective spontaneous respirations. An airway that was routine at the beginning of a surgery may be compromised at the end of surgery, due to head and neck edema, airway bleeding, or swollen airway structures, e.g. due to a long anesthetic with a prolonged time in Trendelenburg position.
  8. If you’re a non-anesthesia professional administering conscious sedation, never administer a general anesthetic sedative such as propofol. A combination of narcotic and benzodiazepines can be easily reversed by the antagonists naloxone and flumazenil if oversedation occurs. There is no reversal for propofol. Airway compromise from oversedation due to propofol must be managed by mask ventilation by an airway expert.

In its 1999 report, To Err Is Human:  Building a Safer Health System, the Institute of Medicine recognized anesthesiology as the only medical profession to reduce medical errors and increase patient safety. With the pulse oximeter, end-tidal-CO2 monitor, a myriad of airway devices, and the Difficult Airway Algorithm, the practice of anesthesia in the twenty-first century is safer than ever before. Let’s keep it that way.

Faith, hope, and love. The greatest of these is love.

Airway, breathing, and circulation. The greatest of these is airway. Your patient’s airway.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

IS ANESTHESIA A CUSHY SPECIALTY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Is anesthesia worthy of the House of God‘s assessment that it’s a cushy medical specialty? My answer, after thirty years of anesthesia practice, is … it depends.

Cover image of The House of God

Samuel Shem’s classic novel/satire of medicine, The House of God (published in 1978, more than two million copies sold), follows protagonist Dr. Roy Basch as he struggles through his year as an internal medicine intern. A second physician recommends Basch switch careers to one of six no-patient-contact specialties: Rays, Gas, Path, Derm, Eyes, or Psych. These names translate to radiology, anesthesia, pathology, dermatology, ophthalmology, and psychiatry. These specialties are touted as lower stress choices with superior lifestyles, where time with sick patients is minimized and the physician is more likely to be happy.

Is this true? Is anesthesia worthy of Samuel Shem’s assessment that it’s a cushy specialty?

My answer, after thirty years of anesthesia practice, is … it depends.

Let’s examine each of the six specialties regarding their perceived advantages:

• Radiology involves a career of peering at digital images of X-rays, MRIs, CT scans, or ultrasound studies. Patient contact is minimal. Because many of these tests are ordered in emergency rooms at all hours of the night, on-call radiologists work long hours and endure sleepless nights. As well, the subspecialty of Invasive Radiology has become a hands-on field that requires as much patient contact as most surgical specialties.
• Pathology involves a career of peering through a microscope, running a clinical lab to determine blood and urine chemistry results, or performing autopsies. Most of pathology requires zero contact with living patients. Most pathology work is done in daylight hours, and loss of sleep is unusual.
• Dermatology involves a career of seeing a multitude of patients (think 80 – 100 per day) in a busy clinic practice. Patient volume and patient contact are high. Each clinic visit is brief because only the specific skin lesions in question are fair game for physician-patient interrogation. Hospitalized patients are uncommon, there are few emergencies, and loss of sleep is unusual.
• Ophthalmology involves an office practice of examining the vision and eyes of patients, as well as an operating room practice of performing cataract, retinal, or corneal surgeries. Other than an occasional eye trauma surgery at a late hour, loss of sleep for ophthalmologists is unusual.
• Psychiatry involves an outpatient practice of verbal therapy and/or prescribing oral medications (e.g. antidepressants, anti-anxiety, or attention deficit hyperactivity disorder meds). Inpatient psychiatry is usually limited to patients with severe depression and psychotic diseases. Most emergencies are limited to patients with after-hours suicidal ideation or attempts. Loss of sleep is unusual.
• Anesthesiology involves providing unconsciousness and medical management to patients during all types of surgical interventions. Surgeries occur at all hours of the day and night. Loss of sleep is common, and job stress during select cases can be extreme. Let’s examine lifestyle issues of anesthesia practice in more detail:

An anesthesiologist and his or her awake surgical patient are only together for only 15 minutes prior to induction of anesthesia, during which time they exchange information on medical history and informed consent. This brief duration doesn’t exactly qualify for The House of God’s no-patient-contact list, but anesthesia does qualify as very-little-awake-patient contact. Minimal time with conscious patients appeals to physicians who don’t relish prolonged face-to-face patient interaction.

An image of your anesthesiologist playing tennis or golf and then waltzing into the operating room at leisure to do a simple surgery is mistaken. The presence of an anesthesiologist is imperative for nearly every emergency procedure. All emergency medical care follows the guideline of A-B-C, or Airway-Breathing-Circulation, and anesthesiologists are airway specialists nonpareil. Emergency room attendings and head and neck surgeons have certain airway skills, but no other specialty has the depth of airway expertise that anesthesiologists own. An anesthesiologist provides care for 500–1000 patients per year, and every one of these patients requires acute management of the airway to assure safe oxygenation and breathing.

Trauma surgery, childbirth, acute surgical disease from the emergency room, and organ transplant surgery are as common at night as in the daytime. An on-call anesthesiologist at a busy community hospital may arrive at 6:30 a.m., do seven or eight surgical anesthetics which last until dusk, and then remain in the hospital all night to perform several epidural anesthetics on laboring women, anesthetize an 80-year-old woman for surgery to relieve a bowel obstruction, and replace an endotracheal tube in a struggling patient in the intensive care unit as the sun comes up the following day. An on-call anesthesiologist at a university hospital may arrive at 6:30 a.m. and attend to a complex liver-transplant surgery which lasts 20 hours and concludes at 3 a.m. A cushy specialty? Hardly.

A lifestyle advantage for anesthesiologists is that we can work hard and play hard. It’s possible for an anesthesiologist to take weeks or months off at a time if their employer or anesthesia group approves. There’s no chronic patient care/patient follow up, no clinic overhead, and no clinic employee overhead. For these reasons an anesthesiologist can schedule multiple weeks without work or income more easily than a clinic doctor can. For these reasons it’s also possible for an anesthesiologist to work part time, i.e. two or three days each week. This scheduling flexibility is an excellent lifestyle advantage, and for this reason my answer to whether anesthesia is a cushy specialty is … it depends.

Some anesthesiologists choose to spend their career outside the operating room. Some specialize in pain management and see patients in outpatient pain clinics—selected patients are taken to the operating room non-urgently to receive pain-injection procedures such as epidural steroid injections, nerve blocks, or pain pump insertions. A small number of anesthesiologists run preoperative assessment clinics where they assess the medical status of patients prior to surgery. A small number of anesthesiologists supervise intensive care units and manage critically patients who require ventilators, cardio-active medications, and anesthesia sedation infusions.

I’d like to leave you with one image imprinted in your mind—that of an anesthesiologist toiling over an ill patient at 2 a.m. in a hospital. The patient may have survived a car crash, suffered a ruptured appendix, be delivering twin babies, or be the recipient of a lung transplant. Wherever there’s a sick patient who needs acute supervised unconsciousness, there’s an anesthesiologist present. In words John Steinbeck wrote at the conclusion of The Grapes of Wrath, Tom Joad tells his mother,

“I’ll be all around in the dark – I’ll be everywhere.
Wherever you can look – wherever there’s a fight, so hungry people can eat, I’ll be there.
Wherever there’s a cop beatin’ up a guy, I’ll be there.
I’ll be in the way guys yell when they’re mad.
I’ll be in the way kids laugh when they’re hungry and they know supper’s ready, and when the people are eatin’ the stuff they raise and livin’ in the houses they build – I’ll be there, too.”

This prompts me to pen parallel text regarding my specialty, entitled
Tom Joad the Anesthesiologist:

I’ll be all around in the dark—I’ll be everywhere.
Wherever you can look—wherever there’s a motorcycle accident, a Cesarean section, a heart transplant, I’ll be there.
Wherever there’s a cop dragging a knifed-up gang member into the E.R., I’ll be there.
I’ll be there when the surgeon screams and when the new mother laughs,
When the 100-year-old gets his hernia mended and when the 4-year-old gets his tonsils out—I’ll be there, too.
Ma, it’s just what I do.
It’s what we all do.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE PERIOPERATIVE SURGICAL HOME HAS EXISTED FOR YEARS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

The American Society of Anesthesiologists is supporting an expansion of the role of anesthesiologists in the delivery of perioperative care in hospitals. This proposed model is called the Perioperative Surgical Home. The American Society of Anesthesiologists defines the Perioperative Surgical Home as “a patient centered, innovative model of delivering health care during the entire patient surgical/procedural experience; from the time of the decision for surgery until the patient has recovered and returned to the care of his or her Patient Centered Medical Home or primary care provider.”

 

It’s a sound idea, and it resembles a model that’s existed for decades outside the hospital. In an outpatient surgery center the Perioperative Surgical Home concept is carried out by an anesthesiologist who is the Medical Director. I can speak to this, as I’ve been the Medical Director at a busy surgery center only minutes from Stanford University in downtown Palo Alto, for the past 12 years.

A surgery center Medical Director is responsible for:

  • All preoperative matters, including preoperative medical assessment of patients, scheduling of block times, surgical cases, anesthesia assignments, and creation of protocols,
  • All intraoperative matters, including quality issues, efficiency and turnover of cases, and the economics of running a profitable set of operating rooms, and
  • All postoperative matters, including overseeing Post Anesthesia Care Unit (PACU) nursing care, post anesthesia medical decisions, and supervision of post-discharge follow up with patients.

All medical problems including complications, hospital transfers, and patient complaints, are routed through the anesthesiologist Medical Director.

A key difference between a surgery center and a hospital is scale. A busy hospital has dozens of operating rooms, hundreds of surgeries per day, and hundreds of inpatient beds. No one Medical Director can oversee all of this every day—it takes a team. At Stanford University Medical Center the anesthesia department is known as the Department of Anesthesia, Perioperative and Pain Medicine. The word “Perioperative” is appropriate, because anesthesia practice involves medical care before, during, and after surgery. A team of anesthesiologists is uniquely qualified to oversee preoperative assessment, intraoperative management, and post-operative pain control and medical care in the hospital setting, just as the solitary Medical Director does in a surgery center setting.

A second key difference between a surgery center and a hospital is that medical care is more complex in a hospital. Patients are sicker, invasive surgeries disturb physiology to a greater degree, and patients stay overnight after surgery, often with significant pain control or intensive care requirements. Again, a team of physicians from a Department of Anesthesia, Perioperative and Pain Medicine is best suited to supervise management of these problems.

The greatest hurdle to instituting the Perioperative Surgical Home model is pre-existing economic reality. In a hospital, other departments such as surgery, internal medicine, radiology, cardiology, pulmonology, and nursing are intimately involved in the perioperative management of surgery patients. Each of these departments has staff, a budget, income, and incentives related to maintaining their current role. Surgeons intake patients through their preoperative clinics, and may regard themselves as captains of the ship for all medical care on their own patients. Internal medicine doctors are called on for preoperative medical clearance on patients, and thus compete with anesthesia preoperative clinics. The internal medicine department includes hospitalists, inpatient doctors who may be involved in the post-operative management of inpatients. Invasive radiologists perform multiple non-invasive surgical procedures. Like their surgical colleagues, they may see themselves as decision makers for all medical care on their own patients. Cardiologists manage coronary care units and intensive care units in some hospitals, and may feel threatened by anesthesiologists intent on taking over their territory. Pulmonologists manage coronary care units and intensive care units in some hospitals, and may feel threatened by anesthesiologists intent on taking over their territory. Nurses are involved in all phases of perioperative care. If the chain of command among physicians changes, nurses must be willing partners of and participants with such change.

Why has the anesthesiology leadership role of a Medical Director evolved naturally at surgery centers while the Perioperative Surgical Home idea has to be sold to hospitals? At surgery centers the competing financial incentives of surgeons, internal medicine doctors, radiologists, pulmonologists, cardiologists, and nurses are minimal. In a freestanding surgery center, surgeons want to be able to depart for their offices following procedures, and welcome the skills that anesthesiologists bring to managing any medical complications that arise. Internal medicine doctors have no significant on-site role in surgery centers, although they are helpful office consultants for the anesthesiologist/Medical Director in assembling preoperative clearance for outpatients. Radiologists have no significant on-site role at most surgery centers—if they do perform invasive radiology procedures on outpatients, they too welcome the skills that anesthesiologists bring to managing medical complications that arise. Because there are no intensive care units at a surgery center, there is no role for pulmonary or cardiology specialists. Nursing leadership at a surgery center works hand-in-hand with the Medical Director to assure optimal nursing care of all patients.

Hospital administrators anticipate penetration of the Accountable Care Organization (ACO) model for payment of medical care by insurers. In the ACO model, a medical center receives a predetermined bundled payment for each surgical procedure. The hospital and all specialties caring for that patient negotiate what percentage of that ACO payment each will receive. A Perioperative Surgical Home may or may not simplify this task. You can bet anesthesiologists see the Perioperative Surgical Home as a means to increase their piece of the pie. Ideally the Perioperative Surgical Home will be a means to streamline medical care, decrease costs, and increase profit for the hospital and all departments. Anesthesiologists are rightly concerned that if they don’t take the lead in this process, some other specialty will.

Establishing the Perioperative Surgical Home is an excellent opportunity for anesthesiologists to facilitate patient care in multiple aspects of hospital medicine. To make this dream a reality across multiple medical centers, anesthesiology leadership must demonstrate excellent public relations skills to convince administrators and chairpeople of the multiple other specialties. I expect data on outcomes improvement or cost-control to be slow and inadequate to proactively provoke this change. It will take significant lobbying, convincing, and promoting. Change will require a leap of faith for a hospital, and such change will only be accomplished by anesthesia leadership that captures the confidence of the hospital CEO and the chairs of multiple other departments.

I’m impressed by the adoption of the Perioperative Surgical Home at the University of California at Irvine. I’ve listened to Zev Kain, MD, Professor and Chairman of the Department of Anesthesia and Perioperative Medicine lecture, and I’ve met him personally. He’s the prototype of the charismatic, intelligent, and convincing physician needed to convince others that the Perioperative Surgical Home is the model of the future.(http://www.anesthesiology.uci.edu/clinical_surgicalhome.shtml)

I expect the transition to the Perioperative Surgical Home to occur more easily in university or HMO hospitals than in community hospitals. It will be easier for academic or HMO chairmen to assign new roles to salaried physicians than it will be for community hospitals to control the behavior of multiple private physicians.

Anesthesiologists were leaders in improving perioperative safety by the discovery and adoption of pulse oximetry and end-tidal carbon dioxide monitoring. Can anesthesiologists lead the way again by championing the adoption of Perioperative Surgical Home on a wide scale? Time will tell. Is the Perioperative Surgical Home an optimal way to take care of surgical patients before, during, and after surgeries? I believe it is, just as the Medical Director is a successful model of how an anesthesiologist can optimally lead an outpatient surgery center. Those lobbying for the Perioperative Surgical Home would be wise to examine the successful role of anesthesiologist Medical Directors who’ve led outpatient surgery centers for years. The stakes are high. As intraoperative care becomes safer and the role of nurse anesthesia in the United States threatens to expand, it’s imperative that physician anesthesiologists assert their expertise outside the operating room.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO PREPARE TO SAFELY INDUCE GENERAL ANESTHESIA IN TWO MINUTES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

How do you prepare to induce general anesthesia in two minutes? You’re called to induce anesthesia for a patient being rushed to the operating room for emergency surgery. You arrive at the operating room only minutes before the patient is scheduled to arrive. I recommend you use the mnemonic M-A-I-D-S as a checklist to prepare yourself and your equipment.

 

 

M stands for MACHINE and MONITORS. Check out your anesthesia machine first. Determine the oxygen sources are intact, and that the circle system is airtight when the pop-off valve is closed and your thumb occludes the patient end of the circle. Make sure the anesthesia vaporizer liquid anesthetic level is adequate. Check out your routine monitors next. Determine that the oximeter, end-tidal gas monitor, blood pressure cuff, and EKG monitors are turned on and ready.

A stands for AIRWAY equipment. Make sure an appropriate-sized anesthesia mask is attached to the circle system. Determine that your laryngoscope light is in working order. Prepare an appropriate sized endotracheal tube with a stylet inside. Have appropriate-sized oral airways and a laryngeal mask airway (LMA) available in case the airway is difficult. Make sure you have a stethoscope so you can examine the patient’s heart and lungs.

I stands for IV. Have an IV line prepared, and have the equipment to start an IV ready if the patient presents without an intravenous line acceptable for induction of anesthesia.

D stands for DRUGS. At the minimum you’ll need an induction agent (e.g. propofol or etomidate) and a muscle relaxant (succinylcholine or rocuronium), each loaded into a syringe. You’ll need narcotics and perhaps a dose of midazolam as well. Cardiovascular drugs to raise or lower blood pressure will be available in your drug drawer or Pyxis machine.

S stands for SUCTION. Never start an anesthetic without a working suction catheter at hand. You must be ready to suction vomit or blood out of the airway acutely if the need arises.

For pediatric patients the M-A-I-D-S mnemonic is followed, but in addition the size of your anesthesia equipment must be tailored to the age of the patient. Let’s say your patient is 4 years old. For M=MACHINE, you may need a smaller volume ventilation bag and hoses. For M=MONITORS, you’ll need a smaller blood pressure cuff, a smaller oximeter probe, and a precordial stethoscope if you use one. For A=AIRWAY, you’ll need smaller endotracheal tubes and airways. For I=IV, you’ll need smaller IV catheters and IV bags.

As a last-second check before a pediatric anesthetic, I recommend you pull out each drawer on your anesthesia machine, and then on your anesthesia cart, one at a time. Scan the contents of each drawer to ascertain whether you need any of the equipment there before you begin your anesthetic.

If you have any suspicion that the patient’s airway is going to be difficult, I recommend you ask to have a video laryngoscope and a fiberoptic laryngoscope brought into the operating room.

Once the patient arrives, utilize time to assess the situation as any doctor does. Take a quick history and perform a pertinent exam of the vital signs, airway, heart, lungs, and also a brief neuro check. Assist in positioning the patient on the operating room table, supervise the placement of routine monitors, and begin preoxygenating the patient. Induce anesthesia when you are ready.

Never be coerced to rush an anesthesia induction if your anesthesia setup or the patient’s physiology are not optimized. And always utilize the mnemonic M-A-I-D-S as an anesthesia checklist to confirm that your equipment is ready.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

Learn more about Rick Novak’s fiction writing at rick novak.com by clicking on the picture below:

DSC04882_edited

WHAT ONE QUESTION SHOULD YOU ASK TO DETERMINE IF A PATIENT IS ACUTELY ILL?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

What one question should you ask to determine whether a patient has a serious medical problem? What one question must you ask to determine whether urgent intervention is required?

Imagine this scenario: You’re an anesthesiologist giving anesthesia care in the operating room to your second patient of the day. The Post Anesthesia Care Unit (PACU) nurse calls you regarding your first patient who is in the PACU following appendectomy. The nurse says, “Your patient Mr. Jones is still nauseated and very sleepy. I’ve medicated him with ondansetron and metoclopramide as ordered, but he’s still nauseated and sleepy.”

That one question would be: “What are his vital signs?”(This is a bit of a trick question, since you are asking not one question, but four or five. It’s as if you’re down to your last request from the Genie from Aladdin’s lamp, and you’re wishing for more wishes. As Robin Williams’ Genie character said in Disney’s Aladdin, “Three wishes, to be exact. And ixnay on the wishing for more wishes. That’s all. Three. Uno, dos, tres. No substitutions, exchanges or refunds.” )

The traditional four vital signs are the blood pressure, heart rate, respiratory rate, and temperature. For anesthesiologists, surgeons, emergency room physicians, and ICU doctors, the fifth vital sign is the oxygen saturation or O2 sat. Some publications tout the pain score (on a 1-10 scale) as a fifth vital sign. While I subscribe to the pain score’s importance, it’s of less value in most acute care situations than the O2 saturation.

Let’s return to the patient scenario. You ask the nurse, “What are the patient’s vital signs?”

The nurse answers, “His heart rate is 48, his blood pressure is 88/55, his O2 sat is 100, and his respiratory rate is 16.”

You answer, “His heart rate is too low and so is his blood pressure. Let’s give him 0.5 mg atropine IV now.”

Five minutes later the nurse calls back. The heart rate increased to 72 and the blood pressure is 110/77. The patient’s symptoms resolved as the vital signs normalized.

Let’s look at a second scenario. You drop off a 48-year-old hysterectomy patient in the PACU. The patient is awake, and her initial vital signs are BP 120/64, pulse 100, respirations 18, and O2 saturation 99%. You return to the operating room to initiate care for your next patient for a laparoscopy. Thirty minutes later, the PACU nurse calls you to report your first patient has increasing abdominal discomfort. Her repeat vital signs are: BP 110/80, pulse 130, respirations 26, and O2 saturation 99%. You’re concerned an intra-abdominal complication is brewing. Five minutes later, the nurse reports a third set of vitals. The patient’s heart rate continues to rise to 140. Her blood pressure is now 82/40, her respirations are 30, and her skin has become cold and moist to the touch. She’s unable to speak coherently and is losing consciousness. You can not leave the patient you are anesthetizing, but you call a fellow anesthesiologist to evaluate the patient in person, and prepare her for emergent re-operation.

The patient’s initial vital signs were stable, but the downward trend of her vital signs were a harbinger of the serious complication. Eventually the symptoms of abdominal pain and decreasing consciousness appeared, and confirmed the diagnosis of intra-abdominal hemorrhage and impending shock. The increased heart rate, decreased blood pressure, and increased respiratory rate were red flags early on.

Abnormal vital signs can indicate that a patient is acutely ill. Equally important to the value of each vital sign is the temporal trend in the vital signs. A vital sign trend increasing or decreasing from the normal range can validate that the patient is becoming acutely ill.

You may be thinking, why is Dr. Novak telling me vital signs are important? Everybody know vital signs are, well … vital.

My message to you is to seek out the vital signs, all of them, as essential clues in all patients.

As anesthesiologists, we spend our entire intraoperative clinical career staring at a patient’s vital signs on a video screen. When the blood pressure goes up, we act. When the blood pressure goes down, we act. When the heart rate goes up, we act, and when the heart rate goes down, we act. When oxygen saturation trends downward, we act. Because most intraoperative patients are unconscious, the patient’s verbal history—the traditional clues regarding acute illness—are unavailable. We can not ask our patient questions to determine whether vital sign changes are associated with symptoms of chest pain, shortness of breath, or neurologic deficits. We’re accustomed to treating patients by normalizing their vital signs.

Other healthcare providers lack this perspective. Nurses and non-acute-care physicians such as family practitioners and internists can fill a patient’s history chock full of other details so thick that the vital signs are buried. The five or six vital sign numbers are often obscured in pages of text. Most physician and nursing notes in an electronic medical record (EMR) are lengthy, and are many are copied and pasted from previous encounters. Each patient interview is a quiz bowl of medical history answers. The five or six vital sign numbers are a needle in the haystack of a modern medical history. The EMR in a clinic or a hospital can serve to worsen this plight, as vital signs are recorded by nurses and entered into nursing documents on the computer, and treating physicians may have to dig to find the correct page that lists vital signs. One possible benefit of an EMR is a proposed safety system that requires, for any abnormal vital sign entered into the computer, the nurse to document they have verbally informed a physician of that abnormal value. This system would assure that abnormal values are never ignored, and that an MD will assess whether further diagnostic or therapeutic steps need to be taken.

Ferret out the vital signs. In my career as a clinical anesthesiologist and anesthesia expert witness, I can’t recall one significant complication that wasn’t foretold by an increased or decreased heart rate, blood pressure, respiratory rate, or temperature, a decreased O2 saturation, or an increased pain score.

Keep your eye on the vitals, and keep your patients out of trouble.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SHOULD PHYSICIANS BE TESTED FOR DRUGS AND ALCOHOL?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An 60-year-old man has a heart attack in the middle of an emergency abdominal surgery at 11:00 pm and dies two hours later. Should the anesthesiologist submit to a drug test to seek out alcohol or drug ingestion that could have made her performance impaired?

Discussion: In the 2012 movie Flight, Denzel Washington stars as a commercial airline pilot addicted to alcohol and cocaine, who crashes his airplane while he is intoxicated. Analogies between aviation and anesthesia are commonplace. Both involve takeoffs, landings, and varying cruising times between the two. Both are generally quite safe, but on occasion disastrous accidents occur.

Pilots are required to submit to random drug testing and to testing following accidents. The Federal Aviation Administration (FAA) mandated drug and alcohol testing of safety-sensitive aviation employees in the Omnibus Transportation Employees Testing Act of 1991 to help protect the public and keep the skies safe.

Proposition 46 was a 2014 California legal initiative that proposed similar random drug testing of physicians and drug testing following critical sentinel events. Prop 46 was on the ballot for the November 2014 general election, and was soundly defeated. This proposition was noteworthy for bundling the drug-testing proposal with an additional proposal that would increase the maximum pain and suffering malpractice reward from $250,000 per case to $1,100,000 per case. Prop 46 was funded and supported by trial lawyers who sought to raise the ceiling on pain and suffering awards they could win in medical malpractice suits in California.

This malpractice award increase proposed by trial lawyers was viewed as a money grab, and was unpopular with voters. Because of concerns with increasing malpractice costs and health care costs, Prop 46 was defeated.

But what if Prop 46 had solely been about drug-testing physicians? Would it have a better chance of passing? I have no crystal ball, but my guess is that yes, it would have had a better chance of passing. According to the September 13, 2014 edition of the Los Angeles Times, the component of Prop 46 that required random drug and alcohol testing of doctors was popular among those surveyed: 68% of likely voters were in favor of it, while 25% were opposed.

In the August 1, 2014 issue of the New York Times, Adam Nagourney wrote “At a time when random drug testing is part of the job for pilots, train operators, police officers and firefighters—to name a few—one high-profile line of work has managed to remain exempt: doctors. That may be about to change. California would become the first state to require doctors to submit to random drug and alcohol tests under a measure to appear on the ballot this November. The proposal, which drew approval in early focus groups, was inserted as a sweetener in a broad initiative pushed by trial lawyers that also includes an unrelated measure to raise the state’s financial cap on medical malpractice awards for the first time since 1975, to $1.1 million from $250,000.”

The same New York Times article states, “Backers of Proposition 46 have begun putting out a steady stream of news releases about cases involving doctors with a history of drug and alcohol abuse…. ‘It’s crucial: I can’t believe we haven’t done this already,’ said Arthur L. Caplan, a medical ethicist at New York University. ‘But the idea that we wouldn’t be screening our surgeon, our anesthesiologist or our oncologist when we are going to screen our bus drivers and our airline pilots strikes me as ethically indefensible.’” In the same article, Daniel R. Levinson, the inspector general for the Department of Health and Human Services, opines that there should be random drug testing across the medical profession, given the access in hospitals to controlled substances. “I don’t think that a carve-out when it comes to the medical field is sensible public policy,” he said. “No one should be above suspicion or below suspicion. I think we all need to play by similar rules.”

In a recent commentary published in the Journal of the American Medical Association (JAMA), Dr. Julius Pham of Johns Hopkins wrote, “Patients and their family members have a right to be protected from impaired physicians…. Why is there such a difference among high-risk industries, which all pledge to keep the public safe? First, medicine is underregulated compared with other industries. The fiduciary patient-physician relationship is generally considered to be governed by the profession, not to be tampered with by regulatory bodies. While some state and individual health system regulations exist, they tend to be weak. Second, self-monitoring is the essence of medical professionalism. Peer review is the accepted modality to identify physicians with impaired performance. Most states now have a designated physician health program to detect and assist potentially impaired physicians before those physicians cause patients harm. However, these programs vary in their mandate, authority, reporting requirements, and activities. For instance, California has the largest number of US physicians, but its physician health program was recently discontinued. In states without proactive programs, it seems, by default, that patient harm has to occur before a review process occurs. In many cases, an overwhelming amount of data (i.e., harmed patients) must be available before a hospital or state initiates an investigation.”

Dr. Pham goes on to say, “What might a model of physician impairment regulation look like? First, mandatory physical examination, drug testing, or both may be considered before a medical staff appointment. This already occurs in some hospitals and has been successful in other industries. Second, a program of random alcohol-drug testing could be implemented. Random testing is required for most federal employees and has been successfully implemented in several medical settings. Random testing in the military has resulted in a decrease in illicit drug use. Third, a policy for routine drug-alcohol testing could be initiated for all physicians involved with a sentinel event leading to patient death. Fourth, a national hospital regulatory/accrediting body could establish these standards to maintain consistency across states.”

It’s estimated that approximately 10% to 15% of all healthcare professionals misuse drugs or alcohol at some time during their career. Although rates of substance abuse and dependence are no different than those in the general population, the stakes are higher because healthcare professionals are caregivers responsible for the general health and well-being of our population. It’s known that specialties such as anesthesiology, emergency medicine, and psychiatry have higher rates of drug abuse, possible due to the stress level associated with these specialties, the baseline personalities of these healthcare providers, and easy access to drugs in these specialties.

As physicians, do we have any compelling arguments to deflect the notion of MD’s being drug tested? Physicians decry the intrusion into their privacy. There is the ethical question whether the risk of patient injury by the 10% of physicians who use drugs and/or alcohol merits that the other 90% of physicians should be subjected to drug testing. There is also the specter of false-positive tests, which could wreak havoc with a doctor’s reputation. The details of any proposed drug and alcohol screening programs will be crucial, and any screening program will require careful consideration of a physician’s rights and privacy.

Two prominent hospitals—Massachusetts General Hospital in Boston and the Cleveland Clinic in Ohio—implemented random urine drug testing in their anesthesia residency teaching departments. A 2005 survey by the Cleveland Clinic estimated that 80 percent of anesthesiology residency training programs reported problems with drug-impaired doctors, and an additional 19 percent reported a death from overdose. “The problem is that we are exposed to, and we have the use of, very highly addictive and potent medications,” said Dr. Michael G. Fitzsimons, administrator for the substance abuse program of the department of anesthesia and critical care at Massachusetts General Hospital in Boston. Dr. Gregory B. Collins, section head of the Alcohol and Drug Recovery Center, at the Cleveland Clinic Foundation, said, “The first thing you often realize in these cases, it’s a kid dead in the bathroom with a needle in his arm.” Dr. Arnold Berry, an anesthesiologist and a member of the Committee on Occupational Health of the American Society of Anesthesiologists, said estimates of anesthesiologists who are addicted to medication range from only 1 to 2 percent. “The most recent study in training programs suggests the (addiction) rate has stayed the same for 20 years,” he said. Dr. Berry said the American Society of Anesthesiologists (ASA) has decided to use other tactics to stave off addiction, rather than recommending urine testing. The ASA is implemented a “wellness initiative” to help anesthesiologists deal with stressors in their lives.

While doctors and organized medicine may delay the notion of drug testing for themselves, public opinion and lawmakers may lead the way toward making physicians “pee in the cup.” Citizens don’t want their airline pilots, firemen, and police officers under the influence of alcohol or drugs, and patients don’t want their doctors under the influence of alcohol or drugs either.

Our patients always come first. It will be an arduous task for MD’s to forever oppose a mandate for clean and sober physicians. Hugh Laurie was a fascinating character as the opiate-popping junkie doctor in “House,” but what patient wants the TV persona of Dr. Gregory House at their bedside?

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HERBAL MEDICINES, SURGERY, AND ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An otherwise healthy 50-year-old female patient takes three herb pills daily: gingko, kava, and ginseng. What do you do when this patient needs elective surgery for an ACL reconstruction two days from now? Do you cancel surgery and stop the herbal medicines, or should you proceed?

My goal is to give you practical advice on how to proceed in the real world of anesthesia and surgical practice. We all know herbal medicines are out there. Do they matter? What is the evidence that herbal medicines affect surgical outcomes in an adverse way?

Many commonly used herbal medicines have side effects that affect drug metabolism, bleeding, and the central nervous system. In 2002 35% of Americans used complementary alternative medicine (CAM) therapies, and visits to CAM practitioners exceeded those to American primary care physicians (Tindle et al: Trends in use of complementary and alternative medicine by US adults: 1997-2002. Altern Ther Health Med 2005; 11:42). CAM practitioners include homeopathic medicine, meditation, art, music, or dance therapy, herbal medicines, dietary supplements, chiropractic manipulation, osteopathic medicine, massage, and acupuncture.

The finest review of herbal medicines and anesthesia is Chapter 33 in Miller’s Anesthesia, 7th Edition, 2009, authored by Ang-Lee, Yuan, and Moss. The authors write, “Many patients fail to volunteer information regarding herb and alternative medicine pills unless they are specifically asked about herbal medication use. Scientific knowledge in this area is still incomplete. There are no randomized, controlled trials that have evaluated the effects of prior herbal medicine use on the period immediately before, during and after surgery.” They go on to say, “preoperative use of herbal medicines has been associated with adverse perioperative events,” and “Because herbal medicines are classified as dietary supplements, they are not subject to preclinical animal studies, premarketing controlled clinical trials, or postmarketing surveillance. Under current law, the burden is shifted to the U.S. Food and Drug Administration (FDA) to prove products unsafe before they can be withdrawn from the market.”

The authors reviewed nine herbal medicines that have the greatest impact on perioperative patient care: echinacea, ephedra, garlic, Ginkgo biloba, ginseng, kava, saw palmetto, St. John’s wort, and valerian. These nine pills represent 50% of the herbal medicines sold in the United States.

The same authors published a paper entitled “Herbal Medicines and Perioperative Care.” (JAMA 2001; 286:208). The following table is reproduced from that journal article, and describes relevant effects, perioperative concerns, and recommendations for eight of the most common herbal medicines:

Echinacea
Boosts immunity. Allergic reactions, impairs immune suppressive drugs, can cause 
immune suppression when taken long-term, could impair wound 
healing. Discontinue as far in advance as possible, especially for transplant patients or those with liver dysfunction.

Ephedra (ma huang) Increases heart rate, increases blood pressure. Risk of heart attack, arrhythmias, stroke, interaction with other drugs, kidney stones. Discontinue at least 24 hours before surgery.

Garlic (ajo)
Prevents clotting. Risk of bleeding, especially when combined with other drugs that inhibit clotting. Discontinue at least 7 days before surgery.

Ginko (duck foot, maidenhair, silver apricot). Prevents clotting. Risk of bleeding, especially when combined with other drugs that inhibit clotting. Discontinue at least 36 hours before surgery.

Ginseng
Lowers blood glucose, inhibits clotting. Lowers blood-sugar levels. Increases risk of bleeding. Interferes with warfarin (an anti-clotting drug). Discontinue at least seven days before surgery.

Kava (kawa, awa, intoxicating pepper). Sedates, decreases anxiety. May increase sedative effects of anesthesia. Risks of addiction, tolerance and withdrawal unknown. Discontinue at least 24 hours before surgery.

St. John’s wort (amber, goatweed, Hypericum, klamatheweed). Inhibits re-uptake of neuro-transmitters (similar to Prozac). Alters metabolisms of other drugs such as cyclosporin (for transplant patients), warfarin, steroids, protease inhibitors (vs HIV). May interfere with many other drug.s Discontinue at least five days before surgery.

Valerian
Sedates Could increase effects of sedatives. Long-term use could increase the amount of anesthesia needed. Withdrawal symptoms resemble Valium addiction If possible, taper dose weeks before surgery. If not, continue use until surgery. Treat withdrawal symptoms with benzodiazepines.

In their chapter in Miller’s Anesthesia, Ang-Lee, Yuan, and Moss recommend that, “In general, herbal medicines should be discontinued preoperatively. When pharmacokinetic data for the active constituents in an herbal medication are available, the timeframe for preoperative discontinuation can be tailored. For other herbal medicines, 2 weeks is recommended. However, in clinical practice because many patients require nonelective surgery, are not evaluated until the day of surgery, or are noncompliant with instructions to discontinue herbal medications preoperatively, they may take herbal medicines until the day of surgery. In this situation, anesthesia can usually proceed safely at the discretion of the anesthesiologist, who should be familiar with commonly used herbal medicines to avoid or recognize and treat complications that may arise.”

The American Society of Anesthesiologists have no official standards or guidelines on the preoperative use of herbal medications. Public and professional educational information released by the American Society of Anesthesiologists suggest that herbals be discontinued at least 2 to 3 weeks before surgery.

To return to our original question, what do you do when your otherwise healthy 50-year-old female patient has been taking gingko, kava, and ginseng up to two days prior to her ACL reconstruction surgery? Gingko can cause increased bleeding, kava can cause increased sedation, and ginseng can cause decreased blood sugars and increased bleeding. You discuss the predicament with the patient’s surgeon. He’s not concerned that a possible increased risk of bleeding will affect this knee surgery. You decide the increased level of sedation and the possible decreased blood sugar risks are not prohibitive. (If you were worried, you could cut back slightly on the amount of central nervous system depressant drugs you utilize, and also run a 5% dextrose solution in the patient’s IV.)

An alternative choice would be to cancel the surgery for 2 weeks while the patient remains herb-free. The surgeon asks you, “Is there any data that postponing the surgery for two weeks will decrease the complication rate?”

You answer honestly and say, “There is no data. The American Society of Anesthesiologists suggests that herbals be discontinued at least 2 to 3 weeks before surgery.”

The surgeon says, “I want to do the case tomorrow. There’s no data compelling me to delay for two weeks. I accept whatever increased bleeding risk there may be. I’ve never had a patient have a bleeding complication from a knee surgery.”

You proceed with the surgery the next day. The patient does well, and has no complications.

Surveys estimate that:
a) 22% to 32% of patients undergoing surgery use herbal medications (Tsen LC, et al: Alternative medicine use in presurgical patients. Anesthesiology 2000; 93:148);
b) 90% of anesthesiologists do not routinely ask about herbal medicine use (McKenzie AG: Current management of patients taking herbal medicines: A survey of anaesthetic practice in the UK. Eur J Anaesthesiol 2005; 22:597); and
c) more than 70% of patients are not forthcoming about their herbal medicine use during routine preoperative assessment (Kaye AD, et al: Herbal medications: Current trends in anesthesiology practice—a hospital survey. J Clin Anesth 2000; 12:468).

The frequent use of herbal medicines in perioperative patients is real. How big a problem is it? Nobody knows. How frequently does one of your patients have an unexpected problem of increased bleeding, increased sedation, decreased blood sugar, unexpected cardiac arrhythmia or angina, or decreased immune function?

For an ACL reconstruction in a healthy patient, gingko, kava, and ginseng may pose little risk. For a craniotomy on a 70-year-old with coronary artery disease and diabetes, gingko, kava, and ginseng bay pose an increased risk, and warrant postponing the surgery for 2 weeks after holding the herbal medicines.

My advice is to take a careful history of herb medicine use from your patients, know (or look it up if you don’t remember) the potential side effects of each herbal medicine, and then on a case-by-case basis decide if it really matters if the surgery should be cancelled for 2 weeks.

That’s what doctors do. That’s what anesthesia consultants do.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

OPERATING ROOM BULLYING

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Does operating room bullying occur? You’re a freshly trained, recently hired anesthesiologist at a new medical center. In your first week on your job, an attending surgeon in the operating room intimidates you, making aggressive, sarcastic, and critical comments such as, “Are you trying to kill my patient? Have you ever done this before? Why is it taking you so long to get this patient to sleep?” or “My patient just moved. Can’t you give anesthesia better than that? Maybe I’d better ask for a different anesthesiologist.”

Does this ever happen? Unfortunately it does. What do you do?

Bullying in the medical profession is common, particularly during training years. A 1990 study (Silver HK, Medical student abuse. Incidence, severity, and significance, JAMA 1990 Jan 26;263(4):527-32) found that 46.4 percent of students at one major medical school had been abused at some point. By the time they were seniors, that number rose to 80.6 percent. In an Irish study, 30% of junior hospital physician responders to a questionnaire claimed to have been subjected to one or more bullying behaviors. (Cheema S, Bullying of junior doctors prevails in Irish health system: a bitter reality, Ir Med J. 2005 Oct;98(9):274-5).

The traditional medical education hierarchy of attendings > fellows > residents > interns > medical students sets up a pecking order where senior physicians pick on junior colleagues. One might paraphrase the phenomenon as “Sh__ runs downhill.” Younger colleagues are expected to do more “scut,” that is more paper work, computer work, contacting of consultants, chasing down lab and scan results, early rounds and late rounds on patients, as well as to sleep overnight in hospitals.

As physicians become more senior and exit training programs, their lifestyle improves and junior doctors, physician assistants, nurse practitioners, or registered nurses do more of their work. The tradition of condescending behavior toward those less trained may continue. When condescension crosses the line into disruptive or inappropriate behavior, it becomes a problem. Abused physicians, nurses, or techs can become angry or depressed, lose self esteem, and their physical and emotional health may suffer. Disrespect and bullying compromise patient safety because they inhibit the collegiality and cooperation essential to teamwork, cut off communication, and destroy team morale.

Joint Commission studies have shown that communication failure between health care workers is the number one cause for medication errors, delays in treatment, and surgeries at the wrong site. A 2004 study of workplace intimidation by the Institute for Safe Medication Practices (ISMP) (www.ismp.org/pressroom/pr20040331.pdf) found that nearly 40 percent of clinicians have kept quiet or ignored concerns about improper medication rather than talk to an intimidating colleague.Rather than bring their questions about medication orders to a difficult doctor, these health care personnel said they would preferred to keep silent. Seven percent of the respondents said that in the past year they’d been involved in a medication error in which intimidation was at least partly responsible.

In 2009 the Joint Commission began requiring hospitals to have a “code of conduct that defines acceptable, disruptive, and inappropriate staff behaviors” and for its “leaders [to] create and implement a process for managing disruptive and inappropriate staff behaviors.” The rationale for the standard states: “Leaders must address disruptive behavior of individuals working at all levels of the [organization], including management, clinical and administrative staff, licensed independent practitioners, and governing body members.”

Stanford University Hospital where I work has adopted such a Medical Staff Code of Professional Behavior (found online at medicalstaff.stanfordhospital.org/bylaws/documents/Code_of_Behavior).

Excerpts from this document include:

“Inappropriate behavior” means conduct that is unwarranted and is reasonably interpreted to be demeaning or offensive. Persistent, repeated inappropriate behavior can become a form of harassment and thereby become disruptive, and subject to treatment as “disruptive behavior.” Inappropriate behavior include, but are not limited to, the following: Belittling or berating statements; Name calling; Use of profanity or disrespectful language; Inappropriate comments written in the medical record; Blatant failure to respond to patient care needs or staff requests; Personal sarcasm or cynicism; Lack of cooperation without good cause; Refusal to return phone calls, pages, or other messages concerning patient care; Condescending language; and degrading or demeaning comments regarding patients and their families, nurses, physicians, hospital personnel and/or the hospital.

“Disruptive behavior” means any abusive conduct including sexual or other forms of harassment, or other forms of verbal or non-verbal conduct that harms or intimidates others to the extent that quality of care or patient safety could be compromised.

Disruptive behavior by Medical Staff members is prohibited. Examples of disruptive behavior include, but are not limited to, the following: Physically threatening language directed at anyone in the hospital including physicians, nurses, other Medical Staff members, or any hospital employee, administrator or member of the Board of Directors; Physical contact with another individual that is threatening or intimidating; Throwing instruments, charts or other things.

This is how the Stanford policy deals with inappropriate or disruptive behavior:

          If this is the first incident of inappropriate behavior, the Chief of Staff (COS)or designee shall discuss the matter with the offending Medical Staff member, emphasizing that the behavior is inappropriate and must cease. The offending Medical Staff member may be asked to apologize to the complainant. The approach during this initial intervention should be collegial and helpful.

            Further isolated incidents that do not constitute persistent, repeated inappropriate behavior will be handled by providing the offending Medical Staff member with notification of each incident, and a reminder of the expectation the individual comply with this Code of Behavior.

          If the COS or designee determines the Medical Staff member has demonstrated persistent, repeated inappropriate behavior, constituting harassment (a form of disruptive behavior), or has engaged in disruptive behavior on the first offense, the case will be referred to the COS and/or the Committee on Professionalism (COP). The subject will be notified of this decision and given an opportunity to provide a written response both prior to and subsequent to meeting with the COS or COP.

            If it is determined that the subject has engaged in disruptive behavior, a letter of admonition will be sent to the offending member, and, as appropriate, a rehabilitation action plan developed by the COS and/or COP, with the advice and counsel of the medical executive committee as indicated. The assistance of the Wellbeing Committee may be offered at any stage of this process.

             If, in spite of this admonition and intervention, disruptive behavior recurs, the COS or designee shall meet with and advise the offending Medical Staff member such behavior must immediately cease or corrective action will be initiated. This “final warning” shall be sent to the offending Medical Staff member in writing.

            If after the “final warning” the disruptive behavior recurs, corrective action (including possible suspension or termination of privileges) shall be initiated pursuant to the Medical Staff bylaws of which this Code of Behavior is a part, and the Medical Staff member shall have all of the due process rights set forth in the Medical Staff bylaws.

What do you do when inappropriate or disruptive behavior occurs in your operating room? The specialty of anesthesia provides wonderful positives such as intellectual challenge, multiple different subspecialties, hands-on procedures, and solid financial reimbursement. A disadvantage of the specialty of anesthesia is that anesthesiologists are consultants who do not have their own patients. No patient goes to the hospital or surgery center solely to have an anesthetic. Patients are there for some invasive procedure that requires an anesthetic.

Because the patient “belongs” to the surgeon, some surgeons use this fact to lord power over the anesthesiology provider, the operating room nurses, and surgical technicians, as well as over the hospital administration. A busy surgeon with a hefty workload brings a great deal of revenue to the hospital or surgery center he or she chooses to operate at. Some surgeons feel entitled to exercise condescending behavior toward nurses and anesthesiologists who they perceive to be merely part of hospital or surgery center services. Some surgeons yell, cuss, and throw things. Some engage in more subversive behaviors such as ignoring questions, acting impatient, insulting colleagues or speaking to them in condescending tones. Only a small percent of surgeons are bad actors, but a small proportion can have a big impact.

In my 25-year anesthesia career I’ve seen multiple examples of verbally and emotionally abusive surgeons. In distant years most of these surgeons met little resistance to their behavior. Staff who opposed them were moved to different operating rooms, and more enabling nurses and techs were found. The enablers were quiet, agreeable, hard working, and rarely questioned the surgeon’s authority. Anesthesiologists who resisted surgeon bullying stopped working with that surgeon, per both the surgeon and the anesthesiologist’s wishes. Alternate anesthesia providers were tried until a subgroup of passive enabler anesthetists was found.

My advice to any anesthesiologist out there is: Don’t be an enabler. You are a highly trained physician, deserving of respect. If a surgeon has an episode of acting disrespectfully to you or to any of the other operating room staff, conclude your care of that current patient without a confrontation. After the case is finished, choose a time to hold a face-to-face conversation with the surgeon. The setting could be a hallway, in the locker room, or at some other location where no patient care is being done. Tell him or her that you find their behavior toward you unacceptable, and that they need to stop it. If you get pushback, and you probably will, you have several choices: 1) have a loud verbal argument, asserting your will against theirs, 2) grin, bear it, and stop complaining about the circumstance; 3) request your scheduler to never schedule you with this surgeon again; or 4) kick it upstairs to the chief of the department and/or the chief of the surgery department.

Which option should you choose?

1) gets you a boisterous unprofessional argument with an individual who will be resistant to change. 2) results in a long-term unacceptable solution for you and your professional esteem. 3) gets you off the hook but does nothing to change the situation for others in the operating room. Only 4) will set the wheels in motion toward significant change. Stay calm and confident and refer the incident up to senior physician administrators to evoke change. If the department chairs can not impact behavioral change, take the issue higher to the Chief of Staff.

A genuine problem occurs when a bullying surgeon leaves all major medical centers and starts his or her own surgery center where he or she is the Medical Director and his or her bad behavior goes unscrutinized. If you are working in such a setting, I’d advise you to find another place to give anesthetics. Without an unbiased administrator, the surgeon bullying behaviors will never go away.

You’ll be happier working in an operating room cured of disruptive behavior, and the real winners will be the patients, who will come and go through a hospital free of disruptive behavior and bullying.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO SCREEN OUTPATIENTS PRIOR TO SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Screening prior to outpatient surgery is important. Over 70% of elective surgeries in the United States are ambulatory or outpatient surgeries, in which the patient goes home the same day as the procedure. There are increasing numbers of surgical patients who are elderly, obese, have sleep apnea, or who have multiple medical problems. How do we decide which 70% of surgical candidates are appropriate for outpatient surgery, and which are not?

Since 2002 I’ve been the Medical Director at a busy Ambulatory Surgery Center (ASC) in Palo Alto, California. ASC Medical Directors are perioperative physicians, responsible for the preoperative, intraoperative, and postoperative management of ambulatory surgery patients. Our surgery center is freestanding, distanced one mile from Stanford University Hospital. The hospital-based technologies of laboratory testing, a blood bank, an ICU, arterial blood gas measurement, and full radiology diagnostics are not available on site. It’s important that patient selection for a freestanding surgery center is precise and safe.

The topic of Ambulatory Anesthesia is well reviewed in the textbook Miller’s Anesthesia, 7th Edition, 2009, Chapter 78, Ambulatory (Outpatient) Anesthesia. With the information in this chapter as a foundation, the following 7 points are guidelines I recommend in the preoperative consultation and selection of appropriate outpatient surgery patients:

  1. The most important factor in deciding if a surgical case is appropriate is not how many medical problems the patient has, but rather the magnitude of the surgical procedure. A patient may have morbid obesity, sleep apnea, and a past history of congestive heart failure, but still safely undergo a non-invasive procedure such as a hammertoe repair. Conversely, if the patient is healthy, but the scheduled surgery is an invasive procedure such as resection of a mass in the liver, that surgery needs to be done in a hospital.
  2. Because of #1, an ASC will schedule noninvasive procedures such as arthroscopies, head and neck procedures, eye surgeries, minor gynecology and general surgery procedures, gastroenterology endoscopies, plastic surgeries, and dental surgeries. What all these scheduled procedures have in common is that the surgeries (a) will not disrupt the patient’s airway, breathing, or cardiac physiology in a major way, and (b) will not cause excessive pain requires inpatient intravenous narcotics.
  3. One must screen patients preoperatively to identify individuals who have serious medical problems. Our facility uses a comprehensive preoperative telephone interview performed by a medical assistant, two days prior to surgery. The interview documents age, height, weight, Body Mass Index, complete review of systems, list of allergies, and prescription drug history. All information is entered in the patient’s medical record at that time.
  4. Each surgeon’s office assists in the preoperative screening. For all patients who have (a) age over 65, (b) obstructive sleep apnea, (c) cardiac disease or arrhythmia history, (d) significant lung disease, (e) shortness of breath or chest pain, (f) renal failure or hepatic failure, (g) insulin dependent diabetes, or (h) significant neurological abnormality, the surgery office is required to obtain medical clearance from the patient’s Primary Care Provider (PCP).    This PCP clearance note concludes with two questions: 1) Does the patient require any further diagnostic testing prior to the scheduled surgery? And 2) Does the patient require any further therapeutic measures prior to the scheduled surgery?
  5. For each patient identified with significant medical problems, the Medical Director must review the chart and the Primary Care Provider note, and confirm that the patient is an appropriate candidate for the outpatient surgery. The Medical Director may telephone the patient for a more detailed history if indicated. On rare occasions, the Medical Director may arrange to meet and examine the patient prior to the surgical date.
  6. Medical judgment is required, as some ASA III patients with significant comorbidities are candidates for trivial outpatient procedures such as gastroenterology endoscopy or removal of a neuroma from a finger, but are inappropriate candidates for a shoulder arthroscopy or any procedure that requires general endotracheal anesthesia.
  7. What about laboratory testing? Per Miller’s Anesthesia, 7th Edition, 2009, Chapter 78, few preoperative lab tests are indicated prior to most ambulatory surgery. We require a recent ECG for patients with a history of hypertension, cardiac disease, or for any patient over 65 years in age. If this ECG is not included with the Primary Care Provider consultation note, we perform the ECG on site in the preoperative area of our ASC, at no charge to the patient. All diabetic patients have a fasting glucose test done prior to surgery. No electrolytes, hematocrit, renal function tests, or hepatic tests are required on any patient unless that patient’s history indicates a specific reason to mandate those tests.

Utilizing this system, cancellations on the day of surgery are infrequent—well below 1% of the scheduled procedures. The expense of and inconvenience of an Anesthesia Preoperative Clinic are eliminated.

What sort of cases are not approved? Here are examples from my practice regarding patients/procedures who are/are not appropriate for surgery at a freestanding ambulatory surgery center:

  1. A 45-year-old patient with moderately severe obstructive sleep apnea (OSA) is scheduled for a UPPP (uvulopalatalpharyngoplasty). DECISION: NOT APPROPRIATE. Reference: American Society of Anesthesiologist Practice Guidelines of the Perioperative Management of Patients with OSA (https://www.asahq.org/coveo.aspx?q=osa). For airway and palate surgery on an OSA patient, the patient is best observed in a medical facility post-surgery. For any surgery this painful in an OSA patient, the patient will require significant narcotics, which place him at risk for apnea and airway obstruction post-surgery.
  2. A morbidly obese male (Body Mass Index = 40) is scheduled for a shoulder arthroscopy and rotator cuff repair. DECISION: NOT APPROPRIATE. Obesity is not an automatic exclusion criterion for outpatient surgery. Whether to cancel the case or not depends on the nature of the surgery. A shoulder repair often requires significant postoperative narcotics. The intersection of morbid obesity and a painful surgery means it’s best to do the case in a hospital. One could argue that this patient could be done with an interscalene block for postoperative analgesia and then discharged home, but I don’t support this decision. If the block is difficult or ineffective, the anesthesiologist has a morbidly obese patient requiring significant doses of narcotics, and who is scheduled to be discharged home. If this surgery had been a knee arthroscopy and medial meniscectomy it could be an appropriate outpatient surgery, because meniscectomy patients have minimal pain postoperatively.
  3. An 18-year-old male with a positive family history of Malignant Hyperthermia is scheduled for a tympanoplasty. DECISION: APPROPRIATE. A trigger-free general total-intravenous anesthetic with propofol and remifenantil can be given just as safely in an ASC as in a hospital.
  4. A 50-year-old 70-kilogram male with a known difficult airway (ankylosing spondylitis) is scheduled for endoscopic sinus surgery. DECISION: NOT APPROPRIATE. In our ASC, for safety reasons, we have advanced airway equipment including a video laryngoscope and a fiberoptic laryngoscope. Despite our equipment, a patient with a known difficult airway is best scheduled for surgery in a hospital setting.
  5. An 80-year-old woman with shortness of breath on exertion is scheduled for a bunionectomy. DECISION: NOT APPROPRIATE. Although foot surgery is not a major invasive procedure, any patient with shortness of breath is inappropriate for ASC surgery. The nature of the dyspnea needs to be determined and remedied prior to surgery or anesthesia of any sort.
  6. A 6-year-old female born without an ear is scheduled for a 6-hour ear graft and reconstruction. DECISION: APPROPRIATE. With modern general anesthetic techniques utilizing sevoflurane and propofol, patients awake promptly. Even after long anesthetics, if the surgery is not painful, patients are usually discharged in stable condition within 60 minutes.

There are infinite combinations of patient comorbidities and types of surgeries. The decision regarding which scheduled procedures are appropriate and which are not is both an art and a science. The role of an anesthesiologist/Medical Director as the perioperative physician making these decisions is invaluable.

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

AVOIDING AIRWAY DISASTERS IN ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Every anesthesia practitioner dreads airway disasters.  Anesthesiologists and nurse anesthetists are airway experts, but anesthesia professionals are often the only person in the operating room capable of keeping a patient alive if the patient’s airway is occluded or lost. Hypoxia from an airway disaster can lead to brain damage within minutes, so there is little time for human error.

A fundamental skill is the ability to assess a patient’s airway prior to anesthesia. One must assess whether the patient will pose: 1) difficult bag-mask ventilation, 2) difficult supraglottic/laryngeal mask airway placement, 3) difficult laryngoscopy, 4) difficult endotracheal intubation, or 5) difficult surgical airway.

Of critical importance is #1) above, that is, recognizing the patient who will present difficult mask ventilation. Conditions that make for difficult bag-mask ventilation are uncommon, and usually can be detected during physical examination. Despite the importance of expertise in endotracheal intubation, I teach residents and trainees that the most important airway skill is bag-mask ventilation. Every year I encounter several patients who present unanticipated difficult intubations. In each of these patients, I’m able to mask ventilate the patient to keep them oxygenated while I try various strategies and techniques to successfully place an endotracheal tube or a laryngeal mask airway.

Most anesthesia airway disasters aren’t merely difficult intubations, but scenarios that are classified as “can’t intubate, can’t ventilate.” In these “can’t intubate, can’t ventilate” situations, the anesthesiology professional has only minutes to restore oxygenation to the patient or else the risk of permanent brain damage is very real.

The American Society of Anesthesiologists Difficult Airway Algorithm is a guide for anesthesia practitioners regarding how proceed in airway management. The algorithm is detailed, complex, comprehensive, and defines the standard of care in any medical-legal battle concerning hypoxic brain damage due difficult airway clinical cases. The algorithm is so detailed, complex, and comprehensive that some would say it’s impossible to remember every step in the acute occurrence of an airway disaster.

A simplified approach has been touted.

Dr. C. Philip Larson, Professor Emeritus, Anesthesia and Neurosurgery, Stanford University, and Professor of Clinical Anesthesiology at UCLA, and previous Chairman of Anesthesiology at Stanford, was one of my teachers and mentors for both endotracheal intubation and fiberoptic intubation. In a Letter to the Editor of the Stanford Gas Pipeline in May, 2013, Dr. Larson wrote, “there is no scientific evidence that anesthesia is safer because of the ASA Difficult Airway Algorithm.  While an interesting educational document, I question the daily clinical value of this algorithm, even in its most recent form (Anesthesiology 2013; 118:251-70). The ASA Difficult Airway Algorithm was developed by committee and has all the problems that result when done that way.  It is complex, diffuse, multi-dimensional, and all-encompassing such that it is not an instrument that one can easily adopt and practice in the clinical setting.”

Dr. Larson recommends a system of Plans A-D, a system he published in Clinical Anesthesiology, editors Morgan GE, Mikhail MS, Murray MJ, Lange Medical publication, 4th edition, 2006, pp 104-5, and in Current Reviews in Clinical Anesthesiology (2009; 30:61-72), and also in the Appendix on airway management and intubation in the newest edition of Anesthesiologists Manual of Surgical Procedures by Richard Jaffe et al (Lippincott Williams and Wilkins, 5th Edition, May 2014). An outline of the system is as follows:

A.  Plan A is direct laryngoscopy an intubation using a Miller or MacIntosh blade.

B.  If Plan A is unsuccessful, Plan B includes use of video laryngoscopy with a GlideScope or similar device.

C.  If Plan B is unsuccessful, Plan C is placement of an LMA with intubation through that LMA using a fiberoptic bronchoscope.

D.  “If Plans A-C fail,” Larson wrote in his Letter to the Editor of the Stanford Gas Pipeline in May, 2013, “one needs Plan D.  The first and perhaps the most prudent option is to cancel the proposed operation, terminate the anesthetic, and wake the patient up. The operation would be rescheduled for another day, and at that time an awake fiberoptic intubation technique would be used.  Alternatively, if the operation cannot be postponed, then the surgeon should be informed that a surgical airway (i.e.: tracheostomy) must be performed before the planned operation can commence.  To date, utilization of Plan D because of failure of Plans A-C has not occurred.”

Dr. Larson wrote that the airway skills in Plan A – C should be practiced regularly on patients with normal airways. I agree with Dr. Larson that in managing difficult airways, a practitioner needs a short list of procedural skills that he or she is expert at rather that a large array of procedures that they rarely use (such as the alternative intubation techniques using light wands or blind nasal techniques, or invasive airway procedures such as retrograde wires passed through the cricothyroid membrane or transtracheal jet ventilation through a catheter). It’s wise for anesthesiologists to regularly hone their techniques of video laryngoscopy (Plan B) and fiberoptic intubation via an LMA (Plan C) on patients with normal airways, to remain expert with these skills.

Regarding Plan B, an important advance is the availability of portable, disposable video laryngoscopes such as the Airtraq, a guided video intubation device. In my career I sometimes work in solo operating room suites distant from hospitals. In these settings, the operating room is usually not be stocked with an expensive video scope such as the GlideScope, the C-MAC, or the McGrath 5. I carry an Airtraq in my briefcase, and if the need for Plan B arises I am prepared to utilize video laryngoscopy at any anesthetizing location. I suggest the practice of carrying an Airtraq to any anesthesiologist who gives general anesthetics in remote locations.

Regarding emergency surgical rescue airway management, Dr. Larson recently published a Letter to the Editor in the American Society of Anesthesiologists Newsletter, February 2014, entitled, Ditch the Needle – Teach the Knife. In this letter, Dr. Larson wrote:

“in life-threatening airway obstruction, … an emergency cricothyrotomy is much quicker, easier, safer and more effective than any needle-based technique. I can state with confidence that there is no place in emergency airway management for needle-based attempts to establish ventilation. It should be deleted from the ASA Difficult Airway Algorithm. I have participated in seven cricothyrotomies in emergency airway situations, and all of the patients left the hospital without any neurological injury or complications from the cricothyrotomy. The risk-benefit ratio is markedly in favor the knife technique…. With a knife, or scissors, one cuts quickly either vertically or horizontally below the thyroid cartilage and there is the cricothyroid membrane or tracheal rings. The knife is inserted into the trachea and turned 90 degrees, and an airway is established. At that point, a small tube of any type can be inserted next to the knife. The knife technique is much safer because there is virtually nothing that one can harm by making an incision within two inches or less in the midline of the neck, and it can be performed in less than 30 seconds. In contrast, the needle is fraught with complications, including identifying the trachea, making certain that the needle is entirely in the trachea and does not move ( to avoid subcutaneous emphysema when an oxygen source is established), establishing a pressurized oxygen delivery system (which will take more than five minutes even in the most experienced circumstances), and avoiding causing a tension pneumothorax… I know of multiple cases of acute airway obstruction where the needle technique was attempted, and in all cases the patients died. I know of no such cases when a cricothyrotomy was used as the primary treatment of acute airway obstruction.”

A final note on the awake intubation of patients with a difficult airway: In hindsight in any difficult airway case, one often wishes they had secured an endotracheal tube prior to the induction of general anesthesia. The difficult problem is deciding prior to a case which patient has such a difficult airway that the induction of general anesthesia should be delayed until after intubation. In anesthesia oral board examinations it may be wise to say you would perform an awake intubation on a difficult airway patient rather than risk the “can’t intubate, can’t ventilate” scenario the examiner is probably poised to skewer you with. In medical malpractice lawsuits, plaintiff expert witnesses in anesthesia airway disaster cases often testify that a brain-dead patient’s life would have been saved if only the anesthesiologist had performed awake intubation rather than inducing general anesthesia first and then losing the airway. The key question is: how does one decide which patient needs an awake intubation? As an anesthesia practitioner, if you performed awake intubations on one out of 50 cases because you were worried about a difficult airway, you would delay operating rooms and surgeons multiple times per year because of your caution. You will not be popular if you do this. In my clinical practice and in the practice of the excellent Stanford anesthesiologists I work with, the prevalence of awake intubation is very low. I estimate most anesthesiologists perform between zero and two awake intubations per year. The most common indications include patients with severe ankylosing spondylitis of the cervical spine, congenital airway anomalies, and severe morbid obesity. Dr. Larson wrote in his Letter to the Editor of the Stanford Gas Pipeline in May, 2013, “I do anesthesia for most of the patients with complex head and neck tumors, and I find fewer and fewer indications for awake fiberoptic intubation. As long as the lungs can be ventilated by bag-mask or LMA, which is true for almost all sedated patients, Plan C is easier, quicker and safer than awake fiberoptic intubation both for the patient and the anesthesia provider.  In experienced hands, Plan C can be completed in less than 5 minutes, and one can become proficient by practicing in normal patients. I have done hundreds of Plan C’s, many under difficult circumstances, without a single failure or complication.  Obviously, no technique will encompass every conceivable airway problem, but mastering Plans A-D and awake oral and nasal fiberoptic intubation will meet the needs of anesthesia providers in almost all circumstances.”

May you never experience the  emotional trauma of an airway disaster. Become an expert in bag-mask ventilation, always have access to a video laryngoscope or an Airtraq, and consider  Dr. Larson’s  Plan A-D system, described in detail in the Appendix on airway management and intubation in the newest edition of Anesthesiologists Manual of Surgical Procedures by Richard Jaffe et al (Lippincott Williams and Wilkins, 5th Edition, May 2014).

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

THE TOP 11 DISCOVERIES IN THE HISTORY OF ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Important advances in the history of anesthesia changed the specialty forever. Humans have inhabited the Earth for 200,000 years, yet the discovery of surgical anesthesia was a recent development in 1846. For thousands of years most surgical procedures were accompanied by severe pain. The only strategies available to blunt pain were to give patients alcohol or opium until they were stuporous.

In the 21st Century, modern anesthesiologists utilize dozens of medications and apply sophisticated high-tech medical equipment. How did our specialty advance from prescribing patients two shots of whiskey to administering modern anesthetics?

In chronologic order, my choices for the 11 most important advances in the history of anesthesia follow below. I’ve included comments to expound on the impact of each discovery.

image069

1846. THE DISCOVERY OF ETHER AS A GENERAL ANESTHETIC. The first public demonstration of general anesthesia occurred at Harvard’s Massachusetts General Hospital in Boston, Massachusetts. Dr. William Morton, a local dentist, utilized inhaled ether to anesthetize patient Edward Abott.  Dr. John Warren then painlessly removed a tumor from Abbott’s neck.  Comment: This was the landmark discovery. From this point forward, painless surgery became possible.

1885. THE DISCOVERY OF INJECTABLE COCAINE AND LOCAL ANESTHESIA.  Cocaine was the first local anesthetic. Dr. William Halsted of Johns Hopkins University in Baltimore first injected 4% cocaine into a patient’s forearm and concluded that cocaine blocked sensation, as the arm was numb below but not above the point of injection. The first spinal anesthetic was performed in 1885 when Dr. Leonard Corning of Germany injected cocaine between the vertebrae of a 45-year-old man and caused numbness of the patient’s legs and lower abdomen. Comment: The discovery of local anesthesia gave doctors the power to block pain in specific locations. Improved local anesthetics procaine (Novocain) and lidocaine were later discovered in 1905 and 1948, respectively.

depositphotos_107354984-stock-photo-iron-vintage-glass-syringe-with

1896. THE DISCOVERY OF THE HYPODERMIC NEEDLE, THE SYRINGE, AND THE INJECTION OF MORPHINE. Alexander Wood of Scotland invented a hollow needle that fit on the end of a piston-style syringe, and used the syringe and needle combination to successfully treat pain by injections of morphine. Comment: The majority of anesthetic drugs today are injected intravenously. Such injections would be impossible without the invention of the syringe.

1905. DISCOVERY OF THE MEASUREMENT OF BLOOD PRESSURE BY BLOOD PRESSURE CUFF. Dr. Nikolai Korotkov of Russia described the sounds produced during auscultation with a stethoscope over a distal portion of an artery as a blood pressure cuff was deflated. These Korotkoff sounds resulted in an accurate determination of systolic and diastolic blood pressure. Comment: Anesthesiologists monitor patients repeatedly during every surgery. A patient’s vital signs are the heart rate, respiratory rate, blood pressure, and temperature. It would be impossible to administer safe anesthesia without blood pressure measurement. Low blood pressures may be evidence of anesthetic overdose, excessive bleeding, or heart dysfunction. High blood pressures may be evidence of inadequate anesthetic depth, or uncontrolled hypertensive heart disease.

8040085_intube_cuffed_endotracheal_tube_id_8_web_large

1913. DISCOVERY OF THE CUFFED ENDOTRACHEAL BREATHING TUBE. Sir Ivan Magill of England developed a technique of placing a breathing tube into the windpipe, and endotracheal anesthesia was born. Dr. Chevalier Jackson of Pennsylvania developed the first laryngoscope used to visualize the larynx and insert an endotracheal tube. Drs. Arthur Guedel and Ralph Waters at the University of Wisconsin discovered the cuffed endotracheal tube in 1928. This advance allowed the use of positive-pressure ventilation into a patient’s lungs. Comment: Surgery within the abdomen and chest would be impossible without controlling the airway and breathing with a tube in the trachea. As well, the critical care resuscitation mantra of Airway-Breathing-Circulation would be impossible without an endotracheal tube.

1934. THE DISCOVER OF THIOPENTAL AND INJECTABLE BARBITURATES. Dr. John Lundy of the Mayo Clinic in Rochester, Minnesota introduced the intravenous anesthetic sodium thiopental into anesthetic practice. Injecting Pentothal became the standard means to induce general anesthesia. Pentothal provided a more pleasant method of going to sleep than inhaling pungent ether. Comment: This was a huge breakthrough. Almost every modern anesthetic begins with the intravenous injection of an anesthetic drug. (Propofol has now replaced Pentothal)

1940. THE DISCOVERY OF CURARE AND INJECTABLE MUSCLE RELAXANTS. Dr. Harold Griffith of Montreal, Canada injected the paralyzing drug curare during general anesthesia to induce muscular relaxation requested by his surgeon. Although the existence of curare was known for many years (it was an arrow poison of the South American Indians), it was not used in surgery to deliberately cause muscle relaxation until this time. Comment: Paralyzing drugs are necessary to enable the easy insertion of endotracheal tubes into anesthetized patients, and paralysis is also essential for many abdominal and chest surgeries.

1950’s. THE DEVELOPMENT OF THE POST-ANESTHESIA CARE UNIT (PACU) AND THE INTENSIVE CARE UNIT (ICU). The shock and resuscitation units organized during World War II and the Korean War resulted in efficient care for the sick and wounded. After the wars, PACU’s and ICU’s were natural extensions of these battlefield inventions. Comment: In the PACU, a patient’s airway, breathing, and circulation are observed, monitored, and treated immediately following surgery. PACU’s decrease post-operative complications. In the ICU, Airway-Breathing-Circulation management perfected in the operating room is extended to critically ill patients who are not undergoing surgery.

1956. THE DISCOVERY OF HALOTHANE, THE FIRST MODERN INHALED ANESTHETIC. British chemist Charles Suckling synthesized the inhaled anesthetic halothane. Halothane had significant advantages over ether because of halothane’s more pleasant odor, higher potency, faster onset, nonflammability, and low toxicity. Halothane gradually replaced older anesthetic vapors, and achieved worldwide acceptance. Comment: Halothane was the forerunner of isoflurane, desflurane, and sevoflurane, our modern inhaled anesthetics. These drugs have faster onset and offset, cause less nausea, and are not explosive like ether. The discovery of halothane changed inhalation anesthesia forever.

1983. THE DISCOVERY OF PULSE OXIMETRY MONITORING. The Nellcor pulse oximeter, co-developed by Stanford anesthesiologist Dr. William New, was the first commercially available device to measure the oxygen saturation in a patient’s bloodstream. The Nellcor pulse oximeter had the unique feature of lowering the audible pitch of the pulse tone as saturation dropped, giving anesthesiologists a warning that their patient’s heart and brain were in danger of low oxygen levels. Comment: The Nellcor changed patient monitoring forever. Oxygen saturation is now monitored before, during, and after surgery. Prior to Nellcor monitoring, the first sign of low oxygen levels was often a cardiac arrest. Following the invention of the Nellcor, oxygen saturation became the fifth vital sign, along with pulse rate, respiratory rate, blood pressure, and temperature.

etco2-waveforms-i4

1986.  END-TIDAL CO2 MONITORING. In 1986 the American Society of Anesthesiologists mandated continual end-tidal carbon dioxide analysis be performed using a quantitative method such as capnography, from the time of endotracheal tube/laryngeal mask placement until extubation/removal or initiating transfer to a postoperative care location. The detection and monitoring of carbon dioxide gave immediate feedback whenever ventilation of the lungs was failing. For example, an endotracheal breathing tube placed in the esophagus instead of the tracheal would yield zero (or close to zero) carbon dioxide. The end-tidal CO2 device alarms immediately, the anesthesiologist recognizes the problem, and fixes it at once. The development of pulse oximetry and end-tidal CO2 monitoring were concurrent, and because of these twin discoveries, anesthesia care became markedly safer after the 1980’s

These are the top 11 discoveries in the history of anesthesia as I see them. What will be the next successful invention to advance our specialty?  A superior pain-relieving drug? A better inhaled anesthetic? An improved monitor to insure patient safety? Top scientists and physicians worldwide are working this very day to join this list. Good luck to each of them.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW RISKY IS A TONSILLECTOMY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

13-year-old Jahi McMath of Oakland, California suffered sudden bleeding from her nose and mouth and cardiac arrest following a December 9th 2013 tonsillectomy, a surgery intended to help treat her obstructive sleep apnea. After the bleeding she lapsed into a coma. Three days later she was declared brain-dead.

tonsillectomy-recovery-day-by-day-12

How could this happen?

Behind circumcision and ear tubes, tonsillectomy is the third most common surgical procedure performed on children in the United States. 530,000 tonsillectomies are performed children under the age of 15 each year. Tonsillectomy is not a minor procedure. It involves airway surgery, often in a small child, and often in a child with obstructive sleep apnea. The surgery involves a risk of bleeding into the airway. The published mortality associated with tonsillectomy ranges from 1:12,000 to 1:40,000. 

Between 1915 and the 1960’s, tonsillectomy was the most common surgery in the United States, done largely to treat chronic throat infections. After the 1970’s, the incidence of tonsillectomies dropped, as pediatricians realized the procedure had limited success in treating chronic throat infections. The number of tonsillectomies has increased again in the last thirty years, as a treatment for obstructive sleep apnea (OSA). Currently 90 percent of tonsillectomies are performed to treat OSA. Only 1 – 4 % of children have OSA, but many of these children exhibit behavioral problems such as growth retardation, poor school performance, or daytime fatigue. The American Academy of Otolaryngology concluded that “a growing body of evidence indicates that tonsillectomy is an effective treatment for sleep apnea.”

Tonsillar and adenoid hypertrophy are the most common causes of sleep-disordered breathing in children. Obstructive sleep apnea is defined as a “disorder of breathing during sleep characterized by prolonged upper airway obstruction and/or intermittent complete obstruction that disrupts normal ventilation during sleep.” (Miller’s Anesthesia, 7th edition, 2009, Chapter 82).

In OSA patients, enlarged tonsils can exacerbate loud snoring, decrease oxygen levels, and cause obstruction to breathing. Removal of the tonsils can improve the diameter of the breathing passageway. Specific diagnosis of OSA can be made with an overnight sleep study (polysomnography), but applying this test to large populations of children is a significant expense. Currently only about 10 percent of otolaryngologists request a sleep study in children with sleep-disordered breathing prior to surgery (Laryngoscope 2006;116(6):956-958). In our surgical practice in Northern California, most pediatricians and otolaryngologists forego the preoperative overnight sleep study if the patient has symptoms of obstructed sleep, confirmed by a physical exam that reveals markedly enlarged tonsils.

Every tonsillectomy requires general anesthesia, and anesthesiologists become experts in the care of tonsillectomy patients. Prior to surgery the anesthesiologist will review the chart, interview the parent(s), and examine the child’s airway. Most children under the age of 10 will be anesthetized by breathing sevoflurane via an anesthesia mask, which is held by the anesthesiologist. Following the child’s loss of consciousness, the anesthesiologist will place an intravenous (IV) catheter in the child’s arm. The anesthesiologist then inserts a breathing tube into the child’s windpipe, and turns the operating table 90 degrees away so the surgeon has access to operate on the throat. The surgeon will move the breathing tube to the left and right sides of the mouth while he or she removes the right and left tonsils. (note: children older than the age of 10 will usually accept an awake placement of an IV by the anesthesiologist, and anesthetic induction is accomplished by the IV injection of sleep drugs including midazolam and propofol, rather than by breathing sevoflurane via an anesthesia mask).

The child remains asleep until the tonsils are removed, and all bleeding from the surgical site is controlled. The anesthesiologist then discontinues general anesthetic drugs and removes the breathing tube when the child awakens. Care is taken to assure that the airway is open and that breathing is adequate. Oxygen is administered until the child is alert. Tonsillectomy is painful, and intravenous opioid drugs such as fentanyl or morphine are commonly administered to relieve pain. The opioids depress respiration, and monitoring of oxygen levels and breathing is routinely done until the child leaves the surgical facility.

Most tonsillectomy patients have surgery as an outpatient and are discharged home within hours after surgery. Prior to the 1960’s patients were hospitalized overnight routinely post-tonsillectomy. In 1968 a case series of 40,000 outpatient tonsillectomies with no deaths was reported, and performance of tonsillectomy on an outpatient basis became routine after that time. (Miller’s Anesthesia, 7th edition, 2009, Chapter 33).

Published risk factors for postoperative complications after tonsillectomy include: (1) age younger than 3 years; (2) evidence of OSA; (3) other systemic disorders of the heart and lungs); (4) presence of airway abnormalities; (5) bleeding abnormities; and (6) living a long distance from an adequate health care facility, adverse weather conditions, or home conditions not consistent with close observation, cooperativeness, and ability to return quickly to the hospital. (Miller’s Anesthesia, 7th edition, 2009, Chapter 82).

The incidence of post-tonsillectomy bleeding increases with age. In a national audit of more than 33,000 tonsillectomies, hemorrhage rates were 1.9% in children younger than 5 years old, 3% in children 5 to 15 years old, and 4.9% in individuals older than 16. The return to the operating room rate was 0.8% in children younger than 5 years old, 0.8% in children 5 to 15 years old, and 1.2% in individuals older than 16. (Miller’s Anesthesia, 7th edition, 2009, Chapter 75).

Primary bleeds usually occur within 6 hours of surgery. Hemorrhage is usually from a venous or capillary bleed, rather than from an artery. Complications occur because of hypovolemia (massive blood loss), the risk of blood aspiration into the lungs, or difficulty with replacing the breathing tube should emergency resuscitation be necessary. Early blood loss can be difficult to diagnose, as the blood is swallowed and not seen. Signs suggesting hemorrhage are an unexplained increasing heart rate, excessive swallowing, pale skin color, restlessness, sweating, and swelling of the airway causing obstruction. Low blood pressure is a late feature. (Miller’s Anesthesia, 7th edition, 2009, Chapter 75).

What happened to 13-year-old Jahi McMath in Oakland following her tonsillectomy? We have no access to her medical records, and all we know is what was reported to the press. The following text was published in the 12/21/2013 Huffington Post:

After her daughter underwent a supposedly routine tonsillectomy and was moved to a recovery room, Nailah Winkfield began to fear something was going horribly wrong.

Jahi was sitting up in bed, her hospital gown bloody, and holding a pink cup full of blood.

“Is this normal?” Winkfield repeatedly asked nurses.

With her family and hospital staff trying to help and comfort her, Jahi kept bleeding profusely for the next few hours then went into cardiac arrest, her mother said.

Despite the family’s description of the surgery as routine, the hospital said in a memorandum presented to the court Friday that the procedure was a “complicated” one.

“Ms. McMath is dead and cannot be brought back to life,” the hospital said in the memo, adding: “Children’s is under no legal obligation to provide medical or other intervention for a deceased person.”

In an interview at Children’s Hospital Oakland on Thursday night, Winkfield described the nightmarish turn of events after her daughter underwent tonsil removal surgery to help with her sleep apnea.

She said that even before the surgery, her daughter had expressed fears that she wouldn’t wake up after the operation. To everyone’s relief, she appeared alert, was talking and even ate a Popsicle afterward.

But about a half-hour later, shortly after the girl was taken to the intensive care unit, she began bleeding from her mouth and nose despite efforts by hospital staff and her family.

While the bleeding continued, Jahi wrote her mother notes. In one, the girl asked to have her nose wiped because she felt it running. Her mother said she didn’t want to scare her daughter by saying it was blood.

Family members said there were containers of Jahi’s blood in the room, and hospital staff members were providing transfusions to counteract the blood loss.

“I don’t know what a tonsillectomy is supposed to look like after you have it, but that blood was un-normal for anything,” Winkfield said.

The family said hospital officials told them in a meeting Thursday that they want to take the girl off life support quickly.

“I just looked at the doctor to his face and I told him you better not touch her,” Winkfield recalled.

Despite the family’s description of the surgery as routine, the hospital said in a memorandum presented to the court Friday that the procedure was a “complicated” one.

 

Despite the precaution of hospitalizing Jahi McMath post-tonsillectomy, when her bleeding developed it seems the management of her Airway-Breathing-Circulation did not go well. I’ve attended to bleeding post-tonsillectomy patients, and it can be a harrowing experience. It can be an extreme challenge to see through the blood, past the swollen throat tissues post-surgery, and locate the opening to the windpipe so that one can insert the breathing tube needed to supply oxygen to the lungs. Assistance from a second anesthesiologist is often needed. The surgeon will be unable to treat or control severe bleeding until an airway tube is in place.  Difficult intubation and airway management can lead to decreased oxygen levels and ventilation, jeopardizing oxygen delivery to the brain and heart. If severe bleeding is unchecked and transfusion of blood cannot be applied swiftly, the resulting low blood pressure and shock can contribute to the lack of oxygen to a patient’s brain.

A bleeding tonsillectomy patient can be an anesthesiologist’s nightmare.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

READING IN THE OPERATING ROOM

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You’re an attending anesthesiologist. You enter another colleague’s operating room to give him a bathroom break during his 6-hour plastic surgery case, and you find him tapping on an iPad and reading in the operating room. What do you do?

Discussion:  Is it OK for the anesthesiologist to be reading in the operating room? Is it OK for him to be referencing the Internet? Answering email? Sending text messages on his smartphone? Or should that anesthesiologist be staring transfixed at the monitor screen for hour after hour, maintaining flawless vigilance?

In the Anesthesia Patient Safety Foundation Newsletter Summer 1995 edition, Dr. Matthew Weinger discussed the issue of reading in the operating room. He emphasized that there were no scientific data on the impact of reading on anesthesia provider vigilance or task performance. He cited data that anesthesiologists are ‘idle’ during 40% of routine cases. He asserted that “anesthesia providers read during these idle periods to prevent boredom, and that boredom was a problem of information underload, insufficient work challenge, and under-stimulation…Adding tasks to a monotonous job may decrease boredom and dividing attention among several tasks (time-sharing) may, in some circumstances, actually improve monitoring performance.” Weinger concluded that, “in the absence of controlled studies on the effect of reading in the operating room on anesthesia vigilance and task performance, no definitive or generalizable recommendations can be made. The decision must remain a personal one based on recognition of one’s capabilities and limitations. From a broader perspective, the anesthesia task including associated equipment must be optimized to minimize boredom and yet not be so continuously busy as to be stressful.”

In the Anesthesia Patient Safety Foundation Newsletter, Fall 2004 edition, Dr. Terri Monk opined that reading in the OR seriously compromised patient safety. She was opposed to reading for the following reasons:

  1. Reading diverts one’s attention from the patient.
  2. The patient is paying for the anesthesiologist’s undivided attention, and most well-informed patients want to know if the anesthesiologist plans to turn over a portion of their anesthesia care to a nurse or resident. If we are obliged to honestly answer that concern, then, shouldn’t we also be obliged to inform the patient that we plan to read during a portion of the anesthetic?
  3. Reading is medico-legally dangerous. Dr. Monk wrote, “Any plaintiff’s attorney would love to have a case in which the circulating nurse would testify, ‘Dr. Giesecke was reading when the cardiac arrest occurred. Yep, he was reading the Wall Street Journal. You know he has a lot of valuable stocks that he must keep track of.’ It is possible that if anesthesiologists informed their malpractice carriers that they routinely read during cases, the companies might raise premiums or cancel malpractice coverage.”
  4. The practice of reading in the OR projects a negative public image. Nurses, technicians, and surgeons may think the anesthesiologist is less professional.

A 2009 study looked at 172 selected general anesthetic cases in an academic medical center. Vigilance was assessed by the response time to a randomly illuminated alarm light. Reading was observed in 35% of cases. In the 60 cases that involved reading, providers read during 25  +/- 3% of maintenance time but not during induction or emergence. Vigilance to the alarm light was no different between readers and non-readers.

Miller’s Anesthesia (7th Edition, 2009, chapter 6) states, “Although it is indisputable that reading can distract attention from patient care, there are no data at present to determine the degree to which reading does distract attention, especially if the practice is confined to low-workload portions of a case. Furthermore, many anesthetists pointed out that reading as a distraction is not necessarily any different from many other kinds of activities not related to patient care that are routinely accepted, such as idle conversation among personnel.”

A 2012 study concluded there were no data concerning the effects of the use of laptops and smartphones in the operating theatre on anesthetist performance, and that these devices were now in frequent use. They discussed the use of laptops and smartphones in regards to the two pertinent issues of vigilance and multitasking. There were data that in some circumstances the addition of a secondary task (i.e. using a laptop or smartphone) during periods of low stimulation can improve vigilance and overall task performance, but the workload and the nature of the secondary task were critical. The authors made the following points regarding the nature of anesthesia work and the factors that affect performance in anesthesia:

  1. Anesthesia involves multi-tasking and the maintenance of situational awareness. Studies have shown that attending to a range of tasks simultaneously is a key characteristic of anesthetic practice, and that anesthetists are superior to non-anesthetists in performing additional tasks while monitoring patients.
  2. Anesthetists typically only glance at monitors. Covert observations of anesthetists in British Columbia revealed subjects spent less than 5% of their time observing the monitoring display. This was made up of brief glances (1.5 to 2 seconds duration) occurring 15 – 20 times during each 10-minute segment of time.
  3.    Anesthetic work is reduced during prolonged maintenance, potentially resulting in boredom and/or secondary activities being undertaken. The maintenance phase in some anesthetics (typically cases of longer duration, lower complexity and where the patient is stable) may be a time of low workload and infrequent task demands. In a study of 105 anesthesia clinicians, half reported being bored infrequently, but 90% admitted to occasional episodes of extreme boredom. Boredom can result in severely decreased vigilance if the anesthetist is suffering from sleep deprivation.
  4.    The authors concluded there was no evidence to support a blanket prohibition on the use of smartphones and laptops in the operating theatre, and there was good reason to avoid edicts that are not supported by solid evidence. They stated, “There is no doubt that reading or computer usage gives the appearance of being less attentive, even if there are no measurable effects on routine care…Computer and phone tasks that also require immediate responses appear to provide a greater risk than reading (whether from a book or screen). While boredom may be cognitively unpleasant, there is no evidence of anesthetist boredom (in the absence of sleep) harming patients.”

I recently attended the American Society of Anesthesiologists national convention in San Francisco. At the conclusion of the meeting, the ASA emailed me a full text edition of the Refresher Course lectures as an email attachment, in a format designed to be downloaded onto a computer. Like myself, more than 10,000 anesthesiologist attendees of the ASA meeting will now have access to the Refresher Course curriculum on their laptops or iPads. Will some of them read these Refresher Courses during the stable maintenance phases of anesthetics in their operating rooms? Perhaps.

Returning to the Clinical Case for Discussion above, what will you do about your colleague you discovered using his iPad in the operating room? My guess is, based on what has been published in the anesthesia literature, you’ll give him the bathroom break as intended, and say nothing about his use of the iPad in the operating room.

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO WAKE UP PATIENTS PROMPTLY FOLLOWING GENERAL ANESTHETICS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Two patients arrive simultaneously in the recovery room following general endotracheal anesthetics. One patient is unresponsive and requires an oral airway to maintain adequate respiration. In the next bed, the second patient is awake, comfortable and conversant. How can this be? It occurs because different anesthetists practice differently. Some can wake up patients promptly, and some cannot.

Aldrete Score Calculator - Definition | Aldrete score chart

Does it matter if a patient wakes up promptly after general anesthesia? It does. An awake, alert patient will have minimal airway or breathing problems. When it’s time to walk away from your patient in the recovery room, you’ll worry less if your patient is already talking to you and has minimal residual effects of general anesthesia. Whether the surgery was a radical neck dissection, a carotid endarterectomy, a laparotomy, or a facelift, it’s preferable to have your patient as awake as possible in the recovery room.

What can you do to assure your patients wake up promptly? A Pubmed search will give you little guidance. There’s a paucity of data or evidence in the medical literature on how to wake patients faster. You’ll find data on ultra-short acting drugs such as propofol and remifentanil. This data helps, but the skill of waking up a patient on demand is more an art than a science. Textbooks give you little advice. Anesthesiologist’s Manual of Surgical Procedures, (4th Edition, 2009), edited by Jaffe and Samuels, has an Appendix that lists Standard Adult Anesthetic Protocols, but there is little specific information on how to titrate the drugs to ensure a timely wakeup.

Based on 29 years of administering over 20,000 anesthetics, this is my advice on how to wake patients promptly from general anesthesia:

  1. Propofol. Use propofol for induction of anesthesia. You may or may not choose to infuse propofol during maintenance anesthesia (e.g. at a rate of 50 mcg/kg/min) but if you do, I recommend turning off the infusion at least 10 minutes before planned wakeup. This allows adequate time for the drug to redistribute and for serum propofol levels to decrease enough to avoid residual sleepiness.
  2. Sevoflurane. Sevoflurane is relatively insoluble and its effects wear off quickly when the drug is ventilated out of the lungs at the conclusion of surgery. I recommend a maintenance concentration of 1.5% inspired sevoflurane in most patients. I drop this concentration to 1% while the surgeon is applying the dressings. When the dressings are finished, I turn off the sevoflurane and continue ventilation to pump the sevoflurane out of the patient’s lungs and bloodstream. The expired concentration will usually drop to 0.2% within 5-10 minutes, a level at which most patients will open their eyes.
  3. Nitrous oxide. Unless there is a contraindication (e.g. laparoscopy or thoractomy) I recommend you use 50% nitrous oxide. It’s relatively insoluble, and adding nitrous oxide will permit you to utilize less sevoflurane. I recommend turning off nitrous oxide when the surgeon is applying the dressings at the end of the case, and turning the oxygen flow rate up to 10 liters/minute while maintaining ventilation to wash out the remaining nitrous oxide.
  4. Narcotics. Use narcotics sparingly and wisely. I see overzealous use of narcotics as a problem. Prior to inserting an endotracheal tube, it’s reasonable to administer 50 – 100 mcg of fentanyl to a healthy adult or 0 -50 mcg of fentanyl to a geriatric patient. A small dose serves to blunt the hemodynamic responses of tachycardia or hypertension associated with larynogoscopy and intubation. Bolusing 250 mcg of fentanyl prior to intubation is an unnecessary overdose. The use of ongoing doses of narcotics during an anesthetic depends on the amount of surgical stimulation and the anticipated amount of post-operative pain. You may administer intermittent increments of narcotic (I may give a 50-100 mcg dose of fentanyl every hour) but I recommend your final narcotic bolus be given no less than 30 minutes prior to the anticipated wakeup. Undesired high levels of narcotic at the conclusion of surgery contribute to oversedation and slow awakening. If your patient complains of pain at wakeup, further narcotic is titrated intravenously to control the pain. Your patient’s verbal responses are your best monitor regarding how much narcotic is needed. Your goal at wakeup should be to have adequate narcotic levels and effect, but no more narcotic than needed.
  5. Intra-tracheal lidocaine. I recommend spraying 4 ml of 4% lidocaine into the larynx and trachea at laryngoscopy prior to inserting the endotracheal tube. I can’t cite you any data, but it’s my impression that patients demonstrate less bucking on endotracheal tubes at awakening when lidocaine was sprayed into their tracheas. Less bucking enables you to decrease anesthetic levels further while the endotracheal tube is still in situ.
  6. Local anesthetics. Local anesthetics are your friends at the conclusion of surgery. If the surgeon is able to blunt post-operative pain with local anesthesia or if you are able to blunt post-operative pain with a neuroaxial block or a regional block, your patient will require zero or minimal intravenous narcotics, and your patient will wake up more quickly.
  7. Muscle relaxants. Use muscle relaxants sparingly. Nothing will slow a wakeup more than a patient in whom you cannot reverse the paralysis with a standard dose of neostigmine. This necessitates a delay in extubation until muscle strength returns. Muscle relaxation is necessary when you choose to insert an endotracheal tube at the beginning of an anesthetic, but many cases do not require paralysis for the duration of the surgery. When you must administer muscle relaxation throughout surgery, use a nerve stimulator and be careful not to abolish all twitch responses. Avoid long-acting paralyzing drugs such as pancuronium, as you will have difficulty reversing the paralysis if surgery concludes soon after you’ve administered a dose. Use rocuronium instead. Avoid administering a dose of rocuronium if you believe the surgery will conclude within the next 30 minutes—it may be difficult to reverse the paralysis, and this will delay wakeup.
  8. Laryngeal Mask Airway (LMA). When possible, substitute an LMA for an endotracheal tube. Wakeups will be smoother, muscle relaxants are unnecessary, and narcotic doses can be titrated with the aim of keeping the patient’s spontaneous respiratory rate between 15- 20 breaths per minute.
  9. Temperature monitoring and forced air warming. Cold is an anesthetic. Strive to keep your patient normothermic by using forced air warming. If your patient’s core temperature is low, wakeup will be delayed.

10. Consider remaining in the operating room after surgery until your patient is awake enough to respond to verbal commands. This is my practice, and I recommend it for safety reasons. In the operating room you have all your airway equipment, drugs, and suction at your fingertips. If an unexpected emergence event occurs, you’re prepared. If an unexpected emergence event occurs in an obtunded patient in the recovery room, your resuscitation equipment will not be as readily available. If your patient is responsive to verbal commands in the operating room, your patient will be wakeful on arrival in the recovery room.

Is this protocol a recipe? Yes, it is. You’ll have your own recipe, and your ingredients may vary from mine. You may choose to administer desflurane instead of sevoflurane. You may choose sufentanil, morphine, or meperidine instead of fentanyl. My advice still applies. Use as little narcotic as is necessary, and try not to administer intravenous narcotic during the last 30 minutes of surgery. If you use a remifentanil infusion, taper the infusion off early enough so the patient is wakeful at the conclusion of surgery.

The principles I’ve recommended here are time-tested and practical. Follow these guidelines and you’ll experience two heartwarming scenarios from time to time:  1) Patients in the recovery room will ask you, “You mean the surgery is done already? I can’t believe it,” and 2) Recovery room nurses will ask you, “Did this patient really have a general anesthetic?  She’s so awake!”

Your chest will swell with pride, and you’ll feel like an artist. Good luck.

 

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

ANESTHESIA FOR SPECIALTY SURGERIES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is specifically for my non-medical layperson readers, and is a discussion of the different types of anesthesia for specialty surgeries. See below:

 

I.  CHILDBIRTH (OBSTETRIC ANESTHESIA):

Most obstetric anesthesia is for either vaginal delivery or for Cesarean sections.

Anesthesia for Vaginal Delivery:  Anesthesia for vaginal delivery is utilized to diminish the pain of labor contractions, while leaving the mother as alert as possible, with as muscle strength as possible, to be able to push the baby out at the time of delivery.  Anesthesia for labor and vaginal delivery is usually accomplished by epidural injection of the local anesthetics bupivicaine (brand name Marcaine) or ropivicaine.

is done by the injection of local anesthetic solution, with or without a narcotic medication, into the low back into the epidural space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood.

The word epidural translates to “outside the dura”. The dura is the outermost lining of the meninges covering the nerves of the spinal column. The epidural space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.   Often, a tiny catheter is left in the epidural space, taped to the patient’s low back, to allow repeated doses of the medication to be given.  The catheter is removed after childbirth.

Anesthesia for Cesarean Section: Cesarean section is a surgical procedure in which the obstetrician makes an incision through the skin of the lower abdomen, and through the wall of the uterus, or womb, to extract the baby without the child requiring a vaginal delivery.  Anesthesia for Cesarean section is usually a spinal or an epidural anesthetic, which leaves the mother as alert as possible, while rendering surgical anesthesia to her abdomen and pelvis.  Spinal or epidural anesthesia is accomplished by injection of local anesthetics, with or without a narcotic medication, into the low back into the subarachnoid or the epidural space. The anesthesiologist remains present for the entire surgical procedure, to assure that the mother is comfortable and that all vital signs are maintained as close to normal limits as possible.

In a minority of cases, the anesthesia provider will administer a general anesthetic for Cesarean section surgery.  The most common indications for general anesthesia are (1) emergency Cesarean, when there is no time for a spinal or epidural block;  and (2) significant bleeding by the mother, leading to a low blood volume, which is an unsafe circumstance to administer a spinal or epidural block.  General anesthetics for Cesarean section carry an increased risk over spinal/epidural anesthesia, primarily because the mother is no longer able to breath on her own and maintain her own airway.

open heart surgery

II.  CARDIAC SURGERY/OPEN HEART SURGERY:

Open heart surgery requires specialized equipment.  Anesthesia for cardiac surgery is complex, and the following is a brief summary:  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure, or to increase the heart’s pumping function.

After the patient is anesthetized, the anesthesiologist often inserts a Transesophageal Echocardiogram (TEE) probe into the patient’s mouth, down the esophagus, and into the stomach.  The TEE gives the anesthesiologist a two-dimensional image of the beating heart and the heart valves in real time, and enables him or her to adjust medications and fluid administration as needed to keep the patient stable.

For open heart surgery, once the chest is open, the cardiac surgeon inserts additional tubes into the veins and arteries around the heart, diverting the patient’s blood from the heart and lungs into a heart-lung machine located alongside the operating table.  During the time the patient is connected to the heart-lung machine, the patient’s heart can be stopped so that the surgeon can operate on a motionless heart.

When the surgeon has completed the cardiac repair, the heart is restarted, and the heart-lung machine is disconnected from the patient.

As the heart resumes beating, the anesthesiologist manages the drug therapy and intravenous fluid therapy to optimize the cardiac function.

III.  ANESTHESIA FOR NEUROSURGERY (BRAIN SURGERY):

Intracranial (brain) surgery requires exacting maintenance of blood pressure, heart rate, and respiratory control.  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure.

The anesthetic technique is designed to provide a motionless operating field for the surgeon.  After the anesthesiologist anesthetizes the patient, he or she inserts the endotracheal tube into the windpipe.  The patient is often hyperventilated, because hyperventilation causes the blood vessels in the brain to constrict, and makes the volume of the the brain decrease.  The relaxed brain affords the surgeon more room to dissect and expose brain tumors or aneurysms.

An important goal of the anesthetic is a quick wake-up at the conclusion of surgery, so that (1) normal neurological recovery of the patient can be confirmed, and (2) the patient is alert enough to  maintain their own airway and breathe on their own.  Most brain surgery patients spend at least one night in the intensive care unit (ICU) after surgery.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW DOES THE ANESTHESIOLOGIST DECIDE WHAT DOSE OF ANESTHETIC TO GIVE A PATIENT?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is directed to my non-medical layperson readers. How does an anesthesiologist decide what dose of anesthetic to administer to a patient? You are a 100-pound, 70-year-old woman. Your son is a 200-pound, 35-year-old man. Do you both require the same doses of general anesthetic if you each need to have your gall bladder removed?

No, you do not.

Anesthesiologists use several criteria to choose the correct dose for your anesthetic.

  • Your weight.      All intravenous anesthetic drugs, such as hypnotics (propofol, sodium pentothal), narcotics (morphine, Demerol, fentanyl), anxiolytics (Versed, Ativan), or muscle paralyzing drugs (rocuronium, vecuronium, succinylcholine) are dosed on a milligram-per-kilogram basis. If you weigh half as much as your neighbor, if all other factors are equal, then you will receive approximately half as many milligrams of the injectable medication as she will.
  • Your age.        Abundant research has demonstrated the relationship between age and anesthetic effect. Youthful patients require more milligrams-per-kilogram of body weight. A teenager may require twice the dose of an 80-year-old patient.
  • How stimulating the surgery is, and how much pain there will be postoperatively.          A non-painful surgery, such as the repair of a small tendon in a finger, will not require large doses of narcotics or pain relievers post-operatively. A painful surgery, such as on open abdominal procedure to remove a pancreatic or liver tumor, will require more narcotics and increased doses of anesthetics. If postoperative pain is blocked by local anesthetic injection in the surgical site or by a nerve block, a patient will require less general anesthetic medications.
  • The duration of the surgery.      An 8-hour surgery will require a longer exposure to more anesthetic drugs than a 1-hour surgery.
  • Your preoperative exposure to central nervous system depressants.      All else being equal, a patient who drinks 12 beers every day will require more anesthesia than a teetotaler who never drinks. A patient who is addicted to chronic prescription painkillers will require more anesthesia than a non-addict.

Inhaled anesthetics, such as sevoflurane, desflurane, isoflurane, or nitrous oxide, are administered in standard concentrations, independent of all the above factors except the patient’s age.  Inhaled anesthetics are mixed into vapor by an anesthesia machine which is connected to the your breathing system during the surgery. The anesthesia machine will usually be set to deliver either sevoflurane 1-2 %, desflurane 3 – 6 %, or isoflurane 0.8 – 1.5 %. The required concentration of these potent inhaled anesthetic decreases with age. The dose for teenager is approximately twice the dose required for a 90-year-old patient.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

IS YOUR GRANDMOTHER TOO OLD FOR SURGERY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is for my non-medical layperson readers. Your 85-year-old grandmother had two gallstone attacks in the past 6 months. Is she too old for surgery? Is it safe for her to have her gallbladder removed?

 

It depends. A general surgeon would serve as the consultant as to the natural history of the gallbladder disease. He may opine that future gallstone attacks are likely, and that the severe pain and fever of acute cholelithiasis is possible.

If your grandmother was 50 years old, you’d expect the surgical team to operate on her. For an 85-year-old patient, the surgical prognosis depends on her medical condition. She needs preoperative assessment from a specialist, and that specialist would be an anesthesiologist.

At Stanford University the anesthesia department is known as the Department of Anesthesia, Perioperative and Pain Medicine. The word perioperative refers to medical practice before, during, and after surgical operations. Preoperative assessment refers to the medical work-up before a surgical procedure—the work-up which establishes that all necessary diagnostic and therapeutic measures have been taken prior to proceeding to the operating room.

Age alone should not be a deterrent to surgery. Increased life expectancy, safer anesthesia, and less invasive surgical techniques such as laparoscopy have made it possible for a greater number of geriatric patients to undergo surgical intervention. The decision to operate should not be based on age alone, but should be based on an assessment of the risk-to-benefit ratio of each individual case. Surgical risk and outcome in patients 65 years old and older depend primarily on four factors: (1) age, (2) whether the surgery is elective or urgent, (3) the type of procedure, and (4) the patient’s physiologic status and coexisting disease. (reference: Miller’s Anesthesia, Chapter 71, Geriatric Anesthesia, 7th Edition, 2009).

Let’s look at each of these four factors:

1)   Age. Data support that increasing age increases risk.  Complication rates and mortality rates are higher for patients in their 80’s than for patients in their 60’s.

2)   Emergency surgery. Patients presenting for emergency surgery are often sicker than patients for elective surgery, and have increased risk.  There may be insufficient time for a full preoperative medical workup or tune-up prior to anesthesia.

3)   Type of procedure. A trivial procedure such as finger or toe surgery carries significantly less risk than open heart surgery or intra-abdominal surgery.

4)   Coexisting disease. The American Society of Anesthesiologists has a classification system for patients which categorizes how healthy or sick a patient is (see the American Society of Anesthesiologists Physical Status Class categories below). A patient with severe heart or lung disease is at higher risk than a rigorous patient who hikes, bikes or swims daily without heart or lung pathology.

Let’s examine these four factors in your 85-year-old grandmother. Regarding factor (1), she is old, and therefore she carries increased risk solely because of her advanced age. Regarding factor (2), her surgery is non-emergent, and this is in her favor. Regarding factor (3), her procedure requires intra-abdominal surgery, which is more invasive and carries more cardiac and respiratory risk than a trivial hand or foot or cataract surgery. She’ll have to cope with post-operative abdominal pain and pain on deep breathing, each of which can affect her lung function after anesthesia. Factor (4), her pre-existing medical history and physical condition, is the key element in her pre-operative consult.

The American Society of Anesthesiologists Physical Status Class categorizes patients as follows:

Class I   – A normal healthy patient. Almost no one over the age of 65 is an ASA I.

Class II  – A patient with mild systemic disease.

Class II  – A patient with severe systemic disease.

Class IV – A patient with severe systemic disease that is a constant threat to life.

Let’s say your grandmother has well-treated hypertension, asthma, hyperlipidemia, and obesity. She is reasonably active without limiting heart or lung disease symptoms, and she can climb two flights of stairs without shortness of breath.

She is an ASA Class II.

What if your grandmother had a past heart attack which left her short of breath walking up two flights of stairs, or she has kidney failure and is on dialysis, or she has severe emphysema that leaves her short of breath walking up two flights of stairs? These problems make her an ASA Class III, and she is at higher risk than a Class II patient.

If your 85-year-old grandmother is short of breath at rest or has angina at rest, due to either heart failure or chronic lung disease, she is an ASA Class IV patient, and she is at very high risk for surgery and anesthesia.

Laypersons can access an online surgical risk calculator, sponsored by the American College of Surgeons, at www.riskcalculator.facs.org, and enter the specific data for any surgical patient, to estimate surgical risk.

If your grandmother has well-treated hypertension, asthma, hyperlipidemia, and obesity as described above, then her operative risk is moderate and most anesthesiologists will be comfortable giving her a general anesthetic. The American College of Surgeons risk calculator estimates her risk of death, pneumonia, cardiac complications, surgical site infection, or blood clots as < 1%. Her risk of serious complication is estimated at 2%.

How will the anesthesiologist proceed?

For an 85-year-old patient, most anesthesiologists will require a written consultation note from an internal medicine primary care doctor or a cardiologist prior to proceeding with anesthesia. The anesthesiologist will then confirm that all necessary diagnostic and therapeutic measures have been done prior to surgery. Routine lab testing is not be ordered because of age alone, but rather pertinent lab tests are done as indicated for the particular medical problems of each patient.

The anesthesiologist then explains the risks of anesthesia and obtains informed consent prior to the surgery. He or she will explain that an 85-year-old patient with treated hypertension, asthma, hyperlipidemia, and obesity has a higher chance of heart, lung, or brain complications than a young, healthy patient. Your grandmother will have to accept the risks as described by the anesthesiologist.

What do anesthesiologists do differently for geriatric anesthetics, in contrast to anesthesia practice on young patients?

(1) Anesthesiologists use smaller doses of drugs on elderly patients than they do on younger patients. Geriatric patients are more sensitive to anesthetic drugs, and the effect of the drugs will be more prolonged.

(2) Geriatric patients have progressive loss of functional reserve in their heart, lungs, kidney, and liver systems. The extent of these changes varies from patient to patient, and each patient’s response to surgery and anesthesia is monitored carefully. (Miller’s Anesthesia, Chapter 71, Geriatric Anesthesia, 7th Edition, 2009). The anesthesiologist’s routine monitors will include pulse oximetry, electrocardiogram, automated blood pressure readings, temperature monitoring, and monitoring of all inspired gases and anesthetic concentrations. Because most anesthetic drugs cause decreases in blood pressure, anesthesiologists slowly titrate additional anesthetic doses as needed, and remain vigilant for blood pressure drops that are excessive or unsafe.

What about mental decline following geriatric surgery?

Postoperative short-term decrease in intellect (decrease in cognitive test performance) during the first days after surgery is well documented, and typically involves decreases in attention, memory, and fine motor coordination. Early cognitive decline after surgery is largely reversible by 3 months. The reported incidence of cognitive dysfunction after major noncardiac surgery in patients older than 65 years is 26% at 1 week and 10% at 3 months. (reference: Johnson T, Monk T, Rasmussen LS, et al: Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology 2002; 96:1351-1357).

In conclusion, the decision to proceed with your grandmother’s surgery and anesthesia requires an informed assessment of the benefit of the surgery versus the risks involved. Well-trained anesthesiologists anesthetize 85-year-old patients every day, with successful outcomes. My advice is to choose a medical center with fine physician anesthesia providers, and heed their consultation regarding whether your grandmother poses any unacceptable risk for surgery and anesthesia.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

LANDING THE ANESTHESIA PLANE: WHEN SHOULD YOU EXTUBATE THE TRACHEA?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

This column is for my readers who are anesthesia professionals. When should you extubate the trachea? Clinical Case for Discussion: You’re anesthetizing a 60-year-old woman for a thyroidectomy. The surgeon tells you, “If this woman bucks on the endotracheal tube on awakening it could cause a neck hematoma and damage my surgical closure. Can you extubate her deep?”

 

Discussion: The patient has a normal airway, and she is healthy and slender. You decide to comply with the surgeon’s request and remove the endotracheal tube (ET tube) at the end of surgery while the patient is still fully anesthetized. You turn off the nitrous oxide, allow the patient to breath 100% oxygen and 3% sevoflurane, and suction the patient’s throat. You deflate the cuff on the ET tube and remove the tube. Once the tube is withdrawn, you turn off all anesthetics. At this point the patient coughs and her mouth fills with yellow gastric contents. You suction the mouth again, but the patient develops upper airway obstruction. The oxygen saturation drops to 80%. Your diagnosis is laryngospasm. You attempt to apply continuous positive airway pressure with an anesthesia mask, but her oxygen saturation falls to 70%. Panicked, you inject 100 mg of IV succinylcholine to re-paralyze the patient, and you perform laryngoscopy and reintubate her. After the ET tube is replaced, the oxygen saturation returns to 100%. You suction through the lumen of the ET tube, and you find yellow gastric material inside the lungs. You diagnose aspiration.

After a 10½ hour flight from Seoul, Korea, an Asiana airplane crashed on landing at San Francisco Airport on July 6, 2013. Aviation and anesthesia have similarities. The takeoff and landing of an airplane, just as induction and emergence from anesthesia, are more complex events than piloting the middle of a plane flight or managing the maintenance phase of a long anesthetic.

The timing of the removal of the endotracheal tube at the end of an anesthetic requires skill and judgment. Does deep extubation ever make sense? During my first year after residency training, a gray-haired anesthesia attending at my new medical center told me, “Richard, in private practice you never extubate anyone deep.” Twenty-seven years later, I’m writing to convince you he was right.

Let’s define “deep extubation.” Per Miller’s Anesthesia, 7th Edition, 2009, Chapter 50, “Extubation may be performed at different depths of anesthesia, with the terms ‘awake,’ ‘light,’ and ‘deep’ often being used. ‘Light’ implies recovery of protective respiratory reflexes and ‘deep’ implies their absence. ‘Awake’ implies appropriate response to verbal stimuli. ‘Deep’ extubation is performed to avoid adverse reflexes caused by the presence of the tracheal tube and its removal, at the price of a higher risk of hypoventilation and upper airway obstruction. Straining, which could disrupt the surgical repair, is less likely with ‘deep’ extubation. Upper airway obstruction and hypoventilation are less likely during ‘light’ extubation, at the price of adverse hemodynamic and respiratory reflexes.”

The medical literature describes deep extubation as extubating a patient who is still breathing 1.5 times the minimal alveolar concentration (MAC) of inhaled anesthetic. A 2004 study examined 48 children tracheally extubated while deeply anesthetized with 1.5 times the MAC of desflurane (Group D) or sevoflurane (Group S). No serious complications occurred in either group, and the time to discharge was not significantly different between groups. The study concluded that deep extubation of children can be performed safely with desflurane or sevoflurane. (Valley RD, Anesth Analg. 2003 May;96(5):1320-4, Tracheal extubation of deeply anesthetized pediatric patients: a comparison of desflurane and sevoflurane.)

In a prospective trial, 100 children age<16 years, each with at least one risk factor for perioperative respiratory adverse events (e.g. current or recent upper respiratory tract infection or asthma) were randomized to extubation under deep anesthesia or extubation when fully awake after tonsillectomy. There were no differences in respiratory adverse events (laryngospasm, bronchospasm, persistent coughing, airway obstruction, or desaturation <95%). Tracheal extubation in fully awake children was associated with a greater incidence of persistent coughing (60 vs. 35%, P = 0.028), however the incidence of airway obstruction relieved by simple airway maneuvers in children extubated while deeply anaesthetized was greater (26 vs. 8%, P = 0.03).

Seventy healthy patients between 2 and 8 yr of age who had elective strabismus surgery or tonsillectomy were randomly assigned to group 1 (awake extubation) or group 2 (anesthetized extubation). The incidence of airway-related complications such as laryngospasm, croup, sore throat, excessive coughing, and arrhythmias was not different between the two groups. The authors concluded that the anesthesiologist’s preference or surgical requirements may dictate the choice of extubation technique in otherwise healthy children undergoing elective surgery. (Patel RI, Anesth Analg. 1991 Sep;73(3):266-70. Emergence airway complications in children: a comparison of tracheal extubation in awake and deeply anesthetized patients).

In an informal poll of the private practice anesthesiologists at Stanford University, the incidence of deep extubation (i.e. patient extubated asleep while breathing >1.5 MAC of inhaled anesthetic) approached zero. Why do I and my colleagues avoid deep extubation? If you have a life-saving and life-preserving device such as an endotracheal tube safely in place in your patient, and your goal is to maintain the values of Airway, Breathing, and Circulation, why remove that life-preserving device prematurely without any evidence that such a removal is beneficial? Why leave your anesthetized patient with an unprotected airway?

I cannot cite you outcome data that shows awake extubation provides superior outcomes to deep extubation, but with modern short-acting anesthetics such as propofol, sevoflurane, and desflurane, a well-trained anesthesiologist can decrease anesthetic depth quickly and have their patient very awake within minutes after the conclusion of surgery. Per Miller’s Aesthesia, “Rapid recovery of consciousness shortens the at-risk time during extubation and may reduce morbidity, particularly in obese patients. … Nitrous oxide, sevoflurane, and desflurane all contribute to rapid recovery, particularly after prolonged procedures.”

If your patient vomits on emergence and the ET tube is still in situ, the cuff on the ET tube will protect their lower airway. And if you choose to extubate your patient awake, the occurrence of laryngospasm will be, in this author’s experience, rare.

It’s true that coughing on an ET tube can disrupt surgical repairs, increase intracranial pressure, increase intraocular pressure, or cause hypertension and tachycardia, but per Miller’s Anesthesia, “Marked increases in arterial blood pressure and heart rate occur frequently at the time of ‘light’ extubation. These effects are alarming but normally transient, and there is little evidence of adverse consequences.”

My advice: Use light levels of general anesthetics on your intubated patients, and learn how to wake your patients from general anesthesia quickly at the conclusion of surgery. Don’t suction the patient until you are ready to remove the ET tube, because the suction catheter stimulates early coughing.

The ET tube is your friend. I’d recommend you don’t pull it out until you’re certain you don’t need it any more.

The definitive reference from the medical literature on this topic is Difficult Airway Society Guidelines for the management of tracheal extubation, written by Popat M.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

USEFUL PEDIATRIC ANESTHESIA EQUATIONS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You are driving to the hospital, en route to doing a pediatric anesthetic on a 2-year-old that will require an endotracheal tube. You are thinking through the case in advance. What can you do to plan your anesthetic? There are some useful pediatric anesthesia equations you can use to prepare yourself.

 

intubated anesthetized child

 

During my anesthesia training at Stanford, Dr. Stanley Samuels, the co-author of Anesthesiologist’s Manual of Surgical Procedures, by Jaffe and Samuels, (Fourth Edition, 2009, Lippincott Williams and Wilkins), taught me a series of equations regarding pediatric anesthetics. These equations are listed below, and provide time-tested guidelines to help the anesthesiologist select the correct endotracheal tube size, the correct intravenous infusion rate, and to estimate a child’s weight and dosing requirements of intravenous drugs.

As Dr. Samuels told me, “You can be driving in toward the hospital, knowing that your patient is 2 years old, and plan details of  your anesthetic in advance.” The equations are as follows:

  • The endotracheal tube size = age/4 + 4
  • Estimating a child’s weight:

Newborn = 3 kg

1-year-old = 10 kg

Add 2 kg per year up until the age of 6 years.

  • The IV rate per hour = 40 ml/hr (first 10 kg) + 20 ml/hr (second 10 kg) plus 10 ml/hr for every extra 10 kg
  • Dosing of IV medications:

A 7-year-old takes ½ of adult dose

A 1-year-old takes ¼ of adult dose

A newborn takes 1/10 of adult dose

For your 2-year-old patient, you will prepare a 4.5 ID endotracheal tube, expect the patient to weigh about 12 kilograms, plan a maintenance IV rate of 45 ml/hour, and expect that all drug doses (including emergency resuscitation drug doses) will be in a range of slightly more than ¼ of typical adult doses.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

KEEPING ANESTHESIA SIMPLE: THE KISS PRINCIPLE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Cases:  You’re scheduled to anesthetize a 70-year-old man for a carotid endarterectomy, a 50-year-old man for an arthroscopic rotator cuff repair, and a 30-year-old woman for an Achilles tendon repair.  What anesthetics would you plan? “Keep It Simple, Stupid…” The KISS principle applies in anesthesiology, too.

 

Discussion:  In 1960, U.S. Navy aircraft engineer Kelly Johnson coined the KISS Principle, an acronym for “Keep It Simple, Stupid.” The KISS principle supports that most systems work best if they are kept simple rather than made complex. Simplicity should be a key goal in design, and unnecessary complexity should be avoided. The KISS Principle likely found its origins in similar concepts such as Occam’s razor, Leonardo da Vinci‘s “Simplicity is the ultimate sophistication,” and architect Mies Van Der Rohe‘s “Less is more.”

Let’s look at the three cases listed above.  For the carotid surgery, you choose an anesthetic regimen based on dual infusions of propofol and remifentanil, aiming for a rapid wake-up at the conclusion of surgery.  For the arthroscopic rotator cuff repair, you fire up the ultrasound machine and insert an interscalene catheter preoperatively.  After you’ve inserted the catheter, you induce general anesthesia with propofol and maintain general anesthesia with sevoflurane.  For the Achilles repair, you perform a popliteal block preoperatively.  After you’ve performed the block, you induce general anesthesia with propofol, insert an endotracheal tube, turn the patient prone, and maintain general anesthesia with sevoflurane and nitrous oxide.

All three cases proceed without complication.

Ten miles away, an anesthesiologist in private practice is scheduled to do the same three cases.  For each of the three cases she chooses the same anesthetic regimen:  Induction with propofol, insertion of an airway tube (an endotracheal tube for the carotid patient, and a laryngeal mask airway for the shoulder patient and the ACL patient, and an endotracheal tube for the prone Achilles repair), followed by sevoflurane and nitrous oxide for maintenance anesthesia and a narcotic such as fentanyl titrated in as needed for postoperative analgesia.  The carotid patient is monitored with an arterial line, and vasoactive drugs are used as necessary to control hemodynamics.

“Wait a minute!” you say. “Elegant anesthesia requires advanced techniques for different surgeries. Why would a private practitioner do all three cases with nearly identical choices of drug regimen?  Why would a private practitioner fail to tailor their anesthetic plan to the surgical specialty? Total intravenous anesthesia and ultrasound-guided regional anesthesia are important arrows in the quiver of a 21st-century anesthesiologist, aren’t they?”

In my first week in private practice, just months after graduating from the Stanford anesthesia residency program, the anesthesia chairman at my new hospital emphasized relying on the KISS Principle in anesthesia practice.  He stressed that the objective of clinical anesthesia wasn’t to make cases interesting and challenging, but to have predictable and complication-free outcomes. Exposing a patient to extra equipment (two syringe pumps), or two anesthetics (regional plus general) instead of general anesthesia alone, adds layers of complexity, and defies the KISS principle.

There are no data indicating that using two syringe pumps and total intravenous anesthesia will produce a better outcome than turning on a sevoflurane vaporizer.  There are no data demonstrating that combining a regional anesthetic with a general anesthetic for shoulder arthroscopy or Achilles tendon surgery will improve long-term outcome.

The KISS principle opines that most systems work best if they are kept simple rather than made complex, and doing two anesthetics instead of one adds complexity.  I’ve learned that an anesthesiologist should choose the simplest technique that works for all three parties:  the surgeon, the patient, and the anesthesiologist. The hierarchy from most simple to complex might look something like this:  (1) local anesthesia alone, (2) local plus conscious sedation, (3) a regional block plus conscious sedation, (4) general anesthesia by mask, (5) general anesthesia with a laryngeal mask airway, (6) general anesthesia with an endotracheal tube, or (7) general anesthesia plus regional anesthesia combined.  The combination of drugs used should be as minimal and simple as possible.

If all three parties (the surgeon, the patient, and the anesthesiologist) are okay with the patient being awake for a particular surgery, then the simplest of the first three options can be selected.  If any one or all of the three parties wants the patient unconscious, then the simplest option of (4) – (7) can be selected.

I’m not an opponent of regional anesthesia.  Ultrasound-guided regional anesthesia is a significant advance in our specialty for appropriate cases, and substituting regional anesthesia for a general anesthetic is a reasonable alternative. Compared with general anesthesia, peripheral nerve blocks for rotator cuff surgery have been associated with shorter discharge times, reduced need for narcotics, enhanced patient satisfaction, and fewer side effects (Hadzic A, Williams BA, Karaca PE, et al.: For outpatient rotator cuff surgery, nerve block anesthesia provides superior same-day recovery after general anesthesiaAnesthesiology  2005; 102:1001-1007). On the other hand, meta-analysis has demonstrated no long-term difference in outcome between regional and general anesthesia for ambulatory surgery.  (Liu SS, Strodtbeck WM, Richman JM, Wu CL: A comparison of regional versus general anesthesia for ambulatory anesthesia: A meta-analysis of randomized controlled trialsAnesth Analg  2005; 101:1634-1642). Why perform combined regional anesthesia plus general anesthesia for minor surgeries?  Are we doing regional blocks just to showcase our new ultrasound skills? If there is an ultrasound machine in the hallway and an ambulatory orthopedic patient on the schedule, these two facts alone are not an indication for a regional block. Patients receive an extra bill for the placement of an ultrasound-guided block, and economics alone should never be a motivation to place a nerve block.

In a painful major orthopedic surgery such as a total knee replacement or a total hip replacement, a regional block can improve patient comfort and outcome. This month’s issue of Anesthesiology a retrospective review of nearly 400,000 patients who had total knee or total hip replacement.  Compared with general anesthesia, neuroaxial anesthesia is associated with an 80% lower 30-day mortality and a 30 – 80% lower risk of major complications (Memtsoudis et al., Perioperative Comparative Effectiveness of Anesthetic Technique in Orthopedic Patients, Anesthesiology. 118(5):1046-1058, May 2013).

Many outpatient orthopedic surgeries performed under straight general anesthesia require only modest oral analgesics afterward.  I had general anesthesia for a shoulder arthroscopy and subacromial decompression last month, and required no narcotic analgesics post-op.  If I’d had an interscalene block, the anesthesiologist could have attributed my comfort level to the placement of the block.  No block was necessary.

Achilles repairs don’t require a combined regional–general anesthetic. Achilles repairs simply don’t hurt very much. One surgeon in our practice does his Achilles repairs under local anesthesia with the patient awake, and the cases go very smoothly.  Other surgeons in our practice insist that a popliteal block be placed prior to general anesthesia for Achilles repairs, a dubious decision because (a) it defies the KISS Principle, and (b) the surgeon has no expertise in dictating anesthetic practice.

Every peripheral nerve block carries a small risk. Although serious complications are unusual, risks include falling; bleeding; local tissue injury, pneumothorax; nerve injury resulting in persistent pain, numbness, weakness or paralysis of the affected limb; or local anesthetic toxicity.  Systemic local anesthetic toxicity occurs in 7.5–20 per 10,000 peripheral nerve blocks (Corman SL et al., Use of Lipid Emulsion to Reverse Local Anesthetic-Induced Toxicity, Ann Pharmacother 2007; 41(11):1873-1877).

Use the simplest anesthetic that works.  Assess whether combined regional–general anesthetics are necessary or wise.  I realize that complex anesthetic regimens are routine aspects of a solid training program, because residents need to leave their training program with a mastery of multiple skills.  But once you’re in private practice, my advice is to take heed of the KISS Principle.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

DOES REPEATED GENERAL ANESTHESIA HARM THE BRAINS OF INFANTS AND YOUNG CHILDREN?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Recent scholarly publications have raised the question whether repeated exposure to general anesthesia is harmful to the developing brain in infants and young children.  Millions of children have surgery under general anesthesia each year. Is repeated exposure to general anesthesia safe for the developing brain of your child? Let’s look at the evidence.

pediatric anesthesia

In 2011, a retrospective Mayo Clinic study looked at the incidence of learning disabilities (LDs) in a cohort of children born in Olmsted County, Minnesota, from 1976 to 1982.  Among the 8,548 children analyzed, 350 of the children received general anesthesia before the age of 2.  A single exposure to general anesthesia was not associated with an increase in LDs, but children who had two or more anesthetics were at increased risk for LDs.  The study concluded that repeated exposure to anesthesia and surgery before the age of 2 was a significant independent risk factor for the later development of LDs.  The authors could not exclude the possibility that multiple exposures to anesthesia and surgery at an early age adversely affected human neurodevelopment with lasting consequences.

The same group of Mayo Clinic researchers looked at the incidence of attention-deficit/hyperactivity disorder (ADHD) in children born from 1976 to 1982 in Rochester, Minnesota.  Among the 5,357 children analyzed, 341 ADHD cases were identified.  For children with no exposure anesthesia before the age of 2 years, the cumulative incidence of ADHD at age 19 years was 7.3%  Exposure to multiple procedures requiring general anesthesia was associated with an increased cumulative incidence of ADHD of 17.9%. The authors concluded that children repeatedly exposed to procedures requiring general anesthesia before age 2 years were at increased risk for the later development of ADHD.

Anesthesia scientists decided to study this problem in mice.  In March 2013, researchers at Harvard and other hospitals exposed 6- and 60-day-old mice to various anesthetic regimens. The authors then determined the effects of the anesthesia on learning and memory function, and on the levels of proinflammatory chemicals such as cytokine interleukin-6 in the animals’ brains. The authors showed that anesthesia with 3% sevoflurane for 2 hours daily for 3 days induced cognitive impairment (i.e., unusually poor mental function) and neuroinflammation (i.e., elevated levels of brain inflammatory chemicals such as interleukin-6) in young but not in adult mice. Anesthesia with 3% sevoflurane for 2 hours daily for 1 day or 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation. Treatment with the non-steroidal anti-inflammatory (NSAID) drug ketorolac caused improvement in the sevoflurane-induced cognitive impairment. The authors concluded that anesthesia-induced cognitive impairment may depend on age, the specific anesthetic agent, and the number of exposures. The findings also suggested that cellular inflammation in the brain may be the basis for the problem of anesthesia-induced cognitive impairment, and that potential prevention and treatment strategies with NSAIDs may ultimately lead to safer anesthesia care and better postoperative outcomes for children.

The same Harvard research group assessed the effects of sevoflurane on brain function in pregnant mice, and on learning and memory in fetal and offspring mice. Pregnant mice were treated with 2.5% sevoflurane for 2 hours and 4.1% sevoflurane for 6 hours. Brain tissues of both fetal and offspring mice were harvested and immunohistochemistry tests were done to assess interleukin-6 and other brain inflammatory levels.  Learning and memory functions in the offspring mice was determined by using a water maze. The results showed that sevoflurane anesthesia in pregnant mice induced brain inflammation, evidenced by increased interleukin-6 levels in fetal and offspring mice.  Sevoflurane anesthesia also impaired learning and memory in offspring mice. The authors concluded that sevoflurane may induce detrimental effects in fetal and offspring mice, and that these findings should promote more studies to determine the neurotoxicity of anesthesia in the developing brain.

What does all this mean to you if your children need anesthesia and surgery?  Although further studies and further data will be forthcoming, the current information suggests that:  (1) if your child has one exposure to anesthesia, this may constitute no increased risk to their developing brain, and (2) repeated surgery and anesthetic exposure to sevoflurane may be harmful to the development of the brain of children under 2 years of age.  It would seem a wise choice to delay surgery until your child is older if at all possible.

What does all this mean to anesthesiologists?  We’ll be watching the literature for new publications on this topic, but in the meantime it seems prudent to avoid exposing newborns and young children to repeated anesthetics with sevoflurane.  Currently, sevoflurane is the anesthetic of choice when we put children to sleep with a mask induction, because sevoflurane smells pleasant and it works fast.  Children become unconscious within a minute or two.  After a child is asleep, it may be advisable to switch from sevoflurane to the alternative gas anesthetic desflurane, since the Harvard study on mice showed anesthesia with 9% desflurane for 2 hours daily for 3 days caused neither cognitive impairment nor neuroinflammation.  A second alternative is to switch from sevoflurane to intravenous anesthetics alone, e.g., to utilize propofol and remifentanil infusions instead of sevoflurane.

The concept of pediatric anesthesia harming the developing brain was reviewed in the lay press in Time magazine in 2009.  The four articles I summarized above represent the most recent and detailed advances on this topic.  Stay tuned.  The issue of anesthetic risk to the developing brain will be closely scrutinized for years to come.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ANESTHESIOLOGISTS KNOW WHO THE BEST SURGEONS ARE

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

You’re a patient.  Is your surgeon a wonderful doctor, superb under pressure, or is he or she a self-absorbed nervous individual who can’t operate their way out of a paper bag? You don’t know.  Your anesthesiologist does. Anesthesiologists watch surgeons for a living.

 

Yes, we happen to give anesthetics to patients at the same time, but we anesthesiologists are always watching surgeons work.  If you want to know who the best surgeons are, ask an anesthesiologist, an operating room nurse, or an operating room scrub tech.  We see the surgeons on the front line, and we see their strengths and weaknesses.

Most surgeons spend the majority of their professional time in clinics, meeting patients in preoperative surgical consultations or in postoperative surgical follow up.  Most surgeons operate 1 – 2 days per week.  In contrast, most anesthesiologists have no clinic, and work 90-100% of their time in operating rooms.  In a typical week, an anesthesiologist may do 20-25 anesthetics with 10 – 15 different surgeons.  In a typical year, a busy anesthesiologist may work with 100 – 150 different surgeons.

In an operating room, the anesthesiologist stands 2 to 6 feet away from the surgeon, and has a clear view of the surgeon’s technique and an excellent opportunity to establish rapport with the surgical team.  Anesthesiologists and surgeons know each other very well.

As a patient, you may form your impressions of your surgeon based on encounters in the office or in your hospital room.  Favorable surgeons cast an air of confidence, intelligence, leadership and experience.  You may trust the look in their eye, the tenor of their voice, the firmness of their handshake.  You may like or dislike their necktie, their suit, their haircut or their bedside manner.

You have no idea how competent they are once they don sterile gown and gloves in the operating room, but anesthesiologists know.

The surgeon with the firm handshake may have hands that genuinely shake when they are in surgery.  The slick-appearing surgeon may operate in low gear, their fingers moving as slowly as a twig winding downstream in a muddy river.  In the operating room, the surgeon may be a benevolent professional or a moody tyrant who screams and swears at nurses and techs.  The surgeon with the killer smile may cling to outdated techniques or equipment.  Alternately, the surgeon may be world-class technician who knows his or her anatomy cold, handles tissue with exacting precision, and treats everyone on the surgical team like gold.

What can you, the patient, do about accessing information about your surgeon?

You can Google the surgeon’s name to seek information on their professional background, as well as any Yelp comments on other patient’s experiences with that doctor.  If you know anyone who works at that hospital or surgery center, it’s worth your while to query them and get their insider’s impression about the choice of surgeons that work there.  If you can talk to an anesthesiologist, operating room nurse, or operating scrub tech, they will be your best source of information as to which surgeon to consult.

Good luck.  All surgeons are different.  And remember: tonight when you are watching television, thousands of anesthesiologists are watching thousands of surgeons all over the United States.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

AN ANESTHESIA ANECDOTE: AN INEPT ANESTHESIA PROVIDER CAN KILL A PATIENT IN LESS THAN TEN MINUTES

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

An inept anesthesia provider can lose a patient’s life in less than ten minutes.

NEWSPAPER HEADLINE:  “ANESTHESIOLOGIST KILLS PREGNANT MOTHER DURING EMERGENCY SURGERY”

 

What follows is a true story, with the names changed to protect the identities of the individuals…

THE CASE:  At 1:30 a.m. during the 14th month of his anesthesia training, Dr. Tony Andrews had been on duty inside the hospital since 7:00 a.m. the previous day–a total of 19 hours already.  He’d spent most of that time inserting epidural anesthetics into the lower backs of laboring women on the obstetrics ward.  He went to sleep in his on-call room shortly after midnight, exhausted and hopeful that he’d sleep until dawn.

No such luck.  The telephone woke him up–the caller was Jennifer Rogers, an obstetrician with a busy private practice.  “I need you,” she said.  “I have a patient named Naomi Jordan who’s in labor with new onset of vaginal bleeding and late decels.  I need to do a stat C-section.”

A layman’s translation of Jennifer’s sentence was this:  Naomi Jordan was a laboring mother who was bleeding from her vagina.  Her baby’s heart rate was dropping to dangerously low levels (known as decelerations, or decels) during the late phase of each uterine contraction.  Dr. Rogers needed to do an emergency cesarean section, that is, she needed to cut open the lower abdomen of the mother, cut open the uterus (the medical term for the womb), and deliver the baby before the mother’s bleeding endangered the baby’s health.  An emergency cesarean section meant Dr. Andrews wouldn’t get back to sleep for three hours, minimum.

“How much blood has she lost?” he mumbled, trying not to fall back asleep.

“No more than a cup so far, but the bleeding could accelerate within minutes.”

“I’ll be there in a minute.”  Every cesarean section required an anesthetic–that’s why Dr. Rogers called Dr. Andrews.  He was sleeping in the hospital to be immediately available for urgent obstetric anesthetics.  He turned on the room light and rubbed my eyes.  His wrinkled blue scrubs served as both pajamas and surgical attire.  He put his sneakers back on and set out down the hallway to find his new patient.

Once Dr. Andrews was on his feet, the prospect of emergency surgery jolted him like a double espresso.  By the time he reached Naomi Jordan’s room, his head was clear and he’d forgotten what time of night it was.

Naomi Jordan was a round-faced black woman in her 20’s.  She was sitting up in bed and panting her way through a labor contraction.  She flared her lips and bared her teeth to endure the pain and grunted out, “Ow, ow, ow,” with each exhaled breath.  Naomi did little to hide her suffering, and paid no attention to Andrews when he entered the room.  A gray-haired labor and delivery nurse stood at the bedside.  The nurse held one hand on Naomi’s shoulder and focused her eyes on the fetal monitor screen that traced the baby’s heart rate.

Dr. Andrews opened the patient’s chart to skim through the pertinent details.  Naomi was 25 years old and healthy.  She was 9 months pregnant with her first child.  Her current weight was 185 pounds, and she was 5 feet 4 inches tall.  She’d been in labor for four hours, and her progress had been unremarkable until the last thirty minutes.

He sat down on the bed next to the patient, and said, “Hi, Ms. Jordon, I’m Dr. Andrews, one of the anesthesiologists who will be with you during your cesarean section.”  What he didn’t say was, “I’m a partially-trained anesthesiologist.”  It was his objective to appear confident and competent–she didn’t have to know he still had almost a year before he finished his training.  She didn’t have to know that his calm appearance was a guise that hid any uncertainty due to his inexperience.

Sweat dripped down Naomi’s cheeks and forehead.  Her eyes were dilated and wild.  She replied, “My baby girl.  I just want my baby to be all right.”

“We’ll do everything we can,” he said.  “You’re going to need be asleep for the surgery.  For most cesarean sections, anesthesiologists give an injection in the lady’s back–a spinal anesthetic–to numb you from your chest down.  But because you’re bleeding from below, that’s not a safe option.”

“I can see my baby as soon as I wake up, right?”

“Yes you can.  I’ll give you medicine into your I.V., and you’ll fall asleep in seconds.  When you wake up, the surgery will be finished.”  Dr. Andrews rattled through a brief explanation of the common risks, which included post-operative pain, nausea, and a sore throat from the breathing tube that I would place after she lost consciousness.  “It’s common for the bleeding to stop once you’ve delivered your baby.  It’s not likely that you’ll receive a blood transfusion, but if I need to give you blood to keep you safe, I will.”

She nodded her head and shivered.  “I’m scared to death,” she said.

“I’m not.  I’ll take good care of you.” He touched the back of her hand, and said, “I’ll be right back.”

He stepped out of her room to find a telephone.  This was his second and final year of anesthesia residency training, and he was the sole anesthesiologist on the obstetrics ward at 1:40 in the morning.   He had a faculty backup, Dr. Luke Harrington, who was at his home, presumably asleep.  It was time to end Dr. Harrington’s slumbers.

Dr. Andrews called Dr. Harrington and explained the urgent clinical situation.  Dr. Harrington said, “If she’s bleeding, she’ll need a general anesthetic.  I’ll be right in.”

When patients have significant bleeding, the volume of blood in their arteries and veins is depleted.  For most cesarean sections, anesthesiologists prefer to give a regional anesthetic (either a spinal anesthetic or an epidural anesthetic), that leaves the patient awake but numb from the nipples down.  Neither a spinal nor an epidural can be safely administered in a patient who is actively bleeding.  Spinal and epidural anesthetics relax the sympathetic nervous system and dilate both arteries and veins, lowering the blood pressure further.  Dilating arteries that are already emptied because of bleeding is dangerous, and can lead to cardiac arrest or death.

Dr. Andrews hung up the phone and returned to Naomi’s bedside.  The nurse was disconnecting the fetal monitors and readying the bed for transport to the operating room.  Together they rolled the gurney down the hallway, and into the operating room.  A surgical scrub technician and an operating room nurse were waiting for them inside the OR.  The nurses and Dr. Andrews pulled surgical masks over their faces.  Only Naomi Jordan stayed unmasked.  Her hands shook and her voice cracked.  “Is my baby still all right?  She’s going to be O.K., isn’t she?”

“We’re going to move ahead and deliver her as soon as we can,” Dr. Andrews said.  He hung her I.V. bottle on a pole next to the anesthesia machine and said, “Can you please move over from your bed to the operating room table?”

With a loud grunt and a louder moan, Naomi wiggled herself to her right from the hospital bed onto the narrow O.R. table.  She left behind a two-foot-wide circular stain of blood on the sheets of her bed–evidence of ongoing vaginal bleeding.  The sight of the pool of blood fed Dr. Andrews’ sense of urgency.  It looked like more than a cup had spilled onto the sheets.  How much blood had she lost?

He used his stethoscope to listen to Naomi’s chest, and confirmed that her heart tones and breath sounds were normal.  He asked her to open her mouth, and assessed how easy it would be to insert a breathing tube after he anesthetized her.  She had a short neck and a thick tongue, but otherwise he didn’t note anything exceptional about her mouth or airway.  Dr. Andrews went about his routine and attached a blood pressure cuff to her arm, electrocardiogram stickers to her chest, and an oximeter probe to her finger.

Her heart rate was fast at 120 beats per minute.  The elevated heart rate could be secondary to her anxiety, but it could be because her bleeding was ongoing and her heart was working hard to pump a depleted blood volume to her vital organs.

Her blood pressure was 100/55, a lower value than the last reading of 115/60 ten minutes earlier.  The low blood pressure worried him–it could be further evidence that her blood vessels were emptying as she continued to bleed.  The pulse oximeter on her finger gave a reading of 100%, indicating that her arterial blood was 100% saturated with oxygen–a good sign.

Naomi looked like she was ready to sit up and run out of the room.  “It’s freezing in here,” she said, glancing around the room at the anesthesia machines and the array stainless steel surgical tools laid out on the scrub table.  “I’m so scared.  Can’t my mom be in here with me?”

“No,” Dr. Andrews said as he loaded my syringes with anesthetic drugs.  “When patients are going to be asleep, it’s not safe for family to be in here observing.  You’re going to be all right.”

The operating room nurse pulled up Naomi’s gown and began painting the bulbous abdomen with Betadine, an iodine disinfectant soap.  Dr. Rogers entered the room. She was a trim, attractive woman in her thirties.  She grabbed Naomi’s left hand and wiped away the tears from her patient’s eyes. “We’ll take great care of you,” she said.  Naomi blinked hard and closed her eyes.

A female scrub tech unfolded a large blue sterile paper drape, and set it down over Naomi’s abdomen to cover the Betadine-painted skin.  The scrub tech’s job was to hang the drapes to isolate the surgical field, and after that to hand sterile instruments to the surgeon during the surgery. She handed one edge of the drape to Andrews, and he applied clamps to secure the drape to two tall metal poles to the left and right of the patient’s shoulders.  This configuration formed a wall of blue paper with Naomi’s head and the anesthesiologist on one side of the barrier, and the sterile surgical field on the opposite side.  Dr. Rogers reentered the operating room.  She’d left to scrub her hands, and now she donned the sterile gown and gloves of her trade.  She took her position on the left side of the patient’s abdomen, and looked Dr. Andrews in the eye.  “Are you ready to get her asleep?” she asked him.

“I’m still waiting for Dr. Harrington,” he said. “Otherwise I’m ready to go.”  He turned to the nurse and said, “Call the general O.R. and the ICU.  Find out if any other anesthesiologists are available to assist me.”

“Will do,” she said, and she picked up a phone.

It was 1:55 a.m.  Dr. Andrews had checked the necessary anesthesia equipment, and it was all present and in order: breathing tubes, laryngoscopes needed for inserting a breathing tube, multiple syringes loaded with anesthetic drugs, and the anesthesia machine capable of delivering mixtures of oxygen, nitrous oxide, and the potent anesthetic vapor called isoflurane.

He looked down at the spheres of sweat beading up on Naomi’s forehead.  She was breathing oxygen through a clear plastic mask.  Each time she exhaled, water vapor fogged the clear plastic of the mask in front of her mouth.

The surgeon looked at the clock and said, “I don’t have any monitor of the fetal heart tones at this point, so I have no idea if the baby’s all right.  The patient is still bleeding.  We need to get the kid out.”

Dr. Andrews’ head was spinning.  Where was Dr. Harrington?  Tony Andrews was 31 years old and had been an M.D. for over five years, but he’d never been in this exact situation without a faculty anesthesiologist before.  He was confident– he had plenty of medical experience. This was his second year of anesthesia residency training, and he’d administered about eight hundred anesthetics in the preceding thirteen months.  He’d done dozens of general anesthetics for cesarean sections just like this one, but he’d never done one alone.  He was nervous as hell, but was he certain that he could handle starting this case without Dr. Harrington in attendance?  The problem was . . . it was too risky to wait any longer.  The baby’s life was at stake.  The mother’s life was at stake.

The nurse interrupted his train of thoughts.  “The main O.R. has two fresh trauma patients,” she said.  “They don’t have any extra anesthesiologists to come up and help you.  And the ICU phone is busy.”

Dr. Andrews inhaled a big breath and blew it out through pursed lips.  He could think of no other alternative.  “O.K., I’m going ahead,” he said to the surgeon.  She nodded in affirmation.

“I need you to give the patient cricoid pressure as she goes to sleep,” Dr. Andrews said to the operating room nurse.  Cricoid pressure is a medical maneuver whereby an assistant presses down firmly on a specific spot on the patient’s anterior neck, called the cricoid cartilage.  This action compresses the patient’s esophagus below.  Compressing the esophagus prevents regurgitation of stomach contents into the throat and mouth.  The stomach of a pregnant woman empties slowly, and the anesthesiologist must assume the stomach is full of undigested food.  Regurgitated vomit in the patient’s airway and lungs can be lethal.

The letters A-B-C, abbreviations for the words Airway-Breathing-Circulation, summarize the management of every acute medical situation.  As soon as Naomi went to sleep and couldn’t breathe on her own, she needed an airway tube.  That’s the anesthesiologist’s job–Dr. Andrews was the only one in the operating room with the training and ability to insert the endotracheal tube.

He injected 20 milliliters of the hypnotic drug sodium pentothal into her I.V. over a three-second span of time, and then injected 4 milliliters of the muscle-paralyzing drug succinylcholine.

“You’re doing great.  Everything’s going to be all right,” he said to Naomi, a wish as much as a promise.  The nurse located the cricoid cartilage on Naomi’s neck, and pressed downward.

Sodium pentothal is a rapid-acting drug that induces unconsciousness.  Naomi’s eyes closed ten seconds after the injection.  The second drug, succinylcholine, also known as “sux,” is an ultra fast-acting muscle relaxant.  Intravenous sux renders all the muscles in the body flaccid within a minute.  This paralysis makes it possible for the anesthesiologist to insert a lighted instrument called a laryngoscope into a patient’s mouth, visualize the vocal cords in the patient’s larynx (the medical name for the voice box), and place a hollow breathing tube through the vocal cords into the trachea (the medical name for the windpipe).  The paralysis also makes it impossible for the patient to breathe on her own.

The operating room was quiet except for the beeping of Naomi’s pulse on my monitoring equipment.  Everyone was waiting for Dr. Andrews.  Surgery could not begin until he inserted the breathing tube.

Thirty seconds after he injected the sux, every muscle of Naomi’s body began to shiver in involuntary paroxysms.  The widespread contraction-then-paralysis of every skeletal muscle of Naomi’s body is a phenomenon known as fasciculation, a well-known and expected side effect of sux.  Watching an otherwise motionless patient fasciculate is a creepy experience–the patient’s body moves as if demon forces were tunneling beneath the surface of the skin.

Once the fasciculation ceased, Dr. Andrews knew his patient was paralyzed.  His heart thundered as he removed her oxygen mask.  He turned on the light on my laryngoscope and gripped the metal handle in his left fist.  After she fell asleep, Naomi’s lips and tongue collapsed against each other, obstructing any view of her teeth or inside her mouth.  Dr. Andrews first job was to pry the mouth open and insert the lighted metal laryngoscope blade between her incisors.  He followed the light as it illuminated her mouth and throat.  He was looking for the pearly white vocal cords that guarded the windpipe.  His initial search was futile–all he could see were the flabby pink tissues of her tongue and throat.  He pulled harder the laryngoscope handle in an effort to lever open the airway, but he still saw nothing but pink flesh.  He began to breathe faster, and sweat poured from his underarms.

At that moment, Dr. Andrews heard the sound that strikes terror into every anesthesiologist’s heart–a descending musical scale keeping time with every one of Naomi’s heartbeats.

The descending musical notes came from the medical monitoring device known as a pulse oximeter.  The pulse oximeter is the most vital and important monitor in any acute care medical setting.  The pulse oximeter records its signal from a clip placed across the tip of a patient’s finger.  One side of the clip is a red light emitting diode (LED), and the other side of the clip is a receptor that quantifies the amount of red light that passes through the patient’s fingertip.  A computer in the pulse oximeter filters out all the signals except for red light that pulsates.  The only source for pulsating red light in the fingertip is blood in the small arteries.  The pulse oximeter converts red hue of the pulsating arterial blood to a percentage of oxygen saturation in the blood, based on how red the blood is:

More oxygen in the blood => redder blood => an increased oxygen saturation of 90% or greater => the patient is safe.

Less oxygen => darker purple blood => an oxygen saturation lower than 90% => the patient’s life is in danger.

The pulse oximeter emits a beep tone with every measured heartbeat.  As Naomi’s oxygen saturation declined below 90%, the beeping note decreased in pitch.  As her lips turned blue before his eyes, the descending chromatic scale of the pulse oximeter announced that the blood in her fingertip contained less oxygen.  This also meant her heart and brain were receiving less oxygen.

At the same time, the rate of the oximeter beeps increased to over 130 beats per minute. Dr. Andrews’ own heart rate was higher than Naomi’s.  Naomi Jordon and her baby were dying in his hands, and it was up to him to step it up and save her.  It was up to Dr. Andrews to insert the breathing tube.

Instead, he panicked.

He repeated the same futile attempts to visualize her vocal cords.  He reinserted the same metal laryngoscope into her mouth and followed the illuminated trail of its flashlight bulb.  He was still looking for the two pearly white vocal cords and the blackness of the tracheal lumen between them.

Instead, all he saw were folds of pink tissues.

The menacing notes of the oximeter beeps descended further.  The patient was out of oxygen.  Dr. Andrews pushed the metal laryngoscope deeper into her throat in a desperation move to find the trachea.

“Can’t you intubate her?” Dr. Rogers asked.

Dr. Andrews was too stuck in his predicament to answer.  The pulse oximeter tone was deeper than he’d ever heard it.  He glanced up at the machine, and saw that the oxygen saturation was in the 50’s.

Incompatible with life.

I’ve killed her, he thought, and the vivid image of a newspaper headline filled his head: “ANESTHESIOLOGIST KILLS PREGNANT MOTHER DURING EMERGENCY SURGERY.”  At that second, Dr. Tony Andrews would have given anything to escape from that mess with Naomi Jordon alive and well.

Stupefied by failure, he didn’t know what else to do except to keep trying over and over to put the tube in.

THE RESCUE:  At that moment, Dr, Tony Andrews’ luck turned.  The outer door to the operating room opened, and Dr. Luke Harrington ran in, wearing the non-surgical attire of blue jeans and a faded blue polo shirt.  Street clothes were never allowed in the sterile confines of an operating room.  Dr. Harrington observed the chaotic scene through the operating room window that faced in from the outside hallway, and figured out there was no time for a wardrobe change.

Instead of screaming at me or asking questions, Dr. Harrington said, “Take the laryngoscope out of her mouth NOW.  Let’s put the anesthesia mask back over her face.”

Dr. Andrews complied.

“Hold the mask with two hands,” he said.  “Fit it in a good seal over her face, and I’ll squeeze the ventilation bag.”

Dr. Andrews pressed the clear plastic mask over her mouth and nose and held it in an airtight fashion, with one hand at 3 o’clock and one hand at 9 o’clock over each of her cheeks.  Dr. Harrington squeezed the ventilation bag, and by this technique they were able to force 100% oxygen through her upper airway into her lungs via bag-mask ventilation.

Of course, Dr. Andrews thought.  She was dying and turning blue.  I was supposed to stop the futile attempts to put in a breathing tube, and just do this.  Pump in oxygen via the facemask.

Dr. Andrews held his breath and looked up at the vital sign monitors.  Her oxygen saturation hung low, still in the 60’s.  Dangerously low.

His mouth was so dry that he couldn’t swallow.

Dr. Harrington remained impassive.  If he was worried, he wasn’t showing it.  He fixed his eyes on the oximeter numerical readout.

For the next sixty seconds Dr. Andrews’ mind echoed, God, please, God please. . . .  A full minute went by, and then note-by-note the beep tone of the oximeter rose in pitch, and the numeric readout climbed in parallel.  From 60%, the oxygen saturation rose to 66%, . . . 72%, . . . 83%, then 93%.

They’d done it!  With an oxygen saturation greater than 90%, her brain and heart were now receiving an adequate supply of oxygen.  The surgeon peered over the drapes at us.  She was still holding her scalpel dormant.  She couldn’t start the cesarean section until the anesthesiologists had safely placed the endotracheal tube.

Dr. Harrington asked Dr. Andrews, “What happened when you tried to intubate her?”

“I couldn’t see anything but pink tissues.”

Dr. Harrington lifted the mask away from her face, and opened her mouth to look inside.  He frowned and nodded.  “Let’s change her head position.  Get me two white towels.”

He had Dr. Andrews lift up Naomi’s shoulders, while he stuffed two folded white towels behind her neck.  Naomi Jordan’s head extended backwards and her mouth fell open for the first time.

“Looks better.  Try it again,” Dr. Harrington said. Dr. Andrews was surprised that he’d want him try again, since he’d done nothing right so far.  He wondered why Dr. Harrington didn’t just take over.

The patient’s oxygen saturation was up to 100%.   Dr. Harrington pushed another 10-milliliter bolus of sodium pentothal into the IV to keep Naomi asleep, and Dr. Andrews opened her mouth to try again.  This time, as he advanced the laryngoscope blade and light into her mouth, the anatomical landmarks were more obvious.  Past the base of her tongue, he located the epiglottis, the pink flap of tissue that closed off the windpipe each time she swallowed.  He was elated–he hadn’t seen any recognizable structures my last time in.  The larynx, the gateway to the trachea, lay just beneath the epiglottis.  Since neither light nor vision can travel in a curve, he needed to lift up the epiglottis to see past it.  He pulled hard on the laryngoscope handle toward the ceiling.  To his relief and amazement, he saw the black hole of the tracheal opening.

“I’ve got it,” Dr. Andrews said, his voice cracking.

“Here’s the tube,” Dr. Harrington said, as he handed Dr. Andrews the clear plastic endotracheal tube. Dr. Andrews fed the tube through her mouth, past the epiglottis and into the trachea.  Dr. Harrington injected 8 milliliters of air from an empty syringe into a portal on the tube.  This inflated a balloon near the distal tip of the tube, which formed a seal against the inner walls of Naomi’s trachea.

Dr. Harrington connected the endotracheal tube to the hoses from the anesthesia machine, and squeezed the ventilation bag.  The patient’s chest expanded. Dr. Andrews pressed his stethoscope against her chest and listened.  The breath sounds were prominent and conclusive.  The endotracheal tube was in the correct place.

“You can cut,” Dr. Harrington said to the surgeon.

Dr. Rogers turned her attention to the patient’s lower abdomen, and made a swift horizontal incision above the pubic bone.  Her assistant retracted the tissue layers as Dr. Rogers cut deeper inside the body.  Within five minutes, she’d controlled all the bleeding and exposed the anterior wall of the uterus.  A second incision cleaved the womb, and she reached inside to pull the baby out.  Within 30 seconds, she’d delivered the baby, cut the umbilical cord, and handed the baby off to the team of pediatricians ready to resuscitate her.

The anesthesiologists’ work wasn’t over after they placed the breathing tube.  They turned on a mixture of 50% nitrous oxide in 50% oxygen, and dialed in a 0.6% mixture of the anesthetic gas isoflurane.  These gases would keep Naomi asleep as the surgeon worked to sew her back together.

Across the room the pediatricians ventilated the baby with oxygen by mask.  Within 5 minutes the baby was pink and crying.  “Apgar scores are 2 and 9,” the pediatric resident said.  The Apgar score is a rating from 0 to 10, calculated one minute after birth and again at 5 minutes, used to quantify how healthy and vital the baby is.  The score is a sum of 0 – 2 points each for five different criteria, including Activity, Pulse, Grimace, Appearance, and Respirations.  The baby’s 5 minute Apgar score of 9 was nearly a perfect 10, and a sign that the baby had survived the birthing process without apparent harm.

Dr. Andrews thanked Dr. Harrington for his timely arrival. Dr. Andrews’ hands were still shaking, supercharged with the adrenaline that had poured into his system over the last hectic hour.

Sixty minutes later, the surgeon closed the last surgical incision, concluding the cesarean section. Dr. Andrews turned off the anesthetic gases.  Naomi Jordan opened her eyes, and Dr. Andrews removed the breathing tube.

“Is my baby girl here?” she asked.

“She’s right here,” Dr. Andrews said, and the pediatrician handed the infant to her mother.  Naomi cried tears of joy.  It was all Dr. Andrews could do to keep from crying along with her.

Dr. Harrington had rescued all three of them:  Naomi, her baby daughter, and Tony Andrews.

LESSONS LEARNED:  The Naomi Jordan story highlights three key issues:  1) the crucial importance of airway management, 2) surgery and anesthesia have risk, and(3) the problem of inexperienced anesthesia practitioners performing medical care they are not fully capable to handle.

(1)  The crucial importance of airway management:  Losing control of an unconscious patient’s airway is a hazard that every anesthetist dreads, every day, in every operating room.  Indeed, the most important skill an anesthesia provider learns is not how to administer powerful sleep drugs, but how to keep patients alive and well under the influence of powerful sleep drugs.  All major anesthetic drugs and gases cause profound depression of breathing and/or cardiac function.

Keeping the anesthetized patient’s airway open via a mask or a laryngeal mask airway or a breathing tube is a critical skill for every anesthesia provider.   If the airway closes, the brain is deprived of oxygen.  Irreversible brain damage can occur after as little as four minutes without oxygen.

(2)  The risks involved in surgery and anesthesia:  Deep down, every surgical patient has the same worry:  How safe is surgery and anesthesia?

Methods of evaluating anesthetic mortality are inexact and controversial.  In 1999 the Institute of Medicine published their report entitled To Err is Human: Building a Safer Health Care System.  In this report, the Committee on Quality of Health Care in America stated that, “anesthesia is an area in which very impressive improvements in safety have been made.”  The Committee cited anesthesia mortality rates that decreased from 1 death per 5,000 anesthetics administered during the 1980s, to 1 death per 200,000-300,000 anesthetics administered in 1999.  Keep in mind that this statistic reflects the frequency of all patients, healthy or ill, who die in the operating room.

This conclusion that anesthesia mortality has plummeted is not universal.  When mortality is defined as any death occurring within 48 hours following surgery, the statistics are much different.  In 2002, anesthesiologist Dr. Robert S. Lagasse of the Albert Einstein College of Medicine in New York published a study in Anesthesiology, the specialty’s leading journal, that challenged the Institute of Medicine report.

Lagasse presented data on surgical mortality from two academic New York hospitals between the years 1992 and 1999.  Mortality was defined as any death occurring within 48 hours following surgery.  There were 351 deaths in 184,472 surgeries–an overall surgical mortality rate of 1 death per 532 cases. Keep in mind that these were deaths within 48 hours–not deaths in the operating room.

Deaths related to anesthesia errors were much less–only 14 deaths out of 184,472 surgeries–a rate of 1 death per 13,176 cases.   Lagasse’s anesthesia-related mortality rate of 1 per 13,176 surgeries was significantly different that the Institute of Medicine’s rate of 1 death per 200,000-300,000 surgeries.  Lagasse wrote, “We must dispel the myth that anesthesia-related mortality has improved by an order of magnitude. Science does not support this claim.”

Lagasse compared anesthesia to the aviation industry: “The safety of airline travel, for example, has increased dramatically in this century, but since the 1960s there has been minimal improvement in fatality rates.  This may be due to the effect that improved safety technology has had on air traffic density.  Technology has made it possible to meet production pressures of the commercial airline industry by allowing more takeoffs and landings with less separation between aircraft.  With this increased aircraft density comes increased danger, thereby offsetting potential improvements in safety.  This may be analogous to the practice of anesthesiology in which improvements in medical technology have led to increased anesthetic management of older patients with significantly more concurrent disease.”

Today’s surgery patients are sicker than ever.  About 5% of all surgical patients die within one year of surgery.  For patients over the age of 65 years, 10% of all surgical patients die within one year of surgery.

Naomi Jordan was healthy, and a cesarean section is a common surgical procedure.  But her case was an emergency procedure, and general anesthesia for cesarean section is known to be a high risk for airway problems because pregnant women have narrowed upper airways, decreased oxygen reserves, and stomachs that do not empty normally.  A 2003 study showed that a difficult or failed intubation following induction of general anesthesia for cesarean section was the number-one factor in anesthesia-related maternal complications.

Because of this, the use of general anesthesia for cesarean sections has declined.  In a Harvard study published in 1998, only 3.6% to 7.2% of cesarean sections were done under general anesthesia.  Difficult intubations were frequently unexpected, as was the case for Naomi Jordan, and one failed intubation resulted in the mother’s death.

Whenever possible, the safest anesthetic choice for cesarean section is a spinal or an epidural block, in which the anesthetist injects a local anesthetic drug via a needle inserted in the low back area.  This numbs the mother from her nipples to her toes, and she stays awake and breathes on her own during surgery.

(3) Inexperienced anesthesia practitioners performing medical care they are not fully capable to handle:  During the first twelve months of a physician’s anesthesia residency, each trainee is closely mentored and restricted to easier surgeries if possible.  Each year in July, new residents enter each residency program and existing residents are advanced from first-year residents to second-year residents, while second year residents become third-year residents.  Each July, every anesthesia trainee faces a new tier of responsibilities and more challenging cases.  The Naomi Jordan case occurred in August, when Dr. Tony Andrews was inexperienced and less than two months into the more challenging second year of residency.  In a teaching hospital, July and August are the least desirable months to be a patient.

Within a few years of Dr. Andrews’ incident, the hospital he trained at changed its staffing, and made it mandatory that an anesthesia faculty member stayed in the hospital all night.  Inexperienced residents would never be called on to handle emergencies alone–a good idea that grew out of the Naomi Jordan case and others.  In addition, the American Board of Anesthesiology added an additional year of required training to all anesthesiologist residencies, so every anesthesiologist left their residency with a minimum of three years of training post-internship instead of just two.

Prior to the Naomi Jordan case, Dr. Andrews was both inexperienced and cocky–a bad combination.  He screwed up the management of her airway, but Dr. Harrington rescued him, and the outcome was excellent. If Dr. Andrews had harmed Naomi Jordan, he would have been known as the anesthesiologist that bumped off a healthy patient.  Despite his previous 800 uneventful anesthetics up to that night, he would be remembered for the one that went bad.  The Naomi Jordan case taught Dr. Andrews a lesson he never forgot.  While he never lost control of another patient’s airway in his years of anesthesia practice after the Jordan case, that wasn’t the lesson he learned.  The lesson Dr. Andrews learned was a lesson every anesthesia provider eventually comes to accept:

You’re only as good as your last anesthetic

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too.

Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?”

The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

HOW TO START AN I.V. CATHETER ON A PATIENT WITH DIFFICULT VEINS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

In this column, I’ll describe the best approach to starting a difficult IV in a patient with small, deep, or hidden veins. This information is based on my experience in personally starting IVs on over 25,000 surgical patients in 34+ years as a clinical anesthesia attending.


DSCN0177

Anesthesiologists become experts at inserting an intravenous (I.V.) catheter.  In my career of 20,000+ anesthetics, I’ve started at least one I.V. per patient, and some cases required more than one I.V.  Some I.V’s are easy, and would present no challenge to a first-year nursing student, but some patients have veins that are small, deep, rolling, invisible, or scarred over, and only an expert will succeed.

Almost every adult anesthetic begins with the intravenous injection of sedative drugs, so every anesthesiologist needs to become expert in I. V. insertion.  As a demonstrative case, let’s tackle a world-class difficult situation:

Your patient is obese, weighing in at 300 pounds, and her arms are cylinders of fatty tissue.  She has a past history of surgery for breast cancer, and she had the lymph nodes removed under her left arm.  Therefore, I.V. attempts in her left arm are prohibited.  In addition, she had intravenous chemotherapy for months, which used up every decent vein in her right arm.

Here are my time-tested tips to successfully locate a vein and insert the I.V. on a difficult patient such as this:

  1. Lie the patient down, supine and horizontal.  Blood will pool where gravity takes it.  If a patient is sitting upright, or has their legs dangling, the blood will pool in dependent regions such as the veins of the legs, rather than the veins of the upper extremities where you are looking.
  2. Apply a standard rubber tourniquet to the upper arm.  Then, on top of this tourniquet, apply the blood pressure cuff from an automated blood pressure machine.
  3. Activate the blood pressure cuff in “Stat” mode, or repeatedly inflate the cuff in “Manual” mode.  The pneumatic blood pressure cuff is a superior venous tourniquet, and will be most effective in making even small veins grow prominent.
  4. Examine the arm carefully for the best vein.  Do this by both inspection and palpation.  Sometimes the cord of the vein can be felt, even when it can not be seen.  Rather than sticking the patient’s arm in multiple places, over and over, until she looks like a pin-cushion, be patient and do not start until you’ve found the very best location.
  5. Stimulate the skin over this vein by snapping your forefinger at the site.  This local stimulation makes veins grow, perhaps by releasing a regional veno-dilator, or by blocking a regional veno-constrictor.  All I can tell you is that, whatever the mechanism, this technique definitely works.
  6. Choose a standard I.V. catheter, either a 20-gauge or 22-gauge.  Butterfly needles are NOT preferred, because they require leaving a needle in the small vein, rather than the plastic I.V. catheter.
  7. ALWAYS anchor the skin over the vein by pulling distally with your non-dominant thumb, while you insert the I.V. catheter with your dominant hand.  This anchoring and stretching of the skin distally prevents the vein from rolling or moving during your insertion attempt.DSCN0160
  8. When you first hit the vein, and blood begins to flow into the hub of your catheter, you MUST advance the device an additional 1-3 millimeters before you attempt to advance the catheter forward over the needle into the vein.  And you MUST NOT move the non-dominant thumb away from its task of stretching the skin distally, so that the vein stays stationary. The I.V. catheter device is a catheter-over-a-needle device.  When the needle tip first enters the vein, the catheter tip is not in the lumen of the vein yet.  The  1-3 millimeter advance moves the tip of the plastic catheter into the vein.DSCN0160
  9. Patients have four extremities.  If you are unsuccessful in locating a vein in either arm, you can move to the foot and ankle region to start an I.V. there.  Follow the same steps outlined above.

10. If you can not locate a vein in any extremity, consider the external jugular veins on the side of the patient’s neck.  With the patient positioned slightly head down, these veins are often prominent.  The external jugular vein swells when the patient performs a Valsalva maneuver, such as when you ask them to “bear down as if you are having a bowel movement.”  You do not need to start a central venous catheter (CVC) in the external jugular vein.  A simple 1- ¼ inch, 20-gauge peripheral I.V. catheter will suffice.  Because the size and diameter of the external jugular vein is larger than most arm veins, and because the external jugular vein is usually quite superficial, cannulating this vein can be very easy in skilled hands.  I attach a 3 c.c. syringe onto the hub of the intravenous catheter device before I attempt the insertion, and then I aspirate back with negative pressure as I advance the device.  Once the catheter is inside the external jugular vein, the syringe will fill with blood, and you can advance the catheter into the vein.  I usually fixate the catheter with tape, rather than suturing the catheter in place.

Those are my tips for difficult I.V. inserting.  Follow these steps, and with experience and patience, you will become the intravenous-insertion expert at your hospital.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

A PREOPERATIVE ANESTHESIA CLINIC: DO YOU NEED ONE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Do you need a Preoperative Anesthesia Clinic? You’ve just graduated from your anesthesia training program.  The night before your first day in community practice, your operating room surgery list reads: 7:30 a.m. = 68-year-old male for a thyroidectomy, 11 a.m. = 42-year-old male for laparoscopic cholecystectomy, and 1 p.m. = 56-year-old female for a vaginal hysterectomy.

Who, if anyone, has done the preoperative evaluations for these patients?  How can anesthesiologists and surgeons function without a preoperative clinic and its employees to evaluate patients prior to surgery?

Discussion:  In the academic teaching setting, the Preoperative Anesthesia Clinic is useful.  University surgical patients are complex, not all residents in anesthesia and surgery are experienced in preoperative evaluation, and many patients do not have an internist or a primary care provider.

In most community practice models, a Preoperative Anesthesia Clinic is impractical.  As community anesthesiologists in private practice, we distribute guidelines to surgeon’s offices regarding the indications for preoperative lab tests, consultations, and medication management.  Surgeons or their nurse practitioners do the preoperative evaluations for healthy patients, and surgeons refer more complex patients to internists preoperatively as indicated.  When the surgeon wants an anesthesia consult (or else risk a cancellation on the day of surgery), he or she will call the attending anesthesiologist who is responsible for preoperative phone consultations.  The surgeon or the surgeon’s nurse practitioner will present the case, and the anesthesiologist will advise whether further diagnostic tests or medicine consultations are necessary prior to scheduling the surgery.

The night before the surgery, each attending anesthesiologist in our practice usually telephones their patients.  The anesthesiologist asks medical history questions that are pertinent, and answers the patient’s questions.  Patients are advised as to eating and drinking restrictions before surgery, and whether the patient should take or hold any usual oral medications in the day prior to surgery.

On the day of surgery, pertinent labs, ECG’s and consults are on the chart.  Any omissions can be supplemented, e.g. bedside ECG or fingerstick blood glucose.

This method works in community private practice of anesthesia, because all the involved M.D.’s are fully trained and they have incentive to complete the surgical cases, not to cancel them.  Key advantages of this method are

(1) Patients like it.  Patients like talking to their attending anesthesiologist the night before, instead of waiting at an anesthesia clinic to be evaluated by a third party.

(2 ) There is no expense to rent clinic space and pay clinic employees.

(3) Community private practice anesthesiologists do not want to staff a clinic, where there is no financial incentive to be there.

(4) For pediatric surgery, parents prefer to talk to the attending surgeon the night before surgery from the comfort of their own home, rather than bringing their child to the hospital twice.

(5) This system works.  Our practice averages averages 1-2 cancellations on the day of surgery per anesthesiologist per year.  Example cancellations may occur for patients who have fever the day of surgery, chest symptoms the day of surgery, or elevated blood pressure the day of surgery.  Very few patients are cancelled because of incomplete laboratory workup, as current anesthesia standards show that many preoperative lab tests are either not indicated or do not change the management of the anesthetic. See the American Society of Anesthesiologists (ASA) Practice Advisory for Preanesthesia Evaluation.

Instead of staffing a Preoperative Anesthesia Clinic, your preoperative homework is three telephone calls the night before surgery.  Because it is your first day at a new practice, you choose to telephone a senior member of your anesthesia group the night before surgery as well, so he or she can give you advice on what to expect from each surgeon the next day.  Time = 25 minutes.  Cost = 0.

An occasional patient may need to be evaluated prior to the day of surgery. The American Society of Anesthesiologists (ASA) Practice Advisory for Preanesthesia Evaluation addresses the issue of the timing of preanesthesia evaluation. For cases of high surgical invasiveness, 59% of ASA members recommended that the preoperative anesthesia history and physical take place prior to the day of surgery.

For patients with a high severity of disease, 89% of ASA members recommended that that the preoperative anesthesia history and physical take place prior to the day of surgery.

In these instances, arrangements can be made for a member of the anesthesia group to meet and evaluate the patient prior to the day of surgery.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

NEEDLE PHOBIA BEFORE GENERAL ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:  A needle-phobic 16-year-old male is scheduled for a shoulder arthroscopy at a freestanding surgery center.  He is tearful and refuses any needles while he is awake.  He is 5 feet 3 inches tall, weighs 220 pounds, and has a Body Mass Index of 39.

What would you do?

 

Discussion:  You bring the patient into the operating room and apply the standard monitors.  You begin an inhalation induction with 70% inspired nitrous oxide and sevoflurane.  You increase the concentration of sevoflurane gradually after each breath.  After 2 minutes, at 4% inspired sevoflurane, the patient begins to cough, buck, and have stridor, and the oxygen saturation plummets below 60%.  You see no site to place an I.V., and the nurse and surgeon are no help.  You are not able to improve the airway with jaw thrust, mask ventilation, continuous positive airway pressure, or an oral airway.  You place an laryngeal mask airway (LMA), but the patient continues to have stridor and a weak cough.  No ventilation is possible.  You give intramuscular succinylcholine at 4 mg/kg, but while you are waiting for the drug to take effect,  the patient’s ECG changes to ventricular fibrillation.  You scream for the defibrillator, and do direct laryngoscopy to attempt placement of an endotracheal tube in the now-flaccid patient.  Your heart rate is 180 beats–per-minute, and you are praying for the patient’s heartbeat to return.  You can’t believe that this boy walked into the surgery center as healthy as can be, and that within minutes you have brought on the circumstances of cardiac and respiratory arrest.

In a parallel universe, you anticipate all the above issues, and prepare yourself.  You are aware that his BMI = 39 places him at increased risk for an inhalational induction.  You explain to the patient and his parents that there are risks for an overweight patient being anesthetized without an I.V., and lobby hard for him to permit you to attempt an awake I.V. placement.  You offer him oral midazolam as an anti-anxiety premedication, and topical EMLA to numb the I.V. site.  Alas, he is crying and still refuses any needle. You place an automated blood pressure cuff on his upper arm, and note that veins are visible on his hand when you inflate the cuff in Stat mode on that extremity.  His airway appears normal.  You describe to the parents that there is a risk that their son might have dangerous low oxygen levels during the mask induction of anesthesia.  They agree to accept this risk, and you document the same in the medical records.  You make a plan to proceed with inhalation induction, using the automated cuff to maximize the size of the veins on his hand.

(Note:  If you do not have confidence in proceeding, you may delay the patient until another anesthesiologist is present to assist you, or cancel the case.  Also note that if the anesthetic is done in a hospital rather than a freestanding surgery center, the identical clinical issues will be present, and the anesthetic plan will be similar except for the presence of additional backup anesthesia personnel.)

You enter the operating room and apply the standard monitors.  You place a mask strap behind the patient’s head to help hold the anesthesia mask over his airway, and have him breathe 100% oxygen with high flows of 10 liters/minute for two full minutes prior to beginning induction.  Next you add 8% sevoflurane to the gas mixture, and ask the patient to take deep vital capacity breaths your anesthetic circle system.  This technique is known as Vital Capacity Rapid Inhalation Induction.  For safety reasons, I prefer sevoflurane induction with 100% oxygen instead of using nitrous oxide, which limits the delivered oxygen concentration.

As soon as the patient is anesthetized deeply enough, (seeing the eyes conjugate in the midline is a useful monitoring sign), you activate the blood pressure cuff on his upper arm in the Stat mode, and you move to his lower arm to start the I.V.  You leave the patient breathing on his own with the straps holding the mask over his face, and use both of your hands to place a 20-gauge I.V. catheter.  Once the intravenous catheter is placed, you continue the anesthetic using intravenous and inhalation drugs, with either an LMA or endotracheal tube for airway management.

Ambulatory anesthesia in freestanding facilities is a gravy train of healthy patients and straightforward cases, right?  Not all the time.

In the hospital, when you anesthetize elderly, sick patients for complex surgeries, you have a multitude of advanced technologies at your disposal.  You have invasive monitoring, transesophageal echocardiogram machines, laboratories, blood banks, and intensive care unit backup, as well as dozens of other anesthesia providers available within seconds to assist you if you get into trouble.  In addition, it’s understood by the patient and family that there are significant risks if the patient is old, sick, or if the surgery is complex.

In anesthetics for healthy outpatient surgery, the patient and the family expect the rate of adverse outcomes to be … zero.  Despite your informed consent that rare problems could occur, there will be anguish and anger if problems indeed do occur.

Treat needle phobia with respect.  It can be a life-threatening problem in the hands of an inexperienced anesthesia provider.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

MANAGEMENT OF STROKE IMMEDIATELY FOLLOWING CAROTID ARTERY SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:  A 74-year-old man is scheduled for a left carotid endarterectomy.  At the conclusion of the anesthetic, his blood pressure rises to a Mean Arterial Pressure (MAP) of 110, and he is unable to move the right side of his body.  What do you do?

 

Discussion:   In 19 years of doing vascular anesthesia, I  had this happen to my patient two times.   The first time it occurred, I wasn’t sure what to do, if anything, about the new neurologic deficits.

Let us assume that you already carried out the textbook approach to  anesthesia for carotid thromboendarterectomy (TEA) for this patient.   All appropriate diagnostic and therapeutic measures were done to prepare the patient for surgery.   His preoperative MAP was 100.  During the general anesthetic the MAP was maintained between  90 and 110.   The surgeon used a carotid shunt, and during clamping and shunting no hypotension occurred.  (These were the circumstances  in both the post operative strokes in my patients.)   At the conclusion of surgery, you discontinued the anesthetics, and the  blood pressure increased as the anesthetic depth lightened.  The MAP increased to 110.  You extubated the patient awake.  Then you noticed that the right leg and arm were not moving.  The surgeon returned to the bedside, and said, “I need him back asleep, as fast as possible!”

What do you do at this point?   You give additional doses of anesthetic and relaxant, and reintubate the trachea.  You may be feeling guilty, wondering if this paralysis is an anesthetic complication.    What the surgeon is thinking is, “do I have a diagnosis that I can treat, such as a dissection, a flap, or a clotted  carotid artery?”  The surgeon may ask you to give a repeat dose of heparin to the patient.  After a quick prep and drape, he  reopens the  skin incision.   The surgeon assesses the pulse in the carotid, and may do a Doppler ultrasound exam.  Next is an on-the-table angiogram, which shows that both the common and internal carotid arteries are 100% occluded.

The surgeon closes the wound.  You discuss the plan with the surgeon.  The plan is to  keep the trachea intubated to protect the airway.  You discontinue the general anesthesia, and substitute a propofol infusion for  transport to the ICU.

Per Miller’s Anesthesia, 5th edition, 2000, p 1878, “for carotid endarterectomy, most centers report a perioperative stroke rate of between 3 and 5 per cent.  The incidence of perioperative stroke is highest for patients with stroke, lower for patients with transient ischemic attack, and lowest in asymptomatic patients.  Neurologic deficits occur most commonly in patients with poorly controlled preoperative hypertension or in those with hypertension or hypotension postoperatively.  More than half of these deficits occur more than 4 hours postoperatively.”

If you do hundreds of carotid TEA’s during your career,  a non-zero number of patients will have postoperative strokes.  As the anesthesiologist, you have control of the patient’s blood pressure and heart rate.   Extremes of blood pressure that are outside the range of autoregulation of cerebral perfusion can contribute to cerebral ischemia.   But most strokes will be surgical complications.   Per Sabiston,  (Textbook of Surgery, 2001, p 1348), “neurologic deficits within  the first 12 hours of operation are almost always the result of thromboembolic phenomena stemming from the endarterectomy site or damaged internal, common, or external carotid arteries.”

I learned from my experiences not to extubate the carotid TEA patient until he proves he is awake and can move the contralateral extremities.  If there is a stroke, you need only to give more drugs to resume anesthesia, instead of the risks of repeat laryngoscopy and intubation as in the case above.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ANESTHESIA FACTS FOR LAYPEOPLE: CHILDBIRTH, CARDIAC SURGERY, AND BRAIN SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

I.  CHILDBIRTH (OBSTETRIC ANESTHESIA):

Most obstetric anesthesia is for either vaginal delivery or for Cesarean sections.

Anesthesia for Vaginal Delivery:  Anesthesia for vaginal delivery is utilized to diminish the pain of labor contractions, while leaving the mother as alert as possible, with as muscle strength as possible, to be able to push the baby out at the time of delivery.  Anesthesia for labor and vaginal delivery is usually accomplished by epidural injection of the local anesthetics bupivicaine (brand name Marcaine) or ropivicaine.

is done by the injection of local anesthetic solution, with or without a narcotic medication, into the low back into the epidural space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood.

The word epidural translates to “outside the dura”. The dura is the outermost lining of the meninges covering the nerves of the spinal column. The epidural space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.   Often, a tiny catheter is left in the epidural space, taped to the patient’s low back, to allow repeated doses of the medication to be given.  The catheter is removed after childbirth.

Anesthesia for Cesarean Section: Cesarean section is a surgical procedure in which the obstetrician makes an incision through the skin of the lower abdomen, and through the wall of the uterus, or womb, to extract the baby without the child requiring a vaginal delivery.  Anesthesia for Cesarean section is usually a spinal or an epidural anesthetic, which leaves the mother as alert as possible, while rendering surgical anesthesia to her abdomen and pelvis.  Spinal or epidural anesthesia is accomplished by injection of local anesthetics, with or without a narcotic medication, into the low back into the subarachnoid or the epidural space. The anesthesiologist remains present for the entire surgical procedure, to assure that the mother is comfortable and that all vital signs are maintained as close to normal limits as possible.

In a minority of cases, the anesthesia provider will administer a general anesthetic for Cesarean section surgery.  The most common indications for general anesthesia are (1) emergency Cesarean, when there is no time for a spinal or epidural block;  and (2) significant bleeding by the mother, leading to a low blood volume, which is an unsafe circumstance to administer a spinal or epidural block.  General anesthetics for Cesarean section carry an increased risk over spinal/epidural anesthesia, primarily because the mother is no longer able to breath on her own and maintain her own airway.

II.  CARDIAC SURGERY/OPEN HEART SURGERY:

Open heart surgery requires specialized equipment.  Anesthesia for cardiac surgery is complex, and the following is a brief summary:  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure, or to increase the heart’s pumping function.

After the patient is anesthetized, the anesthesiologist often inserts a Transesophageal Echocardiogram (TEE) probe into the patient’s mouth, down the esophagus, and into the stomach.  The TEE gives the anesthesiologist a two-dimensional image of the beating heart and the heart valves in real time, and enables him or her to adjust medications and fluid administration as needed to keep the patient stable.

For open heart surgery, once the chest is open, the cardiac surgeon inserts additional tubes into the veins and arteries around the heart, diverting the patient’s blood from the heart and lungs into a heart-lung machine located alongside the operating table.  During the time the patient is connected to the heart-lung machine, the patient’s heart can be stopped so that the surgeon can operate on a motionless heart.

When the surgeon has completed the cardiac repair, the heart is restarted, and the heart-lung machine is disconnected from the patient.

As the heart resumes beating, the anesthesiologist manages the drug therapy and intravenous fluid therapy to optimize the cardiac function.

III.  ANESTHESIA FOR NEUROSURGERY (BRAIN SURGERY):

Intracranial (brain) surgery requires exacting maintenance of blood pressure, heart rate, and respiratory control.  Prior to the surgery, the anesthesiologist inserts a catheter into the radial artery at the wrist, to monitor the patient’s blood pressure continuously, rather than relying on a blood pressure cuff.  This enables the anesthesiologist to fine-tune the blood pressure, never allowing it to be too high or too low for an extended period of time.  The anesthesiologist also inserts a catheter (a central venous catheter, or CVP catheter) into a large vein in the patient’s neck.  The anesthesiologist uses this catheter to monitor the pressure inside the heart, and also to administer infusions of potent medications into the central circulation to raise or lower the blood pressure.

The anesthetic technique is designed to provide a motionless operating field for the surgeon.  After the anesthesiologist anesthetizes the patient, he or she inserts the endotracheal tube into the windpipe.  The patient is often hyperventilated, because hyperventilation causes the blood vessels in the brain to constrict, and makes the volume of the the brain decrease.  The relaxed brain affords the surgeon more room to dissect and expose brain tumors or aneurysms.

An important goal of the anesthetic is a quick wake-up at the conclusion of surgery, so that (1) normal neurological recovery of the patient can be confirmed, and (2) the patient is alert enough to  maintain their own airway and breathe on their own.  Most brain surgery patients spend at least one night in the intensive care unit (ICU) after surgery.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

ANESTHESIA FACTS FOR LAYPEOPLE: HOW SAFE IS ANESTHESIA?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Deep down, every surgical patient has the same worry:  How safe is anesthesia and surgery? Methods of evaluating anesthetic mortality are inexact and controversial.


In 1999 the Institute of Medicine published their report entitled To Err is Human: Building a Safer Health Care System.  In this report, the Committee on Quality of Health Care in America stated that, “anesthesia is an area in which very impressive improvements in safety have been made.”  The Committee cited anesthesia mortality rates that decreased from 1 death per 5,000 anesthetics administered during the 1980s, to 1 death per 200,000-300,000 anesthetics administered in 1999.  These statistics reflected the frequency of all patients, healthy or ill, who died in the operating room.

However, this conclusion that anesthesia mortality has plummeted is not universal.  When mortality is defined as any patient who dies within 48 hours following surgery, the statistics are much different.  In 2002, anesthesiologist Dr. Robert S. Lagasse of the Albert Einstein College of Medicine in New York published a study in Anesthesiology, the specialty’s leading journal, which challenged the Institute of Medicine report.

Lagasse presented data on surgical mortality from two academic New York hospitals between the years 1992 and 1999.  When mortality was defined as anydeath occurring within 48 hours following surgery, there were 351 deaths in 184,472 surgeries–an overall surgical mortality rate of 1 death per 532 cases.

Deaths related to anesthesia errors were much less–only 14 deaths out of 184,472 surgeries–a rate of 1 death per 13,176 cases.   However, Lagasse’s anesthesia-related mortality rate of 1 per 13,176 surgeries was significantly different that the Institute of Medicine’s rate of 1 death per 200,000-300,000 surgeries.  Lagasse wrote, “We must dispel the myth that anesthesia-related mortality has improved by an order of magnitude. Science does not support this claim.”

Lagasse compared anesthesia to the aviation industry: “The safety of airline travel, for example, has increased dramatically in this century, but since the 1960s there has been minimal improvement in fatality rates.  This may be due to the effect that improved safety technology has had on air traffic density.  Technology has made it possible to meet production pressures of the commercial airline industry by allowing more takeoffs and landings with less separation between aircraft.  With this increased aircraft density comes increased danger, thereby offsetting potential improvements in safety.  This may be analogous to the practice of anesthesiology in which improvements in medical technology have led to increased anesthetic management of older patients with significantly more concurrent disease.”

Today’s surgery patients are sicker than ever.  Five percent of all surgical patients die within one year of surgery.  For patients over the age of 65 years, 10% of all surgical patients die within one year of surgery. The authors of this data wrote, “Death during the first year after surgery is primarily associated with the natural history of preexisting conditions. However, cumulative deep hypnotic time and intraoperative hypotension were also significant, independent predictors of increased mortality. These associations suggest that intraoperative anesthetic management may affect outcomes over longer time periods than previously appreciated.”

In a recent update, Dr. Jeana Havidich, an associate professor of anesthesiology at Dartmouth-Hitchcock Medical Center in New Hampshire, presented the following preliminary data at the October 2014 American Society of Anesthesiologist convention:

  1. From more than 3.2 million cases of anesthesia use between 2010 and 2013, the rate of complications decreased from 11.8 percent to 4.8 percent. The most common minor complication was nausea and vomiting (nearly 36 percent) and the most common major complication was medication error (nearly 12 percent).
  2. The death rate remained at three deaths per 10,000 surgeries/procedures involving anesthesia.
  3. Among the other findings: complication rates were not higher among patients who had evening or holiday procedures; patients older than 50 had the highest rates of serious complications; and healthier patients having elective daytime surgery had the highest rates of minor complications.

Data published in 2015, in a study of mortality in surgical cases from 2010 to 2014 (Whitlock EL, Feiner, JR, Chen LI, Perioperative Mortality, 2010 to 2014 A Retrospective Cohort Study Using the National Anesthesia Clinical Outcomes Registry. Anesthesiology, V 123, No 6, Dec 2015, 1312-1321) showed the following:

  1. The authors analyzed 2,866,141 cases and 944 deaths (crude mortality rate, 33 per 100,000)
  2. Independent risk factors for higher mortality were: emergency case status, surgical cases beginning between 4 p.m. and 6:59 a.m., patient age less than one year or greater than or equal to 65 years, and sicker patients with an increased American Society of Anesthesiologists physical status score.

Anesthesia is safer than it has ever been, but risk factors such as emergencies, very young or old patients, or sicker patients, do increase the risk. The new finding in this 2015 publication was that surgeries which began late in the day or night (after 4 p.m. until 6:59 a.m.) had increased mortality.

 

LEARN MORE ABOUT RICK NOVAK’S FICTION WRITING AT RICK NOVAK.COM BY CLICKING ON THE PICTURE BELOW:

DSC04882_edited

 

 

ANESTHESIA FACTS FOR LAYPEOPLE: TYPES OF ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

There are several types of anesthesia:

GENERAL ANESTHESIA

A general anesthetic renders the patient asleep and insensitive to pain for surgery. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. Before the anesthetic, oxygen is administered by mask to fill the patient’s lungs with 100% oxygen. Most adult patients are given general anesthesia by intravenous injection, usually of the medication propofol. This injection causes the patient to lose consciousness within 10 – 20 seconds. This is called the induction of anesthesia. The maintenance of anesthesia during surgery is done by mixing an anesthesia gas or gases with the oxygen. Typical inhaled anesthesia gases are nitrous oxide, sevoflurane, or isoflurane. Sometimes a continuous infusion of intravenous anesthetic such as propofol is given as well. The choice and dose of drugs is done by the anesthesia attending, based on the patient’s size, age, the type of surgery, and the anesthesiologist’s experience.

Many patients are given prophylactic anti-nausea medication during the anesthetic. If postoperative pain is anticipated, the anesthesiologist can also administer intravenous narcotics such a morphine, meperidine (Demerol), or fentanyl.

Depending on the patient’s medical condition and type of surgery, the anesthesiologist may protect the patient’s airway during the general anesthetic by placing a breathing tube through the mouth, either an endotracheal tube (ET Tube) into the patient’s windpipe, or a laryngeal mask airway (LMA) just above the voice box.

At the conclusion of surgery, the general anesthetic gases and/or intravenous anesthetic infusion(s) are discontinued. The patient usually regains consciousness within 5 – 15 minutes. The patient is then transferred to the recovery room.

SPINAL ANESTHESIA

Spinal anesthesia is done by the injection of local anesthetic solution into the low back into the subarachnoid space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The word subarachnoid translates to “below the arachnoid”. The arachnoid is one of the layers of the meninges covering the nerves of the spinal column. In the subarachnoid space lies the cerebral spinal fluid (CSF) which surrounds the spinal cord and brain. In a spinal anesthetic, the subarachnoid space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.

Local anesthetics, such as lidocaine or bupivicaine (brand name Marcaine), given into the subarachnoid space, bring on sensory and motor numbness. The anesthesiologist chooses the dose and type of drug depending on the patient’s age, size, height, medical condition, and the type of surgery.

Following the onset of numbness from spinal anesthesia, the patient may either stay awake for surgery, or more often intravenous anesthesia is given to achieve a light sleep. Sometimes light general anesthesia is given to supplement spinal anesthesia.

EPIDURAL ANESTHESIA

Epidural anesthesia is done by the injection of local anesthetic solution, with or without a narcotic medication, into the low back into the epidural space. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The word epidural translates to “outside the dura”. The dura is the outermost lining of the meninges covering the nerves of the spinal column. The epidural space is located with a needle by the anesthesiologist, and the appropriate anesthetic medications are injected.   Often, a tiny catheter is left in the epidural space, taped to the patient’s low back, to allow repeated doses of the medication to be given.  The catheter is removed at the end of surgery, or sometimes days later if continued epidural medications are administered for postoperative pain control.

Local anesthetics, such as lidocaine or bupivicaine (brand name Marcaine), given into the epidural space, bring on sensory and motor numbness. The anesthesiologist chooses the dose and type of drug depending on the patient’s age, size, height, medical condition, and the type of surgery.

Following the onset of numbness from epidural anesthesia, the patient may either stay awake for surgery, or more often intravenous sedation is given to achieve a light sleep. Sometimes light general anesthesia is given to supplement epidural anesthesia.

REGIONAL ANESTHESIA

Regional anesthesia is the injection of local anesthetic (either lidocaine or Marcaine) near a nerve to block that nerve’s function.  Examples of regional anesthesia include arm blocks (axillary block, interscalene block, subclavicular block), and leg blocks (femoral block, sciatic block, popliteal block, ankle block).  An advantage of regional anesthesia blocks is that the patient may remain awake for the surgery.  If desired, the anesthesia provider may administer intravenous sedation or general anesthesia in addition to the regional anesthetic, to allow the patient to sleep during the surgery–the advantage of this combined anesthetic technique is the regional anesthetic blocks all surgical pain and less sleep drugs are required.

INTRAVENOUS ANESTHESIA

Some minor surgical procedures (for example: breast biopsies, eyelid surgery, some hernia surgeries) can be done with the combination of local anesthesia plus intravenous anesthesia sedation. Prior to beginning anesthesia, the anesthesiologist places monitors of blood pressure, electrocardiogram, pulse and oxygen saturation of the blood. The anesthesiologist is present for the entire surgery, and administers intravenous sedatives as required for the patient’s comfort and the surgeon’s needs.  If the sedation is deep enough, the intravenous sedation will be termed general anesthesia. While the patient is sedated, the surgeon usually injects local anesthetics into the surgical site to block both surgical and post operative pain.

Vigilance by an anesthesiologist during intravenous sedation is also known as Monitored Anesthesia Care, or MAC.

PEDIATRIC ANESTHESIA

Because the separation of a young child from his or her parents can be one of the most distressing aspects of the perioperative experience, many children benefit significantly from oral preoperative sedation with midazolam. This relatively pleasant-tasting liquid is given by mouth about twenty minutes prior to the start of the anesthetic. Although the midazolam rarely causes children to fall asleep, it does reduce anxiety dramatically, allowing for a much smoother separation from parents. It also tends to cause a wonderful short term amnesia, so that the children often have no recollection of separating from their parents, or even of going to the operating room.
Although the initial anesthetic is usually administered via an intravenous infusion in adult patients, this approach requires starting an IV while the patient is still awake. This technique would be quite unpopular with younger children.  Most young children prefer to go to sleep breathing a gas, a technique known as an inhalation induction. This technique is used for almost all routine surgeries, but cannot safely be employed in certain rare situations, such as emergencies.

An inhalation induction consists of the child breathing a relatively pleasant smelling anesthetic vapor – usually sevoflurane – via a facemask for approximately 30 to 60 seconds. The child loses consciousness while breathing the gas, and the IV can then be started painlessly. Generally, the child continues to breath the gas throughout the duration of the surgery, either via the facemask or an endotracheal tube, depending on the duration and type of surgery. It is this breathing of the gas which keeps the child anesthetized. At the end of the surgery, the gas is discontinued, and the child begins to awaken.

Prior to awakening, children may be given either analgesics (pain medicines) or anti-emetics (drugs which reduce the likelihood of nausea and vomiting). The type of surgery will determine which of the many possible medications will be used for these purposes. The purpose of these medications is to make the child’s awakening as calm and pleasant as possible. Equally important in this regard is reuniting the child with his or her parents as quickly as possible.
Despite best attempts, it is important for parents to realize that children, especially those less than five years of age, often are somewhat cranky and irritable following anesthesia and surgery. We do our best to minimize this, but we cannot prevent it in all cases. Similarly, some children will experience postoperative nausea and vomiting despite receiving medications which are intended to prevent it.

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

EMERGENCY AIRWAY BLEEDING AFTER SLEEP APNEA SURGERY

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:   You are called at 0200 hours  to anesthetize a 50-year-old man who is bleeding from his palate.  He is 14 hours status-post  a uvulopalatopharyngeoplasty (UPPP) for sleep apnea.  He is 6 feet tall, weighs 200 pounds, and  he is spitting up blood.  What do you do?

Discussion:   You meet the patient in the ICU.  He is sitting up in bed,  spitting out small amounts of blood and swallowing the rest.  He has been bleeding for four hours, and the total volume of blood seen has been less than a cup.   Vital signs are:  pulse 100, blood pressure 160/90, and oxygen saturation 97% on room air.  The airway exam reveals dried blood on the mouth and tongue, moderate edema of the  pharynx, tongue, and mucous membranes, and no bleeding point is seen.  Review of the chart reveals that your partner intubated the trachea with a Miller #2 blade without difficulty that morning for elective surgery. The surgeon wants the patient asleep as soon as possible.  You transport the patient to the operating room, and have him breath 100% oxygen through a mask while you prepare for the anesthetic.

The A-B-C’s of Airway-Breathing-Circulation dictate that the Airway is the most important factor to consider in this case.   You have the principles of the ASA Difficult Airway Algorithm (see http://www.ASAhq.org) committed to memory.  You plan a strategy for the airway management.  Per the Algorithm, you begin by assessing the likelihood of four basic problems:  1) Difficult ventilation, 2) Difficult intubation, 3) Difficulty with patient cooperation, and 4) Difficult tracheostomy.   You assess that you will be able to mask ventilate this patient, but there is some chance that the blood and edema will make intubation difficult.  You also consider that blood and edema could make both mask ventilation and intubation difficult.  Patient cooperation is adequate, and the surgeon states that he would not have difficulty doing a tracheostomy or cricothyroidotomy.

Next you consider the choices of:   a) awake intubation vs. inducing general anesthesia first, b) use of non-invasive techniques as the initial approach to intubation vs. surgical techniques like tracheostomy, and c) preservation of spontaneous ventilation during intubation attempts vs. ablation of spontaneous ventilation.

Your assessment is that awake fiber optic intubation would be difficult secondary to the active airway bleeding.  Blind awake nasal intubation is a possibility, but looking at the patient, you make a different choice.   You are confident that you can induce general anesthesia, use cricoid pressure, paralyze the patient, and intubate the trachea using a Miller #2 blade as your partner did the previous morning.  If you have difficulty seeing the larynx, you will use a Yankauer suction to clear blood, try alternate laryngoscope blades, and support oxygenation by mask ventilation while cricoid pressure is continued. You may utilize other options as necessary, including a bougie or a light wand.  If ventilation becomes difficult, you will insert an LMA.  If ventilation becomes impossible, the surgeon will perform an emergency surgical airway.

You need an assigned individual to assist you during your airway management.  Because there is no other anesthesiologist in the hospital, your otolaryngology colleague is the obvious assistant.   Before you induce anesthesia, you bring the difficult airway cart into the operating room, as well as a tracheostomy tray for the surgeon.

You discuss this plan with the surgeon.  After  preoxygenation, you induce anesthesia with propofol and succinylcholine.  Cricoid pressure is applied.  When you insert the  laryngoscope  into the mouth, all you see is blood, swollen tissues, and no view of the larynx.  Your next action is aggressive suctioning with a Yankauer catheter, and after repositioning the laryngoscope, you are able to see the larynx.  The tracheal tube is placed, the cuff is inflated, and its location confirmed by CO2 and auscultation.  You recheck vital signs, begin  maintenance anesthesia with sevoflurane, and the surgery begins.

I had a case of this type twice in the last 5 months.  Both cases were effective in raising the endogenous catecholamine level of this anesthesiologist.   Both were good exercises in planning airway management.  The most striking characteristic of each case was the amount of blood in the airway when I inserted the laryngoscope.  The Yankauer suction catheter was essential, and I recommend inserting it immediately after inserting the laryngoscope.

The literature documents the prevalence of bleeding after UPPP as 1.4% (Mickelson SA, Is Postoperative Intensive Care Monitoring Necessary After UPPP?, Otol Head Neck Surg 1998 Oct, 119(4) 352-6.)   The bleeding patient post-tonsillectomy is a similar presentation.  Miller (Anesthesia, 2000, p 2188) writes “The incidence of post-tonsillectomy bleeding that requires surgery is 0.3 to 0.6 %. . . The extent of blood loss may not be obvious and is usually underestimated. . . Most problems before induction of anesthesia for bleeding tonsil are caused by unsuspected hypovolemia, full stomach, and airway obstruction. . . At induction of anesthesia, an additional person should be available to provide good suctioning of blood.  A rapid-sequence induction of anesthesia with application of cricoid pressure and slight head-down positioning of the patient will protect the trachea and glottis from aspiration of blood.”

The ASA Difficult Airway Algorithm. . . learn it well, and be prepared to apply it in the middle of the night.  Your heart rate may be faster than the patient’s.

Introducing …,  THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel. Publication date September 9, 2014 by Pegasus Books.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

NEGATIVE PRESSURE PULMONARY EDEMA IN A FREESTANDING SURGERY CENTER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case:   You are working at a freestanding surgery center.  A healthy 58-year- old man has a mask anesthetic for a shoulder manipulation.  During the procedure he coughs and bucks, and his oxygen saturation drops to 80%.  With mask continuous positive airway pressure (CPAP) the airway improves, and the oxygen saturation returns to 100%.  In the recovery room he looks well and feels great, but his oxygen saturation on room air is 90%. What do you do?

Discussion:    One key difference between academic and private practice is the number of  operating rooms in freestanding facilities, located miles from the nearest hospital.  There are marketplace incentives that induce surgeons to take their surgeries to facilities that they own themselves, or to remodel part of their office space into approved operating facilities.  This makes for additional challenges for perioperative physicians.

In this case, the preoperative oxygen saturation was 99% on room air.  The anesthetic included 200 mg of propofol,   1-2% sevoflurane, and  50% nitrous oxide.  The surgeon injected 20 cc of .5% bupivicaine into the shoulder joint.   In the recovery room, the initial oxygen saturation was 95% on 4 liters/minute of nasal oxygen.  As the patient became more awake, he received a total of 8 mg of morphine I.V. over 30 minutes for shoulder pain.  An hour later, at 1600 hours, you are called to see him because his oxygen saturation on room air does not meet discharge criteria.  You find the patient in the recovery room looking well, with no complaints of dyspnea or chest pain.  His heart rate is 95, blood pressure is 120/80, respiratory rate is 20, temperature is normal, and his oxygen saturation is 88-92%  on room air.  His physical exam is negative except for bilateral inspiratory rales at the lung bases.

What is the diagnosis?  You did not see any sign of aspiration in the operating room, although that is a possibility.  When the coughing and bucking occurred, he had an episode of laryngospasm, which you treated with mask CPAP.   It is possible  he had a mild case of negative pressure pulmonary edema.  Atelectasis is also a possibility.   You order incentive spirometry, but it does not increase his oxygen saturation.  An ECG is normal.  You continue to treat the patient with 4 liters/minute nasal oxygen while you make a plan.

The patient and his wife are pleading with you because they want to go home.   They promise to telephone you if he gets short of breath during the night.  However, there is  a new abnormal vital sign and a new finding of rales.  You are not able to do a chest radiograph at the surgery center.  Your facility is about to close for the night.  The surgeon wonders if the patient’s wife  can drive the patient to the emergency room in the family car.

You are concerned that the standard of care for a reasonably trained anesthesiologist would not include sending this patient home.  Nor would it include letting a patient drive to the hospital in the family car, without oxygen.  You telephone the patient’s family physician, and he agrees to manage the patient after transfer to the hospital.  You discuss that the differential diagnosis includes aspiration versus negative pressure pulmonary edema.  He will order a chest radiograph, and consider a dose of furosemide.  You spend an extended period of time explaining to the family the necessity of transfer, and then call for an ambulance to pick up the patient.  Your assessment is that he is stable enough that you do not need to accompany him to the hospital.

In follow up the next day, you find that the X-ray showed minimal  infiltrates at the lung bases.  The patient improved without diuretic therapy, and was discharged home at noon.  His  oxygen saturation was 97% room air, and he was taking Vicodin for shoulder pain.

At Stanford Hospital, the Ambulatory Surgery Center is in the middle of the hospital, and it is not difficult to get a chest X-ray,  a blood gas, admit a patient to the hospital, or even  transfer a patient to the ICU.  In freestanding centers, these things can be a big production.   Physicians performing or supervising a scheduled medical procedure outside of a hospital, resulting in the patient’s transfer to a hospital for medical treatment exceeding 24 hours, are required to  fill out a Patient Transfer Reporting Form and send it to the Medical Board of California within 15 days.   The Medical Board monitors freestanding facilities for patterns of frequent  transfers and complications.

This  patient did well and was discharged in less than 24 hours.  Because it was possible for worsening hypoxia or pneumonitis to develop in the first 24 hours after surgery,  you were conservative and wise to transfer the patient.  The trend toward freestanding facilities is not going away.  This case  illustrates only some of the issues of doing quality medical care in these settings.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SMART PHONES AND PEDIATRIC ANESTHESIA INDUCTION

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:  A 5-year-old male is scheduled for tonsillectomy.  The child is fearful in the preoperative suite, and is crying, agitated, and clinging to his mother.  The patient refuses to swallow oral midazolam. During the preoperative interview, the mother reveals the patient’s interest in the cartoon show SpongeBob SquarePants.  What do you do?

Discussion:  You pull your smart phone out of your pocket, cue up YouTube, enter “sponge bob” into the search window, and select a SpongeBob SquarePants video.  Once the video is playing on the screen, you hand the phone to the child.  The boy immediately becomes calmer, and grows absorbed and distracted with watching the video.  You are able to wheel the patient’s gurney away from the mother and take the patient into the operating room.  The patient holds onto the phone and watches the video while the staff positions him on the operating room table, and a smooth and uneventful sevoflurane mask induction is carried out.

Anxiety at induction of anesthesia was studied in 1250 children aged 3-12 (Davidson AJ, Shrivastava PP, et al: Risk factors for anxiety at induction of anesthesia in children: a prospective cohort study,  Paediatr Anaesth 16(9):919-27.2006).  The incidence of high anxiety at induction was 50.2%. Younger age, behavioral problems with previous healthcare attendances, a longer duration of procedure, having more than five previous hospital admissions and anxious parents were all associated with high anxiety in the patients.

Cancellation of planned surgery because of child refusal is not uncommon. Nine percent of anesthesiologists responding to a survey cancelled one or more cases for child refusal in the past year, and 45% cancelled one or more cases for child refusal during their career (Lewis I, et al: Children who refuse anesthesia or sedation: a survey of anesthesiologists.  Paediatr Anaesth 17(12),1134-42.2007)

Oral midazolam premedication is the most common method for relieving anxiety in pediatric patients prior to inhalation induction.  The majority of patients are calm and sedated after oral midazolam, and separate from their parents without excessive crying.   Oral midazolam may have a delayed onset or be spit up, and child cooperation is the main variable.  Intramuscular medications are effective but cause pain, and are usually reserved for children who refuse oral premedication or those in whom lighter premedication regimens have failed in the past.  Intravenous medications are effective but require an IV be inserted in an awake child. Mask induction can be achieved without premedication.  The anesthesiologist can hold the mask over the face of a screaming child, and inhalation induction can be achieved in less than one minute, but the child may have unpleasant or fearful memories of the event.

Non-pharmacologic methods to reduce preoperative pediatric anxiety have been studied. Parents commonly request to be present during induction of anesthesia.  Many anesthetizing locations in the United States, including all facilities where the author practices, no longer permit or encourage parental presence at induction of anesthesia (PPIA).  Adding PPIA to oral midazolam premedication to treat preoperative anxiety in children has been studied versus a control group using midazolam premedication alone, and anxiety levels at the introduction of the anesthesia mask did not differ significantly between the two groups with or without PPIA.  Parents who accompanied their children to the operating room, however, were less anxious and more satisfied (Kain ZN, et al: Parental presence and a sedative premedicant for children undergoing surgery: a hierarchical study, Anesthesiology 92(4).939-46.2000).

Use of a hand-held video game for pediatric preoperative anxiolysis has been described (Patel, et al: Distraction with a hand-held video game reduces pediatric preoperative anxiety. Paediatr Anaesth 16(10).1019-27.2006).  In a randomized, prospective study of 112 children (4-12 years of age) undergoing outpatient surgery, anxiety was assessed after admission and again at mask induction of anesthesia. Patients were randomly assigned to three groups: parent presence at induction (group P), parent presence at induction + a hand-held video game (group VG), and parent presence at induction +  oral midazolam (group M). There was a statistically significant increase in anxiety (P<0.01) in groups P and M compared with baseline, but not in the video game group. A hand-held video game was concluded to be a low cost, easy to implement, portable, and effective method to reduce anxiety in children in the preoperative area and during induction of anesthesia.

The use of YouTube prior to pediatric anesthesia induction has been previously described, using a video screen attached to the anesthesia machine in the operating room (Gomes SH: YouTube in pediatric anesthesia induction. Paediatr Anaesth 18(8).801-2.2008).  The disadvantage of this method is that the YouTube video cannot be screened until the patient has already entered the foreign and sometimes-fearful environment of the operating room.  If parents are not be allowed into the operating room, the child must separate from his parent(s) prior to viewing any cartoon video.

In the 21st Century, the availability and portability of smart phones or iPads make for a superior method of inducing relaxation prior to pediatric surgery. YouTube includes a library of thousands of video clips including videos of nearly every cartoon known to children, all accessible via a 3G or wireless Internet network.  Children love cartoons, and watching a cartoon is a favorite activity of presumably every pediatric patient.  Merging the smart phone from the physician’s pocket with the children’s love of cartoons creates a wonderful opportunity for a new non-pharmaceutical premedication–video relaxation.  In addition to video entertainment, a smart phone provides access to thousands of game applications.  Playing a video game of the child’s choice prior to pediatric induction can help relax both child and the parent in the minutes prior to surgery.

If you haven’t tried it previously, pull out your smart phone and hand it to the next 5-year-old you’re scheduled to anesthetize.  The patient, his parents, and the anesthesiologist will all be smiling within minutes!

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

STOLEN ANESTHETIC VAPORS

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case: Your lead anesthesia technician reports that three full bottles of sevoflurane disappeared from three separate operating rooms, despite a light schedule in which all three rooms were finished by noon.  What do you do?

Vaporizer for liquid sevoflurane

 

Discussion:   What if someone stole the bottles of liquid anesthetic?  What if they kept them and used them to drug themselves?  Does this sound impossible?   Not so.  In her lecture Substance Abuse in Anesthesia Providers (2003 American Society of Anesthesiologists National Meeting, San Francisco), Roberta Hines, M.D., Professor and Chairperson at Yale, told the following story:  A talented, hard-working faculty member of her anesthesia department was found dead.  Numerous open bottles of sevoflurane were found in his locker at work.  The assessment was that he was abusing the sevoflurane by inhaling its fumes, and overdosed.   A similar case report was published (Burrows DL, Distribution of sevoflurane in a sevoflurane induced death, J Forensic Sci. 2004 Mar; 49(2):394-7), describing the following:  “The decedent was found lying in a bed with an oxygen mask containing a gauze pad secured to his face.  Three empty bottles and one partially full bottle of Ultane (sevoflurane) were found with the body.”

There have been published reports of propofol addiction by anesthesiologists, for example:   Iversen-Bermann S, Death after excessive propofol abuse, Int J Legal Med 2001; 114(4-5): 248-51.

The addiction risk with intravenous narcotics is well described and documented.  In Dr. Hines’ lecture, she cited the incidence of substance abuse in anesthesia residents as 0.4%, and the incidence in faculty as 0.1%.  In 76 – 90% of these cases, the primary abused drug was an opiate.  The government has strict rules regarding locking up controlled substances such as narcotics and benzodiazepines, and requiring documentation of all doses given to patients and all doses that are wasted.  The amounts of other drugs used, such as inhaled anesthetics or propofol used in infusions, are more difficult to quantitate.

Nobody talks much about addiction risks with non-narcotic anesthetics.  Substance abuse among anesthesiologists is something we do not celebrate.  People can be seriously harmed or killed by substance abuse of inhalational anesthetics or propofol.  Let’s be honest and admit that bottles of these drugs are sitting around operating rooms.  If vials of propofol or even half a bottle of sevoflurane were stolen, no one would miss them.  Is this a problem?  Sure it is.  What do we do?

The government makes us carefully document where every drop of narcotic or benzodiazepine goes.  If the government regulated the control of these other anesthetic drugs, we would have to come up with a system.  Perhaps all inhaled anesthetics bottles would be locked up, and a pharmacist would document the number of milliliters of each liquid at the end of every day.  Perhaps only one accountable person would be given the authority to handle the liquid and fill vaporizers.  For propofol, perhaps the number of cc’s signed out to each physician would be documented, all patient usage amount quantitated, and all waste returned as we do for narcotics now.

Outstanding training programs now educate their residents and staff on the risks of substance abuse, and offer Physician Well Being Programs for those who are at risk.  In addition, let me suggest that we should control the distribution of inhalational anesthetics and propofol.  Would this add extra hassles to our day?  With inhalational anesthetics, the changes would be a minor inconvenience.

Since Michael Jackson’s death, we are awaiting the American Society of Anesthesiologist’s recommendation on locking up or recording every milligram of propofol that is used or wasted by anesthesia professionals.  These changes will require extra paperwork or computer documentation for the pharmacy and for us, involving some elementary school mathematics.  I’m not looking to make the duties of an anesthesiologist more complex, but controlling where these life-threatening drugs go is crucial.

If you’re an anesthesia professional, it’s stupid to give yourself an anesthetic, no matter how depressed you get or how much difficulty you are having falling asleep on your own.

In addition to intravenous narcotic abuse and propofol abuse, the cases I’ve referenced above reveal the danger inherent in a stolen bottle of sevoflurane.

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

PITFALLS OF TOTAL INTRAVENOUS ANESTHESIA

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case:  You are doing Total Intravenous Anesthesia  (TIVA) for a laparoscopic cholecystectomy on a healthy 40 year old woman.  Midway through the surgery, the patient’s heart rate suddenly climbs to 160, and the blood pressure climbs to 190/110.  What do you do?

Discussion:   Your own heart rate hits 170.  You check the ABC’s of Airway, Breathing, and Circulation, and note that the endotracheal tube is still in the trachea, and both lungs are being ventilated with clear breath sounds.  The oxygen saturation is 100%.  You check the anesthetic drugs, and confirm that  both the propofol and remifentanil pumps are running properly.  A check of the IV shows the Lactated Ringers is not dripping, despite the fact that the roller clamp is wide open.  The IV is in the left arm, which is positioned abducted at 90 degrees.  You inspect the IV insertion site and find that the IV has infiltrated.

You turn on sevoflurane at 4% and nitrous oxide at 70%, and scramble to restart an IV in the outstretched arm.  In  minutes you have a new IV, and you give a bolus of 140 mg of propofol.  The heart rate decreases to 80 beats per minute, and the blood pressure decreases to 110/50.  You decrease the sevoflurane to 1.5 %, discontinue the nitrous oxide, and reconnect the TIVA infusions of propofol and remifentanil.

Don’t believe it could happen?   Tong described intraoperative awareness  during TIVA for  laparoscopy, due to physician error in  improperly positioning the latch of the movable lever in the propofol syringe driver at the top of the plunger (Can J Anaesth. 1997 Jan;44(1):4-8.), so that no propofol was infusing.   Several series of TIVA cases document incidence of awareness ranging from 2 patients out of 1000,  or .2%  (Nordstrom O, Acta Anaesthesiol Scand. 1997 Sep;41(8):978-84.), to 8 patients out of 90, or 8.8% (Miller DR, Can J Anaesth. 1996 Sep;43(9):946-53.)  Any technical error, such as the pump(s) not being turned on, the pump(s) malfunctioning, the syringes being empty, stopcocks being closed rather than open, or the IV infiltrating, can lead to failure of TIVA technique.  In addition, inadequate narcotic or propofol infusion rates can lead to inadequate anesthetic depth.  When coupled with neuromuscular paralysis, the most prominent signs of inadequate anesthetic depth will be tachycardia and hypertension.

TIVA is a viable option for general anesthesia because of the availability of ultra-short acting narcotics such as remifentanil and hypnotics such as propofol.  Learning this sort of technique is part of a complete residency experience.  There is less gas pollution when TIVA is used.  If you ever need to give an anesthetic in outer space or at zero gravity, your experience with TIVA will be invaluable.

Will you find much TIVA practiced in the private practice world of anesthesia?  My observation is that most private cases involving general anesthesia with muscle relaxation include inhalational anesthetic.  Propofol infusions are often included, and at times so are remifentanil infusions.  But to insure lack of awareness,  the potent anesthetic vapors  of sevoflurane, desflurane, or isoflurane are still the mainstays of awareness prevention when muscle relaxants are used.  The KISS Principle, or Keep It Simple Stupid, dictates that it is easier to turn on one vaporizer than to fidget with multiple syringe pumps.  (The vaporizer needs to include liquid anesthetic, and it needs to be turned on to an adequate concentration, or awareness can still occur.)

Some may suggest that all anesthetics be monitored by  continuous bispectral index (BIS) monitors to insure lack of awareness.  A case of awareness despite BIS monitoring has been published, (Kurehara K, Masui 2001 Aug;50(8):886-7.) in which a 77 year old patient had  awareness during a thoracotomy  despite BIS scores that indicated adequate hypnotic depth.  A recent prospective study (Ekman A, Acta Anaesthiol Scand 2004 Jan; 48(1):20-6.) documented explicit recall in 2 of 4945 patients (.04%) in general anesthetics requiring  muscle relaxation, using BIS monitoring.  This was significantly lower than their historical control rate of .18% of explicit recall in paralyzed patients without BIS monitoring.  But note than that even with BIS monitoring, the incidence of recall is not zero.  Whatever technique or monitors are employed, the skill and vigilance of the attending anesthesiologist will be  of highest  importance in maintaining adequate anesthesia drug administration.

Patients expect their anesthesiologist to keep them safe, to keep them asleep during the surgery, and to wake them up after the surgery.  Patients ask me about the risk of intra-operative awareness dozens of times per year.  The amount of times I want this to occur for my patients, or for yours, is zero.  Diversify your anesthetic regimen.  Don’t bet the ranch on your IV.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

STOP-BANG AND OBSTRUCTIVE SLEEP APNEA IN A FREESTANDING SURGERY CENTER

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Airway obstruction at the base of the tongue in a patient with obstructive sleep apnea

Clinical Case for Discussion: You’re the anesthesiologist for a 51-year-old man scheduled for arthroscopic rotator cuff surgery at a freestanding surgery center.  His wife volunteers that the patient is a loud snorer.  The patient denies ever being diagnosed with obstructive sleep apnea.  Should you proceed with the surgery?  Can the patient safely be discharged home after surgery at a freestanding facility ?  What would you do?

You discuss the case with an anesthesia colleague.  She recommends you utilize a STOP-BANG questionnaire on the patient.  What is she talking about?

Discussion: Frequent snoring is present in 34% of men and women over the age of 40. (Baldwin, et al, Sleep disturbances, quality of life, and ethnicity: the sleep heart health study, J Clin Sleep Med. 2010 Apr 15;6(2):176-83).  Does any physician ever cancel a surgery at a freestanding surgery center because the patient is a snorer?  Should we?  Is there any data?

STOP-BANG may sound like a title from the next James Bond movie, but it has nothing to do with spies, guns, or crime.  STOP-BANG is a tool for diagnosing obstructive sleep apnea.

Obstructive sleep apnea (OSA) is a common comorbidity in surgical populations. It’s estimated that approximately 4% of men and 2% of women, 18 million Americans overall, have OSA (Miller’s Anesthesia, 2010, p 2776). An estimated 82% of men and 92% of women with moderate or severe sleep apnea have not been diagnosed (Chung F, Elsaid H, Screening for obstructive sleep apnea before surgery: why is it important? Curr Opin Anaesthesiol. 2009 Jun;22(3):405-11). Patients with OSA are at higher risk for post-operative respiratory arrest (Cullen DJ: Obstructive sleep apnea and postoperative analgesia—a potentially dangerous combination. J Clin Anesth  2001; 13:83).

OSA is defined as complete cessation of airflow during breathing lasting 10 seconds or longer despite maintenance of neuromuscular ventilatory effort, and occurring five or more times per hour of sleep, accompanied by a decrease of at least 4% in Sao2. (Miller’s Anesthesia, 2010, p 2092). The gold standard for diagnosis is an overnight sleep study, or polysomnography, which is both expensive and resource-intensive. The results of polysomnography are reported as the apnea/hypopnea index (AHI).  The AHI is derived from the total number of episodes of apnea and hypopnea divided by the total sleep time.  The American Academy of Sleep Medicine classifies the disease as follows:

Mild OSA = AHI of 5 to 15 events per hour

Moderate OSA = of 15 to 30 events per hour

Severe OSA = AHI of greater than 30 events per hour

The STOP questionnaire was first published in Anesthesiology in 2008, where it was validated in surgical patients at preoperative clinics as a screening tool. (Chung F, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008 May;108(5):812-21).

The STOP questionnaire queried patients on:

(S) Snoring: Do you snore loudly (loud enough to be heard through closed doors?”

(T) Tired:  Do you often feel tired, fatigued, or sleepy during daytime?

(O) Observed:  Has anyone observed you stop breathing during sleep?

(P) Blood Pressure:  Do you have high blood pressure?

A patient with a STOP score of 2 out of 4 was considered at high risk for OSA.  Patients’ scores from the STOP questionnaire were evaluated versus his or her AHI total from polysomnography. In Chung’s study, the STOP questionnaire was given to 2,467 patients, and 211 of these patients underwent polysomnography. The sensitivities of the STOP questionnaire in identifying patients with an AHI greater than 5, greater than 15, and greater than 30 were 65.6, 74.3, and 79.5%, respectively.

In the same study, the STOP questionnaire was expanded into a STOP-BANG questionnaire, which also queried patients on:

(B) Body mass index>35 kg/m2?

(A) Age>50?

(N) Neck circumference >40 cm (15 ¾ inches)?

(G) Gender=male?

With the added four questions, a patient with a score of 3 out of the possible 8 was considered at high risk for OSA. With STOP-BANG, sensitivities in identifying patients with an AHI greater than 5, greater than 15, and greater than 30 were increased to 83.6, 92.9, and 100%.

In a recent study, (Ong TH, et al, Simplifying STOP-BANG: use of a simple questionnaire to screen for OSA in an Asian population. Sleep Breath. 2010 Apr 26), 348 patients undergoing polysomnography were asked to fill in the 8-question STOP-BANG questionnaire. The sensitivities of the STOP-BANG screening tool for an AHI of >5, >15, and >30 were 86.1%, 92.8%, and 95.6%, respectively.

Thus STOP-BANG has been validated as a tool with high sensitivity that can be used to screen patients for moderate and severe OSA.  As a clinician, what do you do with the STOP-BANG information?

You ask your shoulder arthroscopy patient the 8 STOP-GANG questions, and he scores 1 point for snoring, 1 point for age>50, and 1 point for male gender.  These results qualify him for a possible diagnosis of OSA.  Will you still anesthetize him for this outpatient surgery?

The most useful reference to answer this question is the ASA Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea (Anesthesiology 2006; 104:1081–93).  If a sleep study is available, the Practice Guidelines feature an OSA Scoring System which scores on three criteria:  (A) the severity of sleep apnea, (B) the invasiveness of the surgery and anesthesia, and (C) the requirement for post-operative opioids.  Per this OSA Scoring System, our shoulder arthroscopy patient scores (A) 2 points for presumed moderate OSA, (B)  2 points for peripheral surgery with general anesthesia, and (C) 2 points for possible high doses of oral or parenteral opioids post-op.  His OSA Score is the total of (A) and the higher of (B) or (C), or 2 + 2 = 4 points.  The Practice Guidelines state that, “Patients with a score of 4 may be at increased perioperative risk from OSA.”

The Practice Guidelines state that for “minor orthopedic surgery/general anesthesia” on patients suspected of having OSA, the decision to discharge the patient home after outpatient surgery is “equivocal,” as there is no convincing data advising one way or another.  The Practice Guidelines also state that “these patients should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk for postoperative respiratory depression, . . . and may require a longer stay as compared with non-OSA patients undergoing similar procedures.”

The Practice Guidelines suggest regional techniques rather than systemic post-operative opioids, in an attempt to reduce the likelihood of adverse outcomes in patients at increased perioperative risk from OSA.

So what do you do?

You go ahead and anesthetize the patient.  If you’re comfortable with upper extremity regional blocks, you may utilize this technique in your anesthetic.  In any case, you’ll use your excellent judgment to delay discharge until the patient looks safe to be discharged home.  If his oxygen saturation, airway status, or opioid requirements are unsatisfactory, you’ll transfer him to a hospital for overnight stay.

With STOP-BANG or without STOP-BANG, your clinical judgment . . . based on your training . . . will still be your most valuable tool.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

CAN YOU LEAVE YOUR ANESTHETIZED PATIENT IN AN EMERGENCY?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:  You are in an operating room in a freestanding plastic surgery center giving general anesthesia to Patient A, and you are called by the PACU nurse because Patient B in the PACU is having stridor.  The PACU Patient B is a healthy 39-year-old female, one hour status-post liposuction, and her anesthesiologist has signed out to you.  Patient B is now cyanotic.  You are the only anesthesiologist for miles, and both Patient A and B need you.  What do you do?

Discussion:  You perch the circulating R.N. from your O.R. in front of the monitors, tell her to let you know if anything changes, and you leave the O.R. to attend to the patient in the PACU.  Is there any alternative?  Are you going to stand there with stable Patient A while Patient B dies of airway obstruction thirty feet away from you?

When you arrive in the PACU, you see a young woman sitting up in bed making loud crowing sounds with every inspiration.  Her oxygen saturation is 89% on 4 liters of nasal oxygen, and her heart rate is 110.  Her husband is standing at the bedside, and his eyes are bugging out of his head watching his wife gasp for air.  The PACU nurse is standing on the other side of the patient, and her eyes are bugging out almost as far as the husband’s.

You ask the nurse to open an Ambu bag and connect it to the oxygen source.  You ask the husband to leave the room while you evaluate and treat his wife.  A second nurse escorts him out.  You listen to the patient’s lungs, and her breath sounds are normal except for upper airway stridor.  The exam of her mouth and neck is normal.  You take additional history, and learn that she had a three hour intubation for a prone liposuction, and was extubated without complication.  She received 20 mg of meperidine 45 minutes earlier, and no other medication was given in PACU.  The stidor started two minutes earlier, when her oxygen saturation decreased from 100% to the high 80’s.

Your diagnosis is laryngospasm of unclear etiology.  You apply an anesthesia mask over her face, deliver 100% oxygen via the Ambu bag, and attempt to apply continuous positive airway pressure (CPAP) to break her laryngospasm.  You ask her to cough hard to clear secretions that may be lodged on her vocal cords.  Within a minute the stridor passes, and her oxygen saturation returns to 100%.  Her other vital signs are normal, and her skin is free of urticaria.  You review her anesthesia record, and it is unremarkable.  The patient feels significantly better, and you return to the OR to check on your patient who is still under general anesthesia.  The OR circulating nurse reassures you that Patient A is fine, and nothing changed during your absence.

Two minutes later, the PACU nurse calls in a panic again, because Patient B is having stridor again.  You run to the PACU, and repeat the assessment and therapeutic moves you made in the paragraphs above.  Your diagnosis is post-intubation laryngospasm.  You can not rule out post-intubation vocal cord paralysis.  You treat with 8 mg of IV dexamethasone.  There is no vaporized racemic epinephrine in the facility.  The patient is moving air well, but intermittently crowing with stridor.  You call 911 for an ambulance, and call the ER attending at the nearest hospital to tell him you are coming over.  You place a third call to the Respiratory Therapy service at the hospital, and tell them to meet you at the ER with a racemic epinephrine treatment for the patient.

Patient A’s surgery  ends in the next 10 minutes, as the ambulance crew arrives and prepares Patient B for transport.  You extubate Patient A and deliver her in stable condition to the PACU just in time to join the Emergency Medical Techs as they load Patient B into the ambulance.  You load your pockets with vials of propofol and succinylcholine, a laryngoscope, and two syringes, and follow her into the ambulance.  The siren blares, and the ambulance drives Code 3 to the ER.  The patient’s intermittent stidor continues, with oxygen saturation in the low 90’s on a 100% non-rebreather mask.

In the first twenty minutes in the ER, the Respiratory Therapist arrives and gives a nebulized racemic epinephrine treatment to Patient B.  Within the next twenty minutes her symptoms resolve.  Her husband arrives, and he looks a lot happier than the first time you saw him, too.

You make a phone call.  Minutes later, one of the nurses from the freestanding plastic surgery center drives up in their car to give you a ride back to where your automobile is parked back at the surgery center.

Sound impossible?  Guess again.  This entire scenario occurred three months ago, a mile or two from Stanford hospital.

The diagnosis of post-extubation stridor is more common in newborn infants after prolonged or multiple intubations, but it occurs in adults as well.  In one series of 112 extubations of adults in an ICU in France, the prevalence of post-extubation stridor was 12% (Jaber S, Intensive Care Med. 2003 Jan;29(1):69-74).  Occurrence after extubation post-surgery is less common.  When laryngospasm occurs in the OR immediately post-intubation, we are all taught to treat the patient with 100% oxygen and CPAP by face mask.  The laryngospasm usually clears as the patient awakens from anesthesia and mounts a strong cough to clear secretions from the larynx.

When stridor occurs in the PACU of a hospital, the established medical therapy is nebulized racemic epinephrine (Vaponefrin), .5 ml of a 2.25%solution q 3-4 hours given by Respiratory Therapy, and a dose of dexamethasone 4 – 8 mg IV (Miller, Anesthesia, 2005, pp 2817, 2538).   Nebulized epinephrine acts as both an alpha and beta adrenergic agonist, and has both vasoconstrictor and bronchodilator properties.

The lack of Respiratory Therapy in freestanding surgery centers is another of the issues that differentiates them from in-hospital ambulatory surgery centers.  The plastic surgery center that suffered through this episode has now purchased the equipment to deliver nebulized epinephrine post-op.  It may be years, or decades, before they get an opportunity to use it.  A more important lesson is that the perioperative care of surgical patients is multi-faceted, and no one is better prepared to diagnose or treat problems than an anesthesiologist.  If you practice anesthesia in freestanding surgery centers long enough, you too will experience a ride in an ambulance to the ER.  Hopefully your story will have a happy ending, as our Clinical Case of the Month did.

Our patient was discharged home from the ER after a stable four hour observation period, and she had no further problems at home.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

PRODUCTION PRESSURE IN THE OPERATING ROOM

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:  The head of your anesthesia group tells you that both the surgeons and the fellow anesthesiologists in your group want you to work faster, and if you do not, you will not make partner in that group.  You are worried about succumbing to “production pressure.”  You don’t want to work faster.  What do you do?

Discussion:   At the end of your day in the operating room, the most important issue is the safe medical care of each patient you were asked to consult on.  Patients don’t care if you were a racehorse or a turtle; they only care about their results.  Your malpractice insurance company doesn’t care if you were a racehorse or a turtle; they want you to practice at or above the standard of care, and not get sued.

I refer you to the article “Production Pressure in the Work Environment, California Anesthesiologists’ Attitudes and Experiences,” by David Gaba and Steve Howard of the Stanford faculty (Anesth, 1994 Aug;81(2):488-500).   The authors mailed a survey to California anesthesiologists, seeking their responses to questions pertaining to production pressure.  The authors noted that “Every modern industrial activity involves a balance between production efficiency and safety.”  They defined production pressure as “overt or covert pressures and incentives on personnel to place production, not safety, as their primary priority.”

Fifty-four per-cent of respondents agreed they had made an error attributable to fatigue, and 63% suggested that they had made errors because of the work load within a case.  Most respondents believed they had a duty to cancel cases if necessary, but 35% indicated that it was possible they would lose their job if they canceled too many cases.

The types of pressure were divided into two categories:  internal pressures (pressures anesthesiologists put on themselves), and external pressures (pressures from surgeons, family, colleagues, or administrators).  The greatest internal pressures were:  a) to avoid delaying surgery, b) to get along with surgeons, and c) to avoid litigation.  The greatest external pressures were:  a) from the surgeon, to proceed with a case instead of canceling, b) from the surgeon, to hasten anesthesia procedures, and c) from administrators, to reduce turnover time.

Fee-for-service respondents reported more internal pressure than did salaried practitioners to:  maximize cases (P=0.0007), accrue income from high paying cases (P=0.0001), and avoid litigation (P=.0002).

I worked a short stint in a salaried anesthesia job with Kaiser in 1986, before I began working in my current arrangement of fee-for-service (FFS) practice.  Production pressure exists, and I can attest that it is more apparent in FFS practice.  In FFS practice, you have incentives to proceed with cases rather than cancel them, to turn over rooms quickly rather than take a 30-minute lunch break, and to keep your surgeon-customers happy rather than fight with them over cancellations.

I discussed today’s question with other anesthesiologists in top Bay Area FFS practices.  Among their expectations for new hires is that the individual will possess The Three A’s, of Ability, Availability, and Amiability.  Part of the Ability ingredient is the talent to multi-task, that is, the ability to work with your hands, do paperwork, think, plan anesthetics, and monitor your patient simultaneously.

Some anesthesiologists are racehorses, and some anesthesiologists are turtles.  Consider this:  All else being equal, the turtles will not last in FFS job opportunities.

Surgeons in private practice in are faster than surgeons in residency.  When you graduate and enter the private practice of anesthesia, you will have to speed up to succeed.  The message here is a wake-up call:  Don’t stand in the middle of the operating room and complain about production pressure.  Work as efficiently as you can.  Do not take short-cuts that endanger your patient, but get the job done.

If it sounds like I am applying production pressure with my comments, you may be right.  Safety is the number one goal, but high production is an expectation, and not an unreasonable one.

The years of residency and fellowship are the time to hone your skills.  Attempting to work at an efficient pace during the first weeks of your first FFS job will be impossible if you haven’t valued efficiency in your training.  If you are a turtle, will you lose your job?  I know of several anecdotes where private FFS anesthesia groups washed out promising candidates because they were too slow for the private world.  The candidates spent too much time starting IV’s and other lines, getting their patients to sleep, placing regional anesthetics, waking their patients up, taking longer-than-expected breaks between cases, and arguing with surgeons instead of getting patients anesthetized.

Some surgeons are better than others.  Anesthesiologists, nurses, and OR techs all know which surgeons possess excellent judgment and are skilled with their hands.   In the same light, surgeons, nurses, and OR techs all know which anesthesiologists possess excellent judgment and are skilled with their hands.

You want to be one of the anesthesiologists they admire.

If the pace of the FFS world feels unsafe to you, I would advise you to find a different job model, perhaps a salaried job at a more languid tempo.  In a FFS practice, you need to be both safe and efficient.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WHEN DOCTORS DON’T EDUCATE THEMSELVES ABOUT MEDICAL ADVANCES . . .

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:   A 76-year-old, 65 kg, 4-foot 11-inch tall friend of your family has elective CABG surgery at an outside hospital. Twenty-four hours after the surgery, she is still asleep and on the ventilator.  You inspect the anesthetic record, and discover that the anesthesiologist used 20000 micrograms of fentanyl and 10 mg of midazolam for a four-hour anesthetic.  The patient received no additional sedation in the ICU.  What do you do?

Discussion:   I’m not going to tell you to argue with the ICU staff until they give the patient Narcan to wake her up.  Instead, you find the attending anesthesiologist, and discuss the case with him.  When you ask why the enormous dose of narcotic was used, the anesthesiologist looks you in the eye and says, “That’s the way I’ve been doing it for 20 years.”

How is this possible?  Imagine you are a 55-year-old mid-career anesthesiologist, and you have just completed a nine-hour day of giving anesthetics.  After eating dinner at home, which of the following would you choose to do?

a)        Play with your children,

b)        Watch American Idol on television,

c)        Go to a movie with your wife,

d)        Take a nap, or

e)        Read some anesthesia journals.

Let me guess how you responded.  How about, “Anything except e).”  Once you have finished your training and you have finished obtaining board certification in anesthesiology, other aspects of life call out for your time.  We are all masters of delayed gratification — anesthesiologists wait until age 30 or more before beginning their first “real job.”  You have friends who pursued M.B.A. degrees who are in mid-career by age 30, and have purchased homes and started families.  At the same age, many medical graduates are still dealing with fellowship training and hefty student loans.

When you finally get off the hamster wheel and are fully trained, many of you will feel like catching up for lost time.  This may mean working long hours to earn a down payment on a house, beginning a family and raising young children, or just traveling, relaxing, and playing in your post-residency euphoria.

After a decade or two, a problem arises.  Medicine changes, your specialty changes, and you get can get left behind.  The temptation is to do everything “The way Dr. So and So taught me at Stanford back in 2005.”  In the year 2025, this may be an obsolete way to practice.  Your state licensure and medical staff privileges require you to attend 100 hours of Type I Continuing Medical Education every two years.  The sad reality is that one can satisfy this requirement and learn practically nothing that is relevant.  When it comes time to select a CME conference, the location and time of the meeting is often more important to you and your family than what the lectures are about.  Many CME conferences are thinly veiled vacation packages, and the lectures you attend may or may not give you any information you can use the week you return to work.

The good news is that the American Board of Anesthesiology (ABA) mandates a Maintenance of Certification in Anesthesiology (MOCA) program for all diplomates whose initial board certification was in the year 2000 or after.  The MOCA program involves a written Cognitive Examination which must be passed every 10 years to maintain board certification.  Per the ABA’s website (home.theaba.org) the examination is “very clinically oriented, with an emphasis on customary practice.”

Should you wait until the year before each MOCA recertification exam, and study for weeks?  Should you read anesthesia journals, read the new editions of anesthesia textbooks, or go to the ASA national meeting each October and attend a full slate of refresher courses?

I recommend all of the above, but there is a key ingredient to staying current:  You need to stay hungry for knowledge that concerns anesthesia.  You need to be a self-starter.  Every time you are consulted on a patient who has a diagnosis or a medication you are not familiar with, look it up.  Teach yourself.  Use the information sources available to you every day:  Medline, the medical library at the medical center you work at, and select institutional sites on the Internet.  For those of you in the Stanford neighborhood, Monday morning Grand Rounds meetings are an invaluable source of lectures from academic experts, and give private practitioners a venue to maintain relationships with their former professors.

My second recommendation involves your colleagues.  Stanford is an active, vital medical center where at any time you may ask an expert colleague a question, or be asked a question from a resident junior to you.  Either situation reinforces learning.  Twenty years from now, you may find yourself in a smaller community hospital or even a surgery center, where the staff doctors all look at each other and say, “You are the best anesthesiologist I know!” and the colleague answers, “And you are the best surgeon I know!”  You may find yourself a big fish in a small pond, where nobody is “the best” at anything except complimenting each other.  Don’t isolate yourself.  Foster ongoing relationships to colleagues who are on the cutting edge of your specialty, so that you can contact them when you have questions about evolving standards of care.  Continue to teach in some way — nothing forces you to stay well informed quite like trying to explain your actions to a bright trainee who challenges you.

To wrap up, let’s return to our Clinical Case of the Month above.  In the 1980’s, the standard anesthetic for cardiac surgery was a large dose of fentanyl equal to 100 mcg/kg, so a 65 kg patient would have received 6500 mcg of fentanyl for anesthesia, never 20000 mcg.  And the doctor who administered the 20000 micrograms of fentanyl because he’s “been doing it that way for twenty years”?

Doctors like that are out there.  You don’t want to be one of them, twenty years from now.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

CAN WE PREVENT AGITATION IN PEDIATRIC PATIENTS FOLLOWING ANESTHESIA?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:  A 5-year-old boy is scheduled for general anesthesia for a cochlear implant.  On your pre-operative phone call to the mother, she tells you that after the same surgery on the other ear, the child was severely agitated in the Recovery Room.  The last anesthesiologist told her that agitation was a common side effect for the sevoflurane anesthetic that was used.  What will you do?

Discussion:  How about this plan:  You obtain the old anesthesia record, duplicate the technique exactly, and give earplugs to everyone within ten yards of the Recovery Room?  Don’t buy it?  Read on.

Before you begin, a colleague says,  “Who cares about crying?  As long as the anesthetic care is safe, crying in the PACU is no big deal.  It’s a sign of an adequate airway.”  He continues:  “Why, I went on an Interplast trip fixing cleft palates in South America, and all the kids screamed in the Recovery Room.  They all survived.”

I’ve got news for him — a screaming child in the Recovery Room is a problem for several people:  the nurse, the mother of the child (she’s freaking out herself), the attending anesthesiologist (who, by inference, looks like he doesn’t know how to finish an anesthetic), and every other PACU patient within earshot.  I’d submit that the goals of a 21st Century anesthetic go beyond safety — patients or their families feel entitled to wake up as pain-free, nausea-free, and side-effect-free as possible.

Sevoflurane was introduced in Japan in the late 1980’s and in the United States in the 1990’s (Miller’s Anesthesia, 2005, p. 18).  Because of its low solubility, sevoflurane represented a significant advance over isoflurane, which dominated the inhaled anesthetic market prior to that time.  In addition to its low solubility, sevoflurane was less pungent than isoflurane and could be used instead of halothane for inhalational induction in children.  As well, sevoflurane had a lower incidence of cardiac arrhythmias than halothane.  These properties made sevoflurane the drug of choice for inhalation induction in children (Johannesson GP, Acta Anaesthesiol Scand. 1995 May;39(4):546-50).

Soon after its introduction into clinical practice, reports of sevoflurane and post-operative agitation and delirium in preschool patients began to appear in the anesthesia literature.  The described agitation was unrelated to pain, was inversely related to age, and was most frequent in children 5 years of age or younger.  (Miller’s Anesthesia, 2005, p. 2373).   Emergence delirium with sevoflurane exceeded the rate of emergence delirium with halothane.  Aono reported a 40% incidence of delirium during recovery in preschool boys aged 3 – 5 years old who underwent urologic surgery under sevoflurane, vs. a 10% incidence of delirium for those who were anesthetized with halothane (Anesthesiology, 1997 Dec;87(6):1298-300).

A variety of remedies appeared in the peer-reviewed literature over the ensuing years.  A complete discussion of all reported techniques is beyond the scope of this short column.  I refer you to PubMed with the keywords sevoflurane, agitation, where you’ll find multiple references to support multiple techniques.  Statistical significance was obtained in controlled studies with the following techniques either before or after sevoflurane induction:  use of oral midazolam prior to induction; use of a single dose of fentanyl 1 mcg/kg ten minutes prior to emergence;  conversion to propofol infusion anesthesia after induction;  conversion to isoflurane anesthesia after induction;  conversion to desflurane anesthesia after induction;  use of IV dexmedetomidine 0.3 – 0.5 mcg/kg after induction;  use of PO clonidine premedication 4 mcg/kg before induction;  or use of IV clonidine 2 mcg/kg immediately after induction.

I polled my private practice Stanford Adjunct Clinical Faculty colleagues on their preferred methods to minimize pediatric emergence delirium, and three strategies prevailed:  1) the use of heavy midazolam premedication (up to .8 mg/kg);  2) the use of titrated doses of intravenous fentanyl or meperidine prior to emergence; and 3) discontinuance of sevoflurane after inhalation induction — instead substituting isoflurane or propofol for maintenance anesthesia.  No one used dexmedetomidine or clonidine.

Let’s return to your 5-year-old patient.  You decide to utilize all three options described in the previous paragraph.  You begin with the oral midazolam premedication 20 minutes prior to induction.  (Because the duration of this surgery is estimated to be 90 minutes, you realize that most of the effect of the midazolam premed will be dissipated at the time of emergence.)   After an uneventful sevoflurane mask induction, you place an I.V. and intubate the trachea.  At this point you turn off the sevo and switch to isoflurane.  Cochlear implant surgery involves drilling into the skull, and despite use of local anesthesia by the surgeon, you can anticipate post-operative pain.  It seems prudent to use a narcotic to treat both pain and delirium.  At the conclusion of the anesthetic, you administer doses of 5 mg of meperidine, titrated to the child’s respiratory rate.  After extubation, you supplement with additional narcotic as needed to affect comfort and tranquility.  Because both the surgery and the anesthetic technique may stimulate post-operative nausea or vomiting, you administer doses of I.V. ondansetron and metoclopramide for nausea prophylaxis.  You request the mother sit at the bedside in the PACU as soon as the child begins to reawaken, as a humane non-pharmacologic method of easing the child’s emotional discomfort .

There are no trophies given for rapid wake-ups in the pediatric PACU.  Your technique produces a gradual calm emergence characterized by safe maintenance of the airway and a relaxed, comfortable child.   The 5-year-old’s mother is thrilled with the improvement over the last anesthetic, and the PACU nurses respect that you care about the quality of your patient’s wake-up.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SHOULD YOU CANCEL SURGERY FOR A LOW POTASSIUM LEVEL OF 3.4 mEq/L?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:  You’re medical director for a busy outpatient surgery center.  An RN routinely does the preoperative screening by telephoning each patient two days prior to surgery.  The RN pages you with this question:  A 48-year-old patient scheduled for anterior cruciate ligament (ACL) reconstruction surgery takes hydrochlorothiazide for hypertension, and has not had electrolytes checked for six months.  His last labs show a low potassium = 3.4 mEq/L.  The patient is asymptomatic except for knee pain. The nurse asks you whether this patient needs to have his potassium rechecked now, before surgery.  What do you do?

Discussion: Pre-op evaluation will never be the topic of a Hollywood thriller — you’ll never see Tom Cruise or Brad Pitt rubbing their temples worrying about whether they need to recheck the electrolytes.  But for you and me, it’s a question worth discussing. How important is it to diagnose hypokalemia in this asymptomatic patient on chronic diuretic therapy?  If the K=3.0 mEq/L, will you cancel the surgery?  What about if the K=2.9 mEq/L?  Experienced anesthesiologists know standards of care for their specialty, and also develop a gut impression about which patients are prepared for surgery, and which ones are not.  Do you sense this patient is at risk for sudden death or a cardiac arrhythmia?  Let’s examine this question.

First off, why didn’t you see this patient in your pre-op clinic?  The answer is because you won’t find the Stanford model of a well-staffed Pre-Anesthesia Clinic in the private practice community.  The Pre-Anesthesia Clinic is important at Stanford because many patients suffer from significant medical comorbidities, and because of the invasive nature of many of the inpatient surgeries.  In a community practice with healthier patients and less invasive procedures, there is neither the money nor the need to physically meet and examine every patient several days prior to surgery.  Adam Smith’s economic dictum of the invisible hand pertains to clinical medicine as well — anesthesiologists are paid to give anesthetics.  Neither insurers nor Medicare will reimburse you for routine pre-operative clinic encounters with patients.

In 2002, the American Society of Anesthesia published Practice Advisory for Preanesthesia Evaluation:  A Report by the American Society of Anesthesiologists Task Force on Preanesthesia Evaluation. Their recommendations for the timing of preanesthesia evaluation differ, depending on the severity of disease and also on the surgical invasiveness.  Our patient’s surgery involves a non-severe comorbidity (well-controlled hypertension) and a non-invasive surgery (knee arthroscopy).  For patients such as this, the ASA Practice Advisory states, “preoperative assessment may be done on or before the day of surgery. “ In our community outpatient practice in Palo Alto, a surgery-center RN calls the patient two days prior to surgery to ask pertinent questions.  This telephone call helps avoid day-of-surgery surprises (e.g. patients still on aspirin, patients with undiagnosed chest pain or dyspnea).  The physical evaluation by the anesthesia attending occurs on the day of surgery.

Outpatient surgery centers rarely have the ability to do lab tests other than blood glucose measurements or a 12-lead ECG.  Tests such as the measurement of electrolyte concentrations need to be done at an outside lab, at least one day prior to surgery.  Regarding preanesthesia serum chemistries (i.e., potassium, glucose, sodium, renal and liver function studies), the ASA Practice Advisory gives no specific recommendation to check preoperative electrolytes during chronic diuretic therapy.  The recommendation on checking pre-op electrolytes states  “Clinical characteristics to consider before ordering such tests include likely perioperative therapies, endocrine disorders, risk of renal and liver dysfunction, and use of certain medications or alternative therapies.”

Might “perioperative therapies” include potassium replacement? Consider this: potassium is predominantly an intracellular ion.  Per Miller’s Anesthesia, “Only 2% of total-body potassium is stored in plasma. . . .  a 20% to 25% change in potassium levels in plasma could represent a change in total-body potassium of 1000 mEq or more if the change were chronic or as little as 10 to 20 mEq if the change were acute. . . . Chronic changes are relatively well tolerated because of the equilibration of serum and intracellular stores that takes place over time to return the resting membrane potential of excitable cells to nearly normal levels.” (Miller’s Anesthesia, 2005, pp.1105-6)

The same textbook states, “Retrospective epidemiologic studies attribute significant risk to the administration of potassium (even chronic oral administration).  In one study, 1910 of 16,048 consecutive hospitalized patients were given oral potassium supplements.  Of these 1910 patients, hyperkalemia contributed to death in 7, and the incidence of complications of potassium therapy was 1 in 250.” (Miller’s Anesthesia, 2005, p. 1107).

Given this information, what should we do?

Here’s the answer: Per Miller’s Anesthesia, p. 1107, “As a rule, all patients undergoing elective surgery should have normal serum potassium levels.  However, we do not recommend delaying surgery if the serum potassium level is above 2.8 mEq/L or below 5.9 mEq/L, if the cause of the potassium imbalance is known, and if the patient is in otherwise optimal condition.”

The same textbook points out an additional problem in ordering lab tests: “the failure to pursue an abnormality appropriately poses a greater risk of medicolegal liability than does failure to detect that abnormality. In this way, extra testing increases the medicolegal risk to physicians.” (Miller’s Anesthesia, 2005, p. 945)

Regarding the timing of lab testing, the ASA Practice Advisory on Preanesthesia Evaluation states “test results obtained from the medical record within 6 months of surgery are generally acceptable if the patient’s medical history has not changed substantially. More recent test results may be desirable when the medical history has changed, or when test results may play a role in the selection of a specific anesthetic technique (e.g., regional anesthesia in the setting of anticoagulation therapy.)”

For all the reasons stated above, you tell the RN that you won’t recheck the potassium lab value for this patient, and you won’t delay or cancel the ACL surgery.  The surgery is completed two days later, without complication.  Your two clients, the patient and the surgeon, are both happy, and you’ve practiced sound, evidence-based medicine.

For further details on the management of hypokalemia and hyperkalemia before, during, and after surgery, see the chapter I wrote entitled Disorders of Potassium Balance, in Complications in Anesthesia, 3rd Edition, 2017, edited by Lee Fleisher and Stanley Rosenbaum, Elsevier Press, Philadelphia.

 

The most popular posts for laypeople on The Anesthesia Consultant include:

How Long Will It Take To Wake Up From General Anesthesia?

Why Did Take Me So Long To Wake From General Anesthesia?

Will I Have a Breathing Tube During Anesthesia?

What Are the Common Anesthesia Medications?

How Safe is Anesthesia in the 21st Century?

Will I Be Nauseated After General Anesthesia?

What Are the Anesthesia Risks For Children?

 

The most popular posts for anesthesia professionals on The Anesthesia Consultant  include:

10 Trends for the Future of Anesthesia

Should You Cancel Anesthesia for a Potassium Level of 3.6?

12 Important Things to Know as You Near the End of Your Anesthesia Training

Should You Cancel Surgery For a Blood Pressure = 178/108?

Advice For Passing the Anesthesia Oral Board Exams

What Personal Characteristics are Necessary to Become a Successful Anesthesiologist?

 

 

Learn more about Rick Novak’s fiction writing at rick novak.com by clicking on the picture below:

DSC04882_edited

DOES AN ANESTHESIOLOGIST NEED A STETHOSCOPE?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case of the Month:   A 56-year-old internist colleague of yours is scheduled for cholecystectomy.  He has stable hypertension, asthma, and hyperlipidemia.  During your pre-op evaluation, he asks if you will be listening to his breathing and heartbeat continuously during the anesthetic.  What do you say? How do you defend your answer?

Discussion:  What’s more symbolic of the medical profession than a white coat and a stethoscope?  As anesthesiologists strive to become recognized as perioperative physicians in a changing medical world, some of us actually carry stethoscopes around our necks, like those actors on Grey’s Anatomy.

On the first day of my Stanford Anesthesia residency in July 1984, each incoming resident had foam injected in their ears for molds to supply us with custom-made individually-fitted earpieces for our mono-aural stethoscopes.  In 1984, continuous stethoscope monitoring via a precordial or an esophageal stethoscope was a standard of care practiced by residents and attendings alike.  In July 1984, the Santa Clara Valley Medical Center operating rooms had exactly two (2) pulse oximeters.  Anesthesiologists would negotiate with each other daily to determine who had the sickest patients, and therefore most needed to use one of the oximeters that day.  The Stanford University operating rooms had exactly one (1) end-tidal-CO2 monitor, used exclusively by ENT anesthesiologist Dr. Chuck Whitcher.

Pulse oximetry and capnography became widespread in the late 1980’s,  anesthesia safety statistics improved, and unexpected cardiac arrests due to undiagnosed esophageal intubations became rare. The 1999 National Academy of Sciences publication To Err is Human: Building a Safer Health System reported, “Anesthesia is an area in which very impressive improvements in safety have been made.  . . . today, anesthesia mortality rates are about one death per 200,000 to 300,000 anesthetics administered, compared with two deaths per 10,000 anesthetics in the early 1980’s.”

Once OR’s were equipped with oximeters and capnography, most anesthesiologists abandoned routine use of mono-aural stethoscopes.

A prospective single-blind study of 520 consecutive patients in 1995 (Prielipp RC, Use of esophageal or precordial stethoscopes by anesthesia providers: are we listening to our patients? J Clin Anesth. 1995 Aug;7(5):367-72.) found 68% of patients had an esophageal stethoscope placed, 16% had a precordial stethoscope, and 165 of the 520 patients had no stethoscope.  This study documented that many stethoscopes that were placed were not used — overall, providers listened continuously via an anesthetic stethoscope in only 28% of the anesthetics.

In 2001, a study from London utilized questionnaires to document that 35.2% of anaesthetists never used an oesophageal or precordial stethoscope, and the majority of the remaining 64.8% used the devices in less than one-third of their practice. (Watson A, Survey of the use of oesophageal and precordial stethoscopes in current paediatric anaesthetic practice. Paediatric Anaesth. 2001 Jul;11(4):437-42.)

Regarding auscultation, the 2005 American Society of Anesthesiologists Standards for Basic Anesthesia Monitoring says: 1) “every patient receiving general anesthesia shall have the adequacy of ventilation continually evaluated.  Qualitative clinical signs such as chest excursion, observation of the reservoir bag and auscultation of breath sounds are useful.”   2) “every patient receiving general anesthesia shall have, in addition to (ECG and blood pressure monitors) circulatory function continually evaluated by at least one of the following:  palpation of a pulse, auscultation of heart sounds, monitoring of a tracing of intra-arterial pressure, ultrasound peripheral pulse monitoring, or pulse plethysmography or oximetry.”   3) “when an endotracheal tube or LMA is inserted, its correct positioning must be verified by clinical assessment and by the identification of carbon dioxide in the expired gas.”

Are anesthesiologists in private practice in Palo Alto using esophageal or precordial stethoscopes in 2007?  An e-mail survey of the twenty-five private practice attendings on the Stanford anesthesia Adjunct Clinical Faculty revealed:  1) continuous stethoscope monitoring for adult anesthetics is almost extinct, 2) use of precordial stethoscope monitoring during inhalational induction in pediatric anesthesia is standard for most practitioners, 3) in pre-op, stethoscopes are used during cardiac and pulmonary assessment only as indicated by the patient’s history and the planned surgical procedure, and 4) most practitioners, but not all, use a stethoscope to document bilateral breath sounds after every endotracheal intubation.

Dr. Terri Homer is a former cardiac anesthesiologist who has transitioned into a busy private practice of intravenous sedation general anesthetics in dental offices, where no ETCO2 monitoring is available. Terri discussed the gulf in precordial stethoscope use between herself and the current Stanford residents in her e-mail reply.  Terri wrote, “I use a precordial stethoscope on all of my I.V. sedation cases in dental and oral surgery offices for both my pediatric and adult patients. In my opinion, there is no better monitor to assess the quality of the airway under sedation. On my GA cases in the O.R., I use a precordial on every pediatric case on induction and during maintenance. On my adult GA cases I use an esophageal stethoscope on all prone cases but not anymore on other intubated adult patients. I do not check for bilateral breath sounds on my LMA cases but I definitely still do on intubated patients of any age. When I work with a resident on my Adjunct Clinical Faculty days I am astonished that more than 95% of them have never even seen a precordial stethoscope. That’s when I start feeling like a dinosaur. When I explain the value of this monitor, I don’t think they are at all convinced.”

How should we answer our patient in the Clinical Case of the Month question above?  You tell your colleague the truth:  In light of his history of stable asthma, you will listen to his lungs in the pre-operative room and immediately after endotracheal intubation.  You do not plan to  continuously listen to his breath sounds during the cholecystectomy, but you tell him that if any change or adverse trend occurs in the vital signs, oxygenation, ETCO2 tracing, or airway pressures, you’ll have a stethoscope on his chest in a heartbeat.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

SHOULD YOU INJECT A CEPHALOSPORIN INTO A PATIENT WHO IS ALLERGIC TO PENICILLIN?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion: You are attending to a healthy 72-year-old female for open reduction and internal fixation of a hip fracture.  She is allergic to penicillin — she developed hives from a dose when she was a child.  The orthopedic surgeon orders 1 gram of cefazolin IV before incision.  What do you do?

Discussion:  This is an important question for anesthesiologists.  Many of us anesthetize up to 700 patients per year, and it’s common to administer pre-op cephalosporins for many of those cases.  Numerous patients are allergic to penicillin. Let’s imagine two possible scenarios.

Scenario One:  After the uneventful induction of general anesthesia, you mix 10 ml of normal saline with the powdered vial of 1 gram of cefazolin, and inject the antibiotic into your patient’s IV over two minutes time.  One minute later, the oximeter tracing disappears, the blood pressure is unmeasurable, and frothing fluid bubbles up in the lumen of the endotracheal tube.  You diagnose anaphylaxis.

Ouch!

Rewind and try again.  Scenario Two:  You choose to avoid cefazolin because of the previous penicillin allergy.  Instead, you inject 1 gram of vancomycin over two minutes.  The patient’s skin turns red, her blood pressure drops to 50/30, she develops ST elevation on her ECG, and she has a cardiac arrest.

Ouch again!

In both scenarios, you wish you’d done something different.  The key question is:  How common is anaphylaxis to a cephalosporin in a patient with penicillin allergy?

First, let’s examine the incidence of penicillin allergy.  Goodman & Gilman’s The Pharmacologic Basis of Therapeutics, 2006, Chapter 44, states that  “Allergic reactions to penicillin occur in 0.7 – 10% of treatment courses.   In approximate order of decreasing frequency, manifestations of allergy to penicillins include rashes, fever, bronchospasm, vasculitis, serum sickness, exfoliative dermatitis, Stevens–Johnson syndrome, and anaphylaxis. . . . About 0.001% of patients treated with penicillins die from anaphylaxis.  . . . there are at least 300 deaths per year due to this complication of therapy. About 70% of these patients have had penicillin previously.”

Regarding cephalosporins, the same textbook states “Hypersensitivity reactions to the cephalosporins are the most common side effects, and there is no evidence that any single cephalosporin is more or less likely to cause such sensitization. The reactions appear to be identical to those caused by the penicillins, perhaps related to the shared beta-lactam structure of both groups of antibiotics.  Immediate reactions such as anaphylaxis, bronchospasm, and urticaria are observed.  . . . Because of the similar structures of the penicillins and cephalosporins, patients who are allergic to one class of agents may manifest cross-reactivity to a member of the other class. Immunological studies have demonstrated cross-reactivity in as many as 20% of patients who are allergic to penicillin, but clinical studies indicate a much lower frequency (about 1%) of such reactions.”   The same textbook advises, “Patients with a history of a mild or a temporally distant reaction to penicillin appear to be at low risk of rash or other allergic reaction following the administration of a cephalosporin. However, patients who have had a recent severe, immediate reaction to a penicillin should be given a cephalosporin with great caution, if at all.”

A 2006 study (Apter AJ et al, Is There Cross-reactivity Between Penicillins and Cephalosporins? Am J Med. 2006 Apr;119(4):354.e11-9) presented a retrospective cohort study using the United Kingdom General Practice Research Database.  A total of 3,375,162 patients received a penicillin; 506,679 (15%) received a subsequent cephalosporin. Among patients receiving a penicillin followed by a cephalosporin, absolute risk of anaphylaxis after the cephalosporin was less than 0.001%. The authors concluded that cephalosporins can be considered for patients with penicillin allergy.

A 2007 study (Pichichero ME, et al, Safe Use of Selected Cephalosporins in Penicillin-Allergic Patients: a Meta-Analysis. Otolaryngol Head Neck Surg. 2007 Mar;136(3):340-7) examined the Medline database for 40 years from 1965 to 2005, and found a significant increase in allergic reactions to cephalothin, cephaloridine, cephalexin, cefazolin, and cefamandole in penicillin-allergic patients; no increase was observed with cefprozil, cefuroxime, ceftazidime, or ceftriaxone.  The authors concluded that first-generation cephalosporins have a modest cross-allergy with penicillins, but cross-allergy is negligible with 2nd- and 3rd-generation cephalosporins.

A 2002 study (Hameed TK, Robinson JL. Review of the Use of Cephalosporins in Children With Anaphylactic Reactions From Penicillins, Can J Infect Dis. 2002 Jul;13(4):253-8), searched the PubMed database including the 35 years from 1966 to 2001, and identified 5 case reports of anaphylaxis to cephalosporins in patients who had previous anaphylaxis to penicillin.  None were children.  They found an additional 12 published cases of cephalosporin anaphylaxis in patients with a history of penicillin allergy but without penicillin anaphylaxis.  The authors concluded that there was no evidence to support the avoidance of cephalosporins in children who had previous anaphylaxis to penicillin.

I surveyed the Stanford private practice community anesthesia faculty regarding their standard approach to this problem, and discovered the following:  1)  None of the private anesthesiologists would administer IV cephalosporins to a patient whose past reaction to penicillin was life-threatening, e.g. bronchospasm, anaphylaxis or airway swelling.  2)  In patients with a past history of a penicillin-induced urticaria, the private practitioners were split 50:50 on whether they would administer the requested cephalosporin.  Half the practitioners considered penicillin-induced urticaria a contraindication to cephalosporin, and half did not.  The importance of accurate history-taking was stressed, as many patients are not certain of the difference between a rash and hives.  3)  None of the private anesthesiologists had a case of anaphylaxis to a cephalosporin in a patient with a penicillin allergy.

If an anesthesiologist decides not to administer a cephalosporin, the anesthesiologist will likely consult with the attending surgeon for his/her preference for an alternative broad-spectrum pre-op antibiotic of choice. Common alternatives to a cephalosporin are clindamycin, vancomycin, or ciprofloxacin.  Alternative antibiotics have their own issues.  Clindamycin carries the risk of pseudomembranous colitis.  Rapid IV administration of vancomycin can result in marked vasodilation, the “red-man syndrome,” and an acute drop in blood pressure, as in Scenario Two above.

What will you do for the 72-year-old woman with the past history of penicillin-induced hives? Per Apter’s study, the risk of cephalosporin-induced anaphylaxis in the patient with a history of penicillin allergy is less that .001%.  Comforted by this knowledge, you administer the cefazolin IV over twenty minutes.  The patient has no adverse reaction.

Introducing …,  THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a legal mystery. Publication date September 9, 2014 by Pegasus Books.

The first four chapters are available for free at Amazon. Read them and you’ll be hooked! To reach the Amazon webpage, click on the book image below:

IMG_3566_2

Stanford professor Dr. Nico Antone leaves the wife he hates and the job he loves to return to Hibbing, Minnesota where he spent his childhood. He believes his son’s best chance to get accepted into a prestigious college is to graduate at the top of his class in this remote Midwestern town. His son becomes a small town hero and academic star, while Dr. Antone befriends Bobby Dylan, a deranged anesthetist who renamed and reinvented himself as a younger version of the iconic rock legend who grew up in Hibbing. An operating room death rocks their world, and Dr. Antone’s family and his relationship to Mr. Dylan are forever changed.

Equal parts legal thriller and medical thriller, The Doctor and Mr. Dylan examines the dark side of relationships between a doctor and his wife, a father and his son, and a man and his best friend. Set in a rural Northern Minnesota world reminiscent of the Coen brothers’ Fargo, The Doctor and Mr. Dylan details scenes of family crises, operating room mishaps, and courtroom confrontation, and concludes in a final twist that will leave readers questioning what is of value in the world we live in.

REVIEWS:

5.0 out of 5 stars The Doctor and Mr Dylan, March 3, 2015
By
prabha venugopal (chicago, il USA) – See all my reviews
Verified Purchase(What’s this?)
Gripping from the beginning to the end. Very well written, bringing to the forefront all the human emotions seen in an operating room spill over into real life. I cannot wait for Dr. Novak to wrote another book! As another physician in the same profession, my admiration for his book knows no limits.

Bang-Up Debut Novel, November 16, 2014

By Norm Goldman “Publisher & Editor of Bookpleasures”

This part legal and medical thriller is structured with a mixed bag of situations involving relationships, jealousy, evil, lies, courtroom drama, operating room mishaps as well as moments that engender conflicting and unexpected outcomes. Noteworthy is that as the suspense builds readers will become eager to uncover the truth involving a mishap concerning Nico and a surgical procedure that has unanticipated ramifications.

This is a bang-up debut from a writer who understands timing and is able to deliver hairpin turns, particularly involving the courtroom drama,that you would expect from a book of this genre.

TwinCities.com PIONEER PRESS Entertainment

by Mary Ann Grossman, Entertainment Editor, St. Paul Pioneer Press mgrossman@pioneerpress.com, January 4, 2015

“The Doctor & Mr. Dylan” by Rick Novak (Pegasus Books, $17.50)

Dr. Nico Antone doesn’t hide the fact he hates his wife, but he says he didn’t kill her during an operation. The authorities think otherwise and his trial is the riveting suspense in this novel that is part medical thriller, part legal thriller, part exploration of family relationships.

Nico is an anesthesiologist (as is the author) who leaves his wife, their plush life in California and his job at Stanford to move to his hometown of Hibbing so their son, Johnny, has a better chance of getting into a prestigious college. Johnny hates the idea of moving to a small, cold town, but he’s popular from the first day in school. Nico doesn’t do so well. He’s envied by Bobby, an anesthetist who’s jealous of the better-educated Nico. But it’s hard to take Bobby seriously, since he thinks he’s the young Bob Dylan and lives in the house where Bobby Zimmerman grew up. To complicate matters, Nico is attracted to the mother of the young woman his son is dating. When the two teens get in trouble, Nico’s furious, rich wife comes to Minnesota and needs an emergency operation that puts her on Nico’s operating table.

Novak grew up in Hibbing, where he worked in the iron ore mines and played on the U.S. Junior Men’s Curling championship teams of 1974 and ’75. After graduating from Carleton College, he earned a medical degree at the University of Chicago and spent 30-plus years at Stanford Hospital, where he was an associate professor of anesthesia and Deputy Chief of the Anesthesia Department. His courtroom scenes are based on his experiences as an expert witness.

The Physician’s Late-Night Reading List

Two Pritzker alums pen captivating tales

By Brooke E. O’Neill, University of Chicago Pritzker School of Medicine, editir, Medicine on the Midway Magazine

For most physicians, writing — patient notes, case histories, perhaps journal articles — is part of the job. But for anesthesiologist-novelist Rick Novak, MD’80, and neurosurgeon-memoirist Moris Senegor, MD’82, it’s a second career that consumes early morning hours long before they step into the OR.

Fans of John Grisham will find a kindred spirit in Novak, whose fast-paced medical thriller, The Doctor & Mr. Dylan (Pegasus Books, 2014), transports readers to rural Northern Minnesota, where an accomplished physician and a deranged anesthetist who thinks he’s rock legend Bob Dylan see their worlds collide in the most unexpected ways.

Delivering real-life twists and turns — and a love letter to the Bay Area — is Senegor’s Dogmeat: A Memoir of Love and Neurosurgery in San Francisco (Xlibris, 2014), a coming-of-age tale chronicling the author’s away rotation with renowned neurosurgeon Charles Wilson, MD, at the University of California, San Francisco. Brutally honest, it spares no details of a time Senegor, who also served as a resident under the University of Chicago’s famed neurosurgery chair Sean Mullan, MD, describes as “one of the biggest failures of my life.”

One a vividly imagined nail-biter, the other an intimate peek into the surgical suite, both books deliver an ample dose of intensity and drama.

.

IMG_3566_2

The Doctor and Mr. Dylan (Pegasus Books, 2014) by Rick Novak, MD’80

“I thought it was a novel way of killing someone,” said Rick Novak, deputy chief of anesthesiology at Stanford University, describing the imagined hospital death that was the genesis of his dark thriller The Doctor & Mr. Dylan. A huge Bob Dylan fan — the rock icon was born in Novak’s hometown of Hibbing, Minnesota, where the story takes place — he then dreamed up a possible culprit: a psychotic anesthetist who thinks he’s Dylan.

From there, the words flowed. “I would write whenever I was with my laptop and had a free moment: in mornings, in evenings, in gaps between cases,” said Novak, who also blogs about anesthesia topics. “I don’t sleep much.”

After finishing the manuscript — one year to write, another to edit — came the challenge of finding a publisher. “In anesthesia, I’m an expert,” Novak said. “In the literary world, I’m an unknown.” After 207 responses of “no, thanks” or no answer at all, he landed an agent. Two months later, she informed him that Pegasus Books had bought his debut novel.

“I started crying,” Novak admits. “I have a third grader and at the time the big word the class was learning was ‘perseverance.’ That was it exactly.”

Dr. Joseph Andresen, Editor, Santa Clara County Medical Association Medical Bulletin, from the January/February 2015 issue:

BOOK REVIEW “THE DOCTOR AND MR. DYLAN”

This past month, Dr. Rick Novak handed me a hardbound copy of his debut novel The Doctor and Mr. Dylan. Rick and I go way back. It was my first week of residency at Stanford when we first met. A newcomer to the operating room, all the smells and sounds were foreign to me despite my previous three years in the hospital as an internal medicine resident. Rick, a soft spoken Minnesotan at heart, in his second year of residency, took me under his wing and guided me through those first few bewildering months, sharing his experience and wisdom freely.

Fast-forward 30 years later. Dr. Rick Novak, a novel and mystery author? This was new to me as I sat down and opened the first page of The Doctor and Mr. Dylan. I have to admit that I didn’t know what to expect. Few books highlight a physician/anesthesiologist as a protagonist, and few books feature a SCCMA member as a physician/author. However, a medical-mystery theme novel wasn’t at the top of my must read list. With my 50-hour workweek, living and breathing medicine, imagining more emotional stress and drama was the furthest thing from my mind. However, three days later, as I turned the last page, and read the last few words. “life is a series of choices. I stuck my forefinger into the crook of the steering wheel, spun it hard to the left and …” This completed my 72-hour journey of and free moments I had, completely immersed in this story of life’s disappointments, human imperfections, and simple joys.

Rick, I can’t wait for your next book. Bravo!

Hibbingite writes twisted medical tale

HIBBING — Readers who are looking for a whodunit that will keep them up all night are in for a treat.

Hibbing native Rick Novak recently released his first book “The Doctor and Mr. Dylan,” a fiction set in Hibbing that merges anesthesia complications, a tumultuous marriage and the legend of Bob Dylan.

“The dialogue is sometimes funny, and there are lots of plot twists,” he said.

Novak said the book will not only entertain readers, but teach them about anesthesiology, Dylanology, the stressful race for elite college admission, and life on the Iron Range.

“The book is very conversational and streamlined,” he said. “I try to write as one would tell a story out loud.”

Novak said “The Doctor and Mr. Dylan” took him three years to perfect. He is currently working on his second book.

5.0 out of 5 stars I Sense We Have Another F.Scott Fitzgerald Emerging on the Literary Scene, December 1, 2014
By
Deann Brady (Sunnyvale, CA USA) – See all my reviews
(REAL NAME)
I found Rick Novak’s first novel, “The Doctor and Mr. Dylan,” a most exciting combination of biting sarcasm, mystery and daily activity spun with fresh new phrases that made me turn my ear back to listen to the literary cadence of his words again and again even though, on the other hand, I was anxious to turn the pages to see what would happen next. His brilliant handling of scenes is reminiscent of The Great Gatsby by F. Scott Fitzgerald. A compelling read!Deany Brady, author of “An Appalachian Childhood”

By

allan mishra

This review is from: The Doctor and Mr. Dylan (Kindle Edition)

Just finished Dr. Novak’s delightful novel. I sincerely enjoyed his honest take about the pressures and values that exist within California’s Silicon Valley. He also brought the North Country of Minnesota to life with memorable characters and a twisting, addictive plot. Buried beneath the fun and funny story is a deeper message about how to best care for your kids, your relationships and yourself. Very well written and highly recommended.

Learn more about Rick Novak’s fiction writing at rick novak.com by clicking on the picture below:

DSC04882_edited

SYRINGE SWAP: WHAT WAS IN THAT SYRINGE I JUST INJECTED INTO MY PATIENT?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion: A 70-year-old man presents for an elective descending colectomy.  Immediately prior to induction of anesthesia, the patient’s heart rate drops to 48 beats per minute.  You reach for a vial of atropine 0.4 mg, but grab the wrong vial by mistake and administer 1 mg of IV epinephrine.  His heart rate climbs to 175 beats per minute, and he cries out, “My head is exploding.”  What do you do?

Discussion:  Consider this math problem:  Assume you’ll practice anesthesia for 25 years, performing 700 anesthetics per year.  If on the average you inject 10 different drugs into each patient, that equals a total of 1,750,000 drugs you will personally inject in your career.  What are the odds that you’ll make a mistake and pick up a wrong ampoule or wrong syringe at least once during those nearly two million repetitions?  I’d say the odds are 100%.  You’re good, but you’re human.

Human error is a topic of intense scrutiny in medicine.  In 1999, the Institute of Medicine released its landmark publication To Err is Human:  Building a Safer Health Care System, which reported that 44,000 to 98,000 hospitalized patients in the United States died every year due to medical errors.  This publication stated that, “high error rates with serious consequences are most likely to occur in intensive care units, operating rooms, and emergency departments.”

Miller’s Anesthesia (6th Edition, 2005, Chapter 83) states that, “errors in executing a task are termed slips, as distinguished from errors in deciding what to do, which are termed mistakes.  Slips are actions that do not occur as planned, such as turning wrong switch or making a syringe swap.”

Anesthesiologists are unique among medical doctors in that we routinely handle and inject medications ourselves, rather than writing orders for nurses to carry out. While this direct involvement has the advantages of efficiency and flexibility, it carries the risk of human error.  While multi-tasking (watching monitors, performing hands-on procedures, and filling out medical records), anesthesiologists are vulnerable to having their attention distracted.

The issue of inadvertent syringe-swap or ampoule-swap has been discussed in the medical literature. Currie, et al reported 144 incidents where the wrong drug was nearly or actually administered by an anesthesiologist (The Australian Incident Monitoring Study.  The “wrong drug” problem in anaesthesia: an analysis of 2000 incident reports, Anaesth Intensive Care. 1993 Oct;21(5):596-601.) In 81% of the 144 incidents the wrong drug was actually given. In over half of these occurrences, the syringes were of the same size, and they were correctly labeled. The most common error was giving the wrong drug from a correctly labeled syringe. The most common drug involved was a muscle relaxant in both ampoule and syringe incidents.  Factors which contributed significantly to the incidents were similar appearance, inattention and haste.  The only significant factor which minimized the outcome was rechecking of the syringe or drug ampoule before giving the drug. Strategies suggested to address the wrong drug problem include education of staff about the nature of the problem and the mechanisms involved; color coding of selected drug classes for both ampoules and syringes; the use of standardized drug storage, layout and selection protocols; having a drawing up and labeling convention; and the use of checking protocols.

In a Japanese study, Irita, et al reported the incidence of critical incidents due to drug administration error as 18.27/100,000 anesthetics. (Critical incidents due to drug administration error in the operating room: an analysis of 4,291,925 anesthetics over a 4 year period, Masui. 2004 May;53(5):577-84.) Cardiac arrest occurred in 2.21 patients per 100,000 anesthetics. Causes of these critical incidents were as follows: overdose or selection error involving non-anesthetic drugs, 42.1%; overdose of anesthetics, 28.7%; inadvertent high spinal anesthesia, 17.9%; local anesthetic intoxication, 6.4%; ampoule or syringe swap, 4.3%; blood mismatch, 0.6%. Ampoule or syringe swap did not lead to any fatalities. 88 percent of ampoule or syringe swap occurred in patients with American Society of Anesthesiologists-Physical Status 1 or 2, who did not seem to require complex anesthetic management.  The authors concluded that bar-coding technology might be useful in preventing drug administration error.

In a confidential survey, private practice anesthesiologist colleagues of mine admitted the following significant syringe or ampoule swaps during their careers:  pancuronium instead of neostigmine, mivicurium instead of midazolam, atracurium instead of atropine, epinephrine instead of naloxone, epinephrine instead of ephedrine, and metoclopramide instead of neostigmine.

Have you ever administered the wrong drug to a patient?  If you did, did you fess up and write the wrong drug on your anesthetic record, or did you merely treat the consequences of the wrong drug (if any) and tell no one?  I suspect the true incidence of syringe and ampoule swap is unknown, and is indeed a higher number than reported in the medical literature.  Because of the risk of being sued and/or the risk of becoming the focus of peer review criticism, I believe many practitioners avoid reporting a drug administration error unless they can’t avoid reporting it (e.g. their patient is paralyzed for an extra three hours because of an unintended dose of pancuronium).

Future application of bar-coding technology for anesthesiologists in the operating room to assist in pharmacy billing of drug ampoules may serve to improve the accuracy of proper drug administration as well as improve accuracy of wrong drug reporting.  In the meantime, I’d advise leaving a drug in the ampoule until you need to use it, and then double-checking the ampoule twice before administering the drug.

Let’s turn the discussion to our case study patient who received 1 mg of epinephrine instead of 0.4 mg of atropine.  You choose to treat his elevated heart rate of 175 beats per minute with two doses of esmolol 50 mg each.  The heart rate drops to 110, but the blood pressure rises to 255/150, the patient develops acute pulmonary edema, has a grand mal seizure followed in minutes by ventricular fibrillation, and dies.

In a parallel universe, you’re aware that treating epinephrine overdose with a beta-blocker alone can result in unopposed alpha-adrenergic stimulation, marked vasoconstriction, and hypertension.  You begin combined alpha and beta-blockade with titrated doses of labetalol, 10 mg each, until the patient’s heart rate drops to 98 and his blood pressure drops to 150/85.  You cancel the elective surgery and report the mishap to your Quality Assurance/Peer Review committee.  Rather than condemning you, the QA committee works with the pharmacy to assure that dangerous medications such as epinephrine and phenylephrine are in ampoules and locations dissimilar to other medications.  The QA committee works with the administration and pharmacy to investigate bar code reading of all administered drugs in the operating room.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

 

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WHEN HEPATITIS C WAS TRANSMITTED FROM PATIENT TO PATIENT

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion: An anesthesia colleague of yours dilutes a 50-microgram ampoule of sufentanil with 9 cc of normal saline, so the final syringe concentration is 5 micrograms per cc.  He then injects 10 micrograms of sufentanil from this syringe into the clean IV line of three different patients during his OR day.  Is this practice OK?  What do you do?

Discussion:  Your colleague claims this practice is without risk because he injects into an IV port that is six feet proximal to the IV catheter.  He’s done this for twenty years, since his residency training.  He’s “never had a complication” and sees no reason to change.

He needs to change, and here’s the most recent evidence why:  In January 2008, investigators from the Center for Disease Control (CDC) responded to a request from the Southern Nevada Health District to help investigate three persons with acute hepatitis C virus (HCV) infection (MMWR Morb Mortal Wkly Rep. 2008 May 16;57(19):513-7).  All three persons had undergone procedures at a Las Vegas endoscopy clinic. CDC went on to identify a total of six cases of HCV infection among patients who had undergone procedures at the clinic in the 35–90 days prior to onset of symptoms. These patients had no other risks for HCV infection.

On investigation of the clinic, CDC observed practices that had the potential to transmit HCV.  The May 2008 issue of Anesthesiology News reported that “certified registered nurse anesthetists (CRNAs) at the center had been improperly administering anesthesia to patients undergoing routine endoscopic procedures.”  The California Department of Public Health mailed a letter to all California physicians, dated March 27, 2008.  Per this letter, the infected Nevada patients were most likely exposed in the following manner:  “1) A clean syringe and needle were used to draw a sedative medication from a new single-use vial. 2) The sedative was administered to a hepatitis C infected patient, and backflow of blood from the patient into the syringe presumably contaminated the syringe with hepatitis C virus.  3) The needle was replaced on the syringe with a new, sterile needle, but the syringe was reused to draw additional sedative from the same vial for the same patient, presumably contaminating the vial with blood containing hepatitis C virus.  4) A clean needle and syringe were used for subsequent patients, but the contaminated vial was reused, exposing subsequent patients to hepatitis C virus.”

Because these practices had prevailed at this clinic for years, nearly 40,000 Nevada patients had to be notified by letter that they should visit their primary care provider to be tested for hepatitis C, hepatitis B, and HIV.

The same March 27, 2008 letter from the California Department of Health included a list of Safe Injection Practices, drawn from the CDC website (Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings 2007, Standard Precautions (www.cdc.gov/ncidod/dhqp/gl_isolation.html).  These Safe Injection recommendations include the following: “1) Use aseptic technique to avoid contamination of sterile injection equipment.  2) Do not administer medications from a syringe to multiple patients, even if the needle or cannula on the syringe is changed.  3) Use fluid infusion and administration sets for one patient only and dispose appropriately after use.  4) Use single-dose vials for parenteral medications whenever possible.  5) Do not administer medications from single-dose vials or ampoules to multiple patients or combine leftover contents for later use.  6) If multi-dose vials must be used, both the needle or cannula and syringe used to access the multi-dose vial must be sterile.”

Viral infections have been reported secondary to unsafe anesthesia practitioners.  A cluster of four patients with hepatitis C virus (HCV) infection was identified in a single surgery clinic (Germain JM et al, Patient-to-patient transmission of hepatitis C virus through the use of multi-dose vials during general anesthesia. Infect Control Hosp Epidemiol. 2005 Sep;26(9):789-92). Molecular characterization revealed close homology between viruses, and this cluster was deemed to be due to intra-operative unsafe injection practices by anesthesia personnel using multi-dose vials.

From this point forward, your friend’s method of administering sufentanil must be stopped. You show him the above references, and urge him to change his practice for the safety of his patients.  Other verboten procedures include:  1) Using an infusion pump to administer portions of a 60 cc syringe of propofol or remifentanyl to more than one patient, even though you change the tubing;  2) Drawing 250 micrograms of fentanyl into one syringe, and then giving 100 micrograms to one patient, and 150 micrograms to the next patient from the same syringe;  3) Using a single 20 cc vial of labetalol to give repeated and multiple doses to more than one patient, if either the needle or the syringe used to draw any dose from that vial was reused.

We’ve urged our freestanding surgery centers to cease stocking large ampoules of drugs such as 5 cc Decadron, 5 or 10 mg midazolam, 5 cc Robinul, or 20 cc labetalol.  Reuse of larger ampoules gives practitioners the opportunity to spread viral infection to more than one patient if aseptic technique is ignored.  The larger vials may save the institutions money, but the saving of pennies is trivial compared to isolating each patient from the patient(s) that preceded them.

May all your present and future intravenous injection techniques comply with CDC guidelines!

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

MONITORING THE LEVEL OF PARALYSIS DURING SURGERY: DO YOU NEED A PERIPHERAL NERVE STIMULATOR?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:  One week before you graduate from anesthesia residency, you lose the peripheral nerve stimulator you use to monitor neuromuscular blockade.  Should you bother to purchase another one?

Discussion: Fast forward to your first day in post-residency private practice.  Your first case is a colectomy on an obese, 5 foot 2 inch, 100-kilogram male with adenocarcinoma of the sigmoid colon.  You bring the patient into the operating room, anesthetize him with propofol, and inject 50 mg of rocuronium into his IV.  You wait 90 seconds before intubating the trachea.  The surgeon enters the room.  After the Timeout, the patient is placed in lithotomy position.  The surgeon performs a rectal exam and sigmoidoscopy under anesthesia.

“We’ve got a problem,” the surgeon announces.  “The tumor has grown since my last exam, and it’s too close to the anus to treat with simple colectomy.  He needs a total proctocolectomy, and I didn’t give him informed consent for that.  We need to wake him up and come back another day.”  He shrugs his shoulders, and walks out of the room.  (Seem like an far-fetched scenario?  It’s not–this exact incident happened to me at Stanford about 8 years ago.)

You are stunned.  “Come back another day?”   The circulating nurse shakes her head.  She and the scrub tech are looking at you–waiting for you to wake up the patient.  It’s only been twelve minutes since you injected the muscle relaxant, and you have no nerve stimulator.  Being a resourceful Stanford graduate, you call another anesthesia attending and ask to borrow her nerve stimulator.  When the nerve stimulator is delivered to you, you discover no twitches at either the patient’s facial nerve or ulnar nerve.

The nurse asks, “Is there a problem?”

You answer, “Not really, but I can’t wake up the patient until the muscle relaxant wears off further.” You decide to wait until one twitch returns before you administer neostigmine/glycopyrrolate reversal.  You sit down, the nurse sits down, and the scrub tech scrubs out.  The operating room seems absurdly quiet for thirty minutes while you wait to reverse the muscle relaxant.  Forty minutes later, you extubate the trachea and take the patient to the Post Anesthesia Care Unit.

After you finish your Stanford residency, you need to be prepared for faster surgeons and shorter operative times.  Overdosing patients with muscle relaxants is a common mistake when newly-trained anesthesiologists leave residency.  The operative time for a laparoscopic appendectomy may be as little as fifteen minutes.  A pediatric tonsillectomy may last only twelve minutes.  An anterior cruciate ligament repair may last only 45 minutes.

In private practice, you will probably use modest doses of vecuronium or rocuronium when paralysis is necessary.  If the surgeon finishes earlier than expected, you always want to be able to reverse muscle relaxation and awaken the patient without delay. Whenever appropriate, you will prefer to use an LMA instead of an endotracheal tube, partly because the LMA insertion does not require a muscle relaxant, and partly because it’s easier for the patient to breath spontaneously with an LMA.

How about the need for a nerve stimulator to monitor neuromuscular blockade?  I polled the thirty-three private anesthesiology attendings at Stanford via email, regarding their practices using nerve stimulators and muscle relaxants.  I learned the following:  Most practitioners do not administer additional muscle relaxant following intubation unless surgical conditions demand it. Most practitioners do not reverse muscle relaxants if no dose was given in the last hour of a case.

Almost every private attending still owns a nerve stimulator.  Half of the attendings use a nerve stimulator routinely whenever they administer muscle relaxants, but half the attendings use the device occasionally or rarely, relying on clinical criteria and judgment alone in regards to the level of neuromuscular blockade. Is this practice wise, or not?

The American Society of Anesthesiologists Standards for Basic Anesthesia Monitoring, posted on www.asahq.org, does not list the use of a peripheral nerve stimulator as a standard.

However, in Miller’s Anesthesia, 2008 Edition, Chapter 47 on Neuromuscular Monitoring, author Jørgen Viby-Mogensen makes the following statements:

  • “Many anesthesiologists do not agree with extensive use of nerve stimulators and argue that they manage quite well without these devices. However, the question is not how little an experienced anesthetist can manage with but rather how to ensure that all patients receive optimal treatment.”
  • “It is difficult and often impossible to exclude with certainty clinically significant residual curarization by clinical evaluation of recovery of neuromuscular function.”

The author further states that the following clinical tests of postoperative neuromuscular recovery are NOT reliable:

  • Sustained eye opening
  • Protrusion of the tongue
  • Arm lift to the opposite shoulder
  • Normal tidal volume
  • Normal or nearly normal vital capacity
  • Maximum inspiratory pressure less than 40 to 50 cm H2O

The author states that the following clinical tests of postoperative neuromuscular recovery ARE reliable:

  • Sustained head lift for 5 seconds
  • Sustained leg lift for 5 seconds
  • Sustained handgrip for 5 seconds
  • Maximum inspiratory pressure 40 to 50 cm H2O or greater

The author concludes that  “Adequate recovery of postoperative neuromuscular function cannot be guaranteed without objective neuromuscular monitoring.”

In private practice in Palo Alto, most of us use a MiniStim unit Model MS-1B Miniature Nerve Stimulator (Life-Tech, Houston, Texas), a simple device with one red button for Tetanus, and one green button for Twitch.  The MiniStim assessment of tetanus or twitch response is done by visual and tactile evaluation of muscle movement, with no quantitation of blockade.

Is there any good reason to avoid using a nerve stimulator?  The benefit/risk ratio of using the device approaches infinity.  If you ever lose it, you can purchase another one on the Internet for a mere $155.  I’ve had my current unit for ten years, during which I’ve administered 7000 anesthetics.  The cost of the MiniStim so far works out to be about 2 cents per case.

During residency or during the years afterward, a MiniStim and a stethoscope are arguably the only tools of your own you need to carry into an operating room to conduct a 21st-century general anesthetic.

 

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited

 

 

WHAT IF YOUR SON NEEDS AN EMERGENCY APPENDECTOMY ON VACATION?

Physician anesthesiologist at Stanford at Associated Anesthesiologists Medical Group
Richard Novak, MD is a Stanford physician board certified in anesthesiology and internal medicine.Dr. Novak is an Adjunct Clinical Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University, the Medical Director at Waverley Surgery Center in Palo Alto, California, and a member of the Associated Anesthesiologists Medical Group in Palo Alto, California.
emailrjnov@yahoo.com
THE ANESTHESIA CONSULTANT

Clinical Case for Discussion:  You, your spouse, and your 5-year-old son are vacationing in Montana when your son develops acute abdominal pain and fever.  You take him to the largest medical center around, the community hospital in a town with a population of 20,000.  The surgeon there makes the diagnosis of an acute abdomen, and plans on operating.  You meet the anesthesia provider, and it is an unsupervised certified registered nurse anesthetist (CRNA). What do you do?

Discussion: Circa 1985, one of my anesthesia Stanford mentors told me this:  “If you’re on vacation in some rural place like Montana, and you need emergency surgery, let the anesthetist do the case whatever way he usually does it–if the only way he knows how to do things is open drop ether technique, you need to let him do it the way he knows.  It’s not the time to educate him into trying something new and different.”

Now you are in a rural hospital with a sick kid, and you feel nervous.  You ask the CRNA about his clinical experience, and he tells you he’s been out of training for 10 years, and has anesthetized hundreds of children without a single complication.

Your spouse (a non-medical professional) speaks up first, declaring that you are an anesthesiologist, and that he or she (the spouse) is adamantly opposed to the child having an anesthetic by a unsupervised nurse.  Your spouse asks how far it is to the nearest major medical center that would have pediatric anesthesia care supervised or performed by an MD?  The answer: a two-and-a-half hour drive.  Your child is moaning in the bed in front of you, and you realize that delaying the surgery for hours is a bad idea.

Your spouse tells you he/she wants you to do the anesthetic.  There are several problems with this solution.  Number one:  you do not have a state license in Montana.  Number two:  the hospital has a policy that family members are not allowed into the operating rooms during surgery.  Number three:  you have always been advised by your mentors and peers that physicians who take anesthetize or operate on their own family members have a difficult time being either objective or professional if some unfortunate complication arise.

You pull the surgeon aside and ask his views on the CRNA and the pediatric anesthetic assignment.  The surgeon reports that he has been working with this CRNA for 12 months, but has yet to see the CRNA anesthetize anyone under the age of 18 for him.  He confirms that on this weekend evening, there are no other anesthesia professionals within sixty miles.

Your son continues to moan.  Your spouse is pacing, and continues to fret about the CRNA not touching the child.  Your head is spinning.  What do you do?

As a father and an anesthesiologist, on 4 occasions I have handed one of my kids over to another anesthesiologist for surgery.  Each time I selected the anesthesiologist myself, I knew the anesthesiologist well, and trusted their skills under any circumstances.  Each surgery went well, but I can attest that every parent is on edge until they see their child awake and well after the conclusion of the surgery.  You, as a parent, will feel intensely protective of your child.

You realize that surgical emergencies likely occur somewhere in Montana every day, and that unsupervised nurse anesthetists are conducting many of these anesthetics.  You haven’t heard or read of an epidemic of anesthetic disasters in “opt out” states, where governors have decided that CRNA’s can conduct anesthesia without MD supervision.

You reason that your son is probably on safe ground, but . . . if something went wrong, you’d feel guilty for not being more involved. You know you’d feel uncomfortable sitting in the waiting room while the surgeon and CRNA do their best work in the OR.  Can  you convince the surgeon and CRNA that you want to be in the OR with them as an observer, although this is against hospital policy?  Can you convince them to telephone the Chief of Staff to make an exception in this one case?

What if the story played out as follows:  You call the Chief of Staff, you present your request is a cordial fashion, she empathizes, and allows you to observe in the OR.

You watch the anesthetic induction proceed uneventfully.  After intubation, the anesthetist inserts an oral gastric tube to suction out the stomach.  The surgery begins, and the diagnosis is a perforated appendix.  The surgeon performs the required surgery.  On anesthetic emergence, the CRNA untapes the endotracheal tube before your son’s eyes open, and begins letting air out of the cuff with a syringe.  Your heart rate quickens, and you blurt out, “Can you wait until he’s more awake before extubating him?”  The anesthetist answers, “I like to extubate deep, so there is less bucking.  I suctioned the oral gastric tube, so I know his stomach is empty now.”  While the two of you are debating, your son wretches forcefully and vomits a large volume of bilious fluid.  The good news is that the endotracheal tube was still in place, with the cuff inflated.  The good news is that none of the vomitus was aspirated.  Flustered, the anesthetist suctions out the mouth, and waits until the patient is wide awake before extubating him.  Minutes later, your son is awake and safe, but your hands are still shaking.

Fiction?  Sure, but the issue and question is whether or not unsupervised CRNA anesthesia is a good idea.  If your son had aspirated due to poor anesthetic judgment, would that event have shown up as a vital statistic anywhere?  I doubt it.

J H Silber’s landmark study from the University of Pennsylvania (Anesthesiologist direction and patient outcomes, Anesthesiology. 2000 Jul;93(1):152-63) documented that both 30-day mortality and failure-to-rescue rates were lower when anesthesia care was supervised by anesthesiologists, as opposed to anesthesia care by unsupervised nurse anesthetists.  This study was widely discussed.  The CRNA community dismissed the conclusions, citing that it was a retrospective study.   In a letter to the editor published in Anesthesiology, Dr. Bruce Kleinman wrote regarding the Silber data, “this study could not and does not address the key issue: can CRNAs practice independently? In fact, the negative outcomes in this retrospective study may be related to the medical direction of nonanesthesiologists and may not be related in any way to the practice of CRNAs per se.” (Anesthesiology: April 2001 – Volume 94 – Issue 4 – p 713)

Governor Schwarzenegger stunned California anesthesiologists in July 2009 by signing a document opting California out of the requirement for CRNA’s to be supervised by an MD.  An important conflict is the fact that California law rules that an MD must supervise the medical practice of CRNA’s.  The outcome for California is still undetermined, but the threat of CRNA’s replacing larger subsets of anesthesiologist’s work in future years is a crucial and daunting issue that all of us will follow with interest and intensity. Your delegates and lobbyists in the California Society of Anesthesiologists and the American Society of Anesthesiologists are working on the issue of unsupervised CRNA anesthesia care.  It’s a battle that needs to be fought, for the patients and their families, as much as for the careers of present and future anesthesiologists.

Back to the Clinical Case–if you are vacationing in Yellowstone or Glacier National Parks next summer, hopefully your family will stay out of the operating room and you never have the ponder any of these  problems.

*
*
*
*

Published in September 2017:  The second edition of THE DOCTOR AND MR. DYLAN, Dr. Novak’s debut novel, a medical-legal mystery which blends the science and practice of anesthesiology with unforgettable characters, a page-turning plot, and the legacy of Nobel Prize winner Bob Dylan.

KIRKUS REVIEW

In this debut thriller, tragedies strike an anesthesiologist as he tries to start a new life with his son.

Dr. Nico Antone, an anesthesiologist at Stanford University, is married to Alexandra, a high-powered real estate agent obsessed with money. Their son, Johnny, an 11th-grader with immense potential, struggles to get the grades he’ll need to attend an Ivy League college. After a screaming match with Alexandra, Nico moves himself and Johnny from Palo Alto, California, to his frozen childhood home of Hibbing, Minnesota. The move should help Johnny improve his grades and thus seem more attractive to universities, but Nico loves the freedom from his wife, too. Hibbing also happens to be the hometown of music icon Bob Dylan. Joining the hospital staff, Nico runs afoul of a grouchy nurse anesthetist calling himself Bobby Dylan, who plays Dylan songs twice a week in a bar called Heaven’s Door. As Nico and Johnny settle in, their lives turn around; they even start dating the gorgeous mother/daughter pair of Lena and Echo Johnson. However, when Johnny accidentally impregnates Echo, the lives of the Hibbing transplants start to implode. In true page-turner fashion, first-time novelist Novak gets started by killing soulless Alexandra, which accelerates the downfall of his underdog protagonist now accused of murder. Dialogue is pitch-perfect, and the insults hurled between Nico and his wife are as hilarious as they are hurtful: “Are you my husband, Nico? Or my dependent?” The author’s medical expertise proves central to the plot, and there are a few grisly moments, as when “dark blood percolated” from a patient’s nostrils “like coffee grounds.” Bob Dylan details add quirkiness to what might otherwise be a chilly revenge tale; we’re told, for instance, that Dylan taught “every singer with a less-than-perfect voice…how to sneer and twist off syllables.” Courtroom scenes toward the end crackle with energy, though one scene involving a snowmobile ties up a certain plot thread too neatly. By the end, Nico has rolled with a great many punches.

Nuanced characterization and crafty details help this debut soar.

Click on the image below to reach the Amazon link to The Doctor and Mr. Dylan:

41wlRoWITkL

Learn more about Rick Novak’s fiction writing at ricknovak.com by clicking on the picture below:  

DSC04882_edited